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ABSTRACT: To date there is no rapid method to screen for highly pathogenic
avian influenza strains that may be indicators of future pandemics. We report here
the first development of an oligonucleotide-based spectroscopic assay to rapidly and
sensitively detect a N66S mutation in the gene coding for the PB1-F2 protein
associated with increased virulence in highly pathogenic pandemic influenza viruses.
5′-Thiolated ssDNA oligonucleotides were employed as probes to capture RNA
isolated from six influenza viruses, three having N66S mutations, two without the
N66S mutation, and one deletion mutant not encoding the PB1-F2 protein.
Hybridization was detected without amplification or labeling using the intrinsic
surfaced-enhanced Raman spectrum of the DNA-RNA complex. Multivariate
analysis identified target RNA binding from noncomplementary sequences with
100% sensitivity, 100% selectivity, and 100% correct classification in the test data
set. These results establish that optical-based diagnostic methods are able to directly
identify diagnostic indicators of virulence linked to highly pathogenic pandemic
influenza viruses without amplification or labeling.

Influenza A virus is a ubiquitous negative strand RNA virus
having pandemic potential.1,2 Numerous studies have

suggested that specific mutations in the HA, PB1, and NA
genes are related to influenza virulence and pandemic
potential.3−6 The PB1-F2 protein has especially been linked
to virulence since it is considered proapoptotic and
pathogenic.7−10 A N66S mutation in the PB1-F2 sequence is
consistent among pathogenic influenza viruses, including the
pandemic 1918 H1N1 and 1997 H5N1 highly pathogenic avian
influenza strains, and is considered a virulence determinant.11

Research shows that the N66S mutation correlates with
significantly increased pathogenicity and mortality in mice
and that PB1-F2 promotes secondary bacterial infections; the
mechanism of increased virulence may be related to inhibition
of interferon induction.12 A recent global database analysis of
the PB1-F2 protein revealed that the N66S mutation was
present in only 3.8% of the H5N1 strains; however, the
mutation was specifically found associated with the highly
pathogenic strains.13 In particular, all six H5N1 human isolates
having the N66S mutation in the PB1-F2 protein isolated from
Hong Kong influenza outbreaks were found to be highly
pathogenic.13 Given these data, it is apparent that the N66S
mutation is relevant and critical for determining the pathogenic
potential of influenza.
Development of a rapid and sensitive method for identifying

emerging influenza viruses and determinants of virulence or
pandemic potential is critical for control of transmission and
disease intervention strategies. Currently, only genomic
techniques such as PCR are available for laboratory diagnosis
of virulence markers.14,15 While these techniques provide

identification of prognostic indicators, they rely entirely on
genomic sequencing and alignment and can be limited by issues
of reliability, standardization, and cost. Some studies of a
commercial PCR test for influenza showed a relatively low
sensitivity (∼75%);16 the authors suggest the use of a more
sensitive reference test to confirm negative results. The inability
to provide definitive screening highlights the need for a
diagnostic platform with high sensitivity, specificity, and
expediency.
Our research groups have previously shown that surface-

enhanced Raman spectroscopy (SERS) is a highly sensitive and
specific method for direct, label-free detection of DNA-RNA
binding.17−22 The intrinsic Raman spectra of oligonucleotide
probe-target complexes have been shown to be spectrally
unique and sensitive to the hybridization of both matched and
mismatched target sequences.23−29 We recently reported on a
SERS-based assay for identification of virulence factors
associated with pathogenesis in influenza in model systems.30

The current work shows that oligonucleotide-modified Ag
nanorod arrays can be used for rapid and sensitive detection of
pathogenicity determinants isolated from highly pathogenic and
pandemic influenza viruses through direct identification of
RNA and genetic mutations in PB1-F2 without amplification or
labeling of the virus. The findings reported here provide the
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basis for oligonucleotide-based SERS screening of influenza
with pandemic potential in a point-of-care application.

■ EXPERIMENTAL METHODS
Reagents. 6-Mercapto-1-hexanol (MCH) was purchased

from Sigma-Aldrich (St. Louis, MO). All other chemicals were
of analytical grade and used without any further purification.
The hybridization buffer was prepared by dissolving 20 mM
Tris HCl, 15 mM NaCl, 4 mM KCl, 1 mM MgCl2, and 1 mM
CaCl2 in molecular biology grade water at pH 7.3; it was stored
at 4 °C when it is not in use. The buffer and working tools were
DNase free.
Preparation of Ag Nanorod SERS Substrates. Oblique-

angle vapor deposition (OAD) was used to produce aligned Ag
nanorod substrates for SERS applications, according to
previously published methods.31,32 In brief, standard glass
microscope slides were cleaned using piranha solution, rinsed
several times with deionized water, and dried using N2 before
being placed into a custom-designed, high vacuum electron
beam vapor deposition chamber. Uniform thin film layers of Ti
(20 nm) layer and Ag (500 nm) were first deposited onto the
glass substrate at rates of 2.0 and 3.0 Å/s, respectively. The
substrates were then rotated to 86° relative to the incident
vapor source, and Ag nanorods were deposited at a constant
rate of 3.0 Å/s until a nominal thickness of 2000 nm, as
determined by a quartz crystal microbalance in the deposition
chamber. These vapor deposition conditions result in optimal
high aspect ratio Ag nanorod SERS substrates with overall
nanorod lengths of ∼900 nm, diameters of ∼80−90 nm,
densities of ∼13 nanorods/μm2, and a tilt angle of 71° with
respect to the substrate normal.32 Following nanofabrication, a
patterned multiwell array was produced on the Ag nanorod
substrate according to previously published procedures.33

DNA Probes. DNA probes were purchased from Integrated
DNA Technologies (IDT, Coralville, IA). The 5′-C6 thiolated
ssDNA probes were received lyophilized and dissolved in
molecular biology grade water to a concentration of 1000 nM.
DNA probes were designed for viruses having determinants of
low and high virulence in the PB1-F2 RNA, as previously
described.30

Influenza Viruses. Three wild type influenza viruses were
used in in these studies: A/Mute Swan/MS451072/06
(H5N1), A/CK/TX/167280-04/02 (H5N3), and A/CK/PA/
13609/93 (H5N2).34 The first two of these wild type viruses
are examples of strains containing the N66S mutation, while the
third did not have the mutation. Three additional reverse
genetics viruses were used in these studies. These were the
WH, WH N66S, and WH ΔPB1-F2 strains. These three viruses
are 7:1 reassortants of A/WSN/33 (H1N1) with the PB1
segment (segment 2) of A/Hong Kong/156/97 (H5N1) highly
pathogenic avian influenza virus. Two of these reverse genetics
viruses contained either the wild type, intact PB1-F2 protein
(WH), or the PB1-F2 protein with the N66S mutation (WH
N66S). The third of the reverse genetics viruses was a negative
control in which the PB1-F2 protein was deleted by removal of
the start codon and introduction of two stop codons within the
PB1-F2 open reading frame (WH ΔPB1-F2).11,35
MDCK cells were used to propagate the WH influenza

viruses and were maintained in Dulbecco’s Modified Eagles
Medium (DMEM; GIBSO BRL Laboratories, Grand Island,
NY) with 5% heat-inactivated (56 °C) FBS (Hyclone
Laboratories, Salt Lake City, UT). For virus production,
MDCK cells were rinsed three times with PBS, overlaid with 5

mL of MEM + TPCK trypsin (1 μg/mL; Worthington
Biochemical, Lakewood, NJ) + virus and grown for 3−5 days
at 35 °C until ∼70% cells were released from the flask surface.
Supernatants containing virus were collected, centrifuged to
remove cellular debris, aliquoted, and stored at −80 °C until
use. Virus titers were quantified by hemagglutination (HA),
50% tissue culture infectious dose (TCID50), and plaque assays
as previously described.36 The virus stock titer and PFU in 0.2
mL final volume for each of the influenza viruses used in this
study are summarized in Table S.1 in the Supporting
Information.

Viral Influenza RNA Samples. Viral RNAs isolated from
six strains of influenza were used. This include three examples
of N66S mutations (WH N66S, A/Mute Swan/MS451072/06,
A/CK/TX/167280-04/02), and two without the N66S
mutation (WH, A/CK/PA/13609/93). An influenza deletion
mutant not containing the PB1-F2 sequence was used as a
negative control (WH ΔPB1-F2). A PureLink Viral RNA/DNA
mini Kit (Invitrogen, Carlsbad, CA) was used to isolate
influenza virus RNA. Viral RNA was extracted by mixing 200
μL of each strain with 25 μL of Proteinase K in 1.5 mL
followed by addition of 200 μL of 1× PBS/0.5% BSA in a
microcentrifuge tube. The resulting solution was mixed for 15 s
and then the lysate was incubated at 56 °C for 15 min.
Subsequently, 250 μL of 96−100% ethanol was added, and
then the lysate was mixed for 15 s followed by the incubation
for 5 min at room temperature. The lysate was transferred onto
the Viral Spin Column and centrifuged at 5 000 rpm for 1 min.
The flow-through was discarded and the spin column was
placed in a new collection tube. The washing step was repeated
one more time with 500 μL of the wash buffer. The collection
tube was discarded and the spin column was transferred into a
new collection tube and spun at 13 000 rpm for 1 min to dry
the column. The column was placed into a new recovery tube,
and 50 μL of sterile, RNase-free water was added to the top of
the the column. The resulting solution was incubated for 1 min
at room temperature. The column was then centrifuged at 13
000 rpm for 1 min to elute the viral nucleic acids. Virus RNA
purity and concentration was quantified by UV−vis spectrom-
etry (Thermo Fisher NanoDrop 1000, Wilmington, DE).

Immobilization of DNA Probes onto Ag Nanorod
Arrays. 5′-Thiol single stranded DNA (ssDNA) oligonucleo-
tide probes were immobilized on the Ag nanorod array surface
to capture and detect RNA strains corresponding to the PB1-F2
gene mutation. Preparation of self-assembled monolayers
(SAMs) of ssDNA probes on the Ag nanorod substrates
followed previously published procedures.20,22,30 Briefly, 20 μL
of 1000 nM of the oligonucleotide solution was added to a
patterned microwell and incubated overnight at room temper-
ature. After the incubation, any unbound oligonucleotide
solution was removed from the microwell by rinsing it three
times with molecular biology grade water and blow dried with
N2. Then, 20 μL of 100 nM solution of the spacer molecule 6-
mercapto-1-hexanol (MCH) was added to the microwell in
order to minimize nonspecific binding of DNA/RNA molecules
to the surface of Ag nanorod substrates and for the correct
oligonucleotide conformation. The spacer molecule was
incubated for 6 h at room temperature followed by the rinsing
and drying steps. A volume of 20 μL of 20 ng/μL (∼5 nM)
RNA solution diluted in the binding buffer was added to the
oligonucleotide-functionalized Ag nanorod to accomplish the
hybridization and incubated at 37 °C for 2 h under a humid
environment to avoid dehydration. After the incubation, any
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nonspecifically adsorbed RNA molecules were removed by
rinsing with the binding buffer with the final wash using
molecular biology grade water. The rinsed substrate was then
dried with a gentle stream of N2.
Raman Spectroscopy. Raman spectra were collected using

a confocal Raman microscope (InVia, Renishaw, Inc., Hoffman
Estates, IL) equipped with a 785 nm diode laser as the
excitation source. The sample was illuminated through a 20×
(Leica, Germany) N.A. = 0.40 objective with a spot size of
approximately 4.8 μm × 27.8 μm; laser power was ∼0.42 mW
as measured at the sample. Spectra were collected between
2000−500 cm−1 using a 30 s acquisition time. Spectra were
acquired from five different spots in each individual microwell
on the Ag nanorod substrate. Four microwells were used for
each sample; therefore, 20 spectra were collected for each
sample and used for further data analysis.
Data Analysis. Prior to multivariate analysis, the raw

spectra were preprocessed using a first order Savitzky−Golay
derivative filter (15-point, second order polynomial), normal-
ized to unit vector length, and mean centered. These
preprocessing methods removed any spectral variations caused
by instrumental drift, nonuniformity between different micro-
wells on the substrate, and environmental changes. Initial
spectral quality was assessed using principal component analysis
(PCA). Determination of spectral outliers was based on
calculation of their PCA scores with their corresponding
Hotelling T2 and Q residuals values.37 Out of more than 140
spectra used in this analysis, only one spectral outlier was found
and eliminated prior to analysis.
Multivariate analysis for classification was performed using

partial least-squares discriminate analysis (PLS-DA)38 and
support vector machine discriminate analysis (SVM-DA).39,40

All data processing was performed with PLS Toolbox version
6.2 (Eigenvector Research Inc., Wenatchee, WA) in MATLAB
R2012a (The Mathworks Inc., Natick, MA).

■ RESULTS
Six influenza strains were used in this study. Three of these
influenza strains contained the N66S mutation, representative
of the putative PB1-F2 mutation consistent with increased
virulence; these were the WH N66S, A/Mute Swan/
MS45107206, and A/CK/TX167280-04/02 strains. Two
other viruses were used that did not contain the N66S
mutation and were representative of low virulence; these were
the WH and A/CK/PA/13609/93 strains. A negative control
virus was included, WH ΔPB1-F2, that had the open reading
frame for the PB1-F2 protein deleted. For simplicity, viruses
containing the N66S determinant are referred to as “high
virulence” while the viruses not containing the N66S
determinant are referred to as “low virulence.” In addition to
these samples, spectra of the DNA probe alone were collected
and used in the analyses.
SERS spectra are shown in Figure 1A,B for the high and low

virulence strains, respectively; each spectrum is an average of 20
individual spectra and is presented without processing. Figure
1A presents SERS spectra of the high virulence DNA probe-
spacer complex before hybridization (Figure 1A,I), DNA-probe
hybridized with complementary high virulence viral RNA
strains (Figure 1A,II), and the DNA-probe incubated with
noncomplementary low virulence viral RNA strains (Figure
1A,III). Figure 1B shows SERS spectra of the low virulence
DNA probe-spacer complex alone (Figure 1B,I), the spectra of
DNA-probe incubated with the noncomplementary high

virulence viral RNA strains (Figure 1B,II), and DNA-probe
incubated with the complementary low virulence viral RNA
target sequence (Figure 1B,III). The dominant features found
in the SERS spectra in Figure 1 correspond to nucleic acid
vibrations, e.g., 1332, 1089, 1023, 793, and 623 cm−1.22,30

The high virulence target RNA was distinguished from low
virulence and control RNA using a whole-spectrum, multi-
variate statistical analysis of the Raman spectra. This method
has been previously employed for detection, identification, and
classification of pathogens.41−43

Partial least-squares discriminant analysis (PLS-DA) was
utilized to build multivariate classification models to discern
high virulence RNA binding to the substrate. The classification
model was designed such that 2/3 of spectra of the high
virulence and low virulence RNA complexes were designated as
a calibration/training sets, while the remaining 1/3 of the
spectra in each class were designated as the validation/
prediction sets. This separation allowed the calibration model
to contain all possible variances needed to explain the
validation set. The spectra were randomly assigned to each

Figure 1. (A) Average SERS spectra of high virulence strains: (I)
spectra of high virulence DNA probe, (II) spectra of high virulence
DNA probe with complementary high virulence RNA strains (N66S,
A/CK/TX, A/CK/MI), (III) spectra of DNA probe with non-
complementary low virulence RNA strains (WH, A/CK/PA). (B)
Average SERS spectra of low virulence strains: (I) spectra of low
virulence DNA probe, (II) spectra of LPAIV DNA probe with
noncomplementary high virulence RNA strains (N66S, A/CK/TX, A/
CK/MI), and (III) spectra of the low virulence DNA probe with
complementary low virulence RNA strains (WH, A/CK/PA).
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set in order to minimize any correlation between spectral
variances and order sequence. Cross-validation (Venetian
blinds, 10 splits) was used for internal validation of the
calibration model. The optimal number of latent variables
(LVs) was selected based on the cross-validated class error.
Figure 2A,B represents the PLS-DA prediction results for the

high virulence and low virulence assays, respectively, as a
function of sample number. The prediction results for the
samples in Figure 2 include both the calculated values for the
calibration sets as well as the predicted values for the validation
sets. Each icon in Figure 2 represents a SERS spectrum; the

color code and shape of the symbol represents the particular
class of samples the spectrum belongs to, as defined in the
caption to Figure 2. The optimum threshold value for sample
classification is represented by the red dashed line in Figure 2;
the threshold is calculated using Bayes’ Theorem based on the
minimization of total classification errors.44 Spectra with
predicted values greater than the Bayesian threshold are
designated as belonging to a particular category, as defined
by the classification model.
Figure 2A represents the results of a PLS-DA classification

model designed to identify high virulence strains. Samples 1−
40 in Figure 2A represent the predicted PLS-DA classification
values for the training set of SERS spectra containing the high
virulence strains, including WH N66S, (red ▼), A/CK/
TX167280-04/02 (green ★), and A/Mute Swan/MS451072/
06 (blue ■). Samples 41−105 represent the predicted
classification values for the training set of LPAIV strains and
controls, including LPAIV RNA isolated from strains WH
(green●), A/CK/PA/13609/93 (pink◇), and WH ΔPB1-F2
(yellow ▲); controls included the buffer (gray ◀) and the
DNA HPAIV capture probe alone (brown ▶). It is clear from
Figure 2A that this method unambiguously separates the
spectra of the high and low virulence strains in the calibration
sets with complete accuracy.
This high virulence classification model was tested using

samples 106−124 and 125−160, which were the validation sets
for the high virulence and low virulence/control samples,
respectively. Figure 2A qualitatively indicates that this high
virulence model accurately classified both low and high
virulence validation sets; Table 1 provides the quantitative

values. The results show 100% calculated sensitivities and
specificities, with root-mean square error of prediction
(RMSEP) values of 0.21 for both classes. The overall
percentage of test samples correctly classified by the high
virulence PLS-DA model was 100%.
Figure 2B represents the complementary situation for a

classification model designed to identify low virulence strains.
In similar fashion to Figure 2A, samples 27−38 and 65−76 in
Figure 2B represent the predicted PLS-DA classification values
for the calibration sets of SERS spectra containing the low
virulence strains WH (green ●) and A/CK/PA/13609/93
(pink ◇), while samples 112−120 and 140−146 represent the
validation sets used to test this model. Similar to the high
virulence model in Figure 2A, the low virulence model in

Figure 2. PLS-DA prediction plots for (A) high and (B) low virulence
assays. Each colored symbol represents the PLS predicted value for an
individual SERS spectrum after incubation of isolated viral RNA at 37
°C for 2 h with the matching DNA probe. (A) Samples 1−40
represent the calibration sets of SERS spectra containing the high
virulence strains, including: WH N66S (red ▼), A/CK/TX167280-
04/02 (green ★), and A/MuteSwan/MS451072/06 (blue ■).
Samples 41−105 represent the calibration sets of low virulence strains
and controls, including WH (green ●), A/CK/PA/13609/93 (pink
◇), WH ΔPB1-F2 (yellow ▲), binding buffer (gray ◀), and DNA
probe (brown ▶). Samples 106−124 and 125−160 are the validation
sets for the high virulence and low virulence/control samples,
respectively. (B) Samples 27−38 and 65−76 repent the predicted
PLS-DA classification values for the calibration sets of SERS spectra
containing the low virulence strains WH (green ●) and A/CK/PA/
13609/93 (pink ◇), while samples 112−120 and 140−146 represent
the validation sets used to test this model.

Table 1. PLS-DA Results for the Low and High Virulence
Determinant Assays

low virulence high virulence

full
hybridization

partial/no
hybridization

full
hybridization

partial/no
hybridization

sensitivity
(prediction)

1.00 1.00 1.00 1.00

specificity
(prediction)

1.00 1.00 1.00 1.00

RMSEPa 0.22 0.22 0.21 0.21
overall % CCb 100% 100%
aRMSEP = root-mean-square error of prediction from PLS-DA =
{(∑i=1

n (yî − yi)
2)/n}1/2, where yî is the predicted value from PLS-DA

and yi is the measured class value. b% CC = percent of samples
correctly classified = (TP + TN)/(TP + TN + FP + FN), where TP =
true positive, TN = true negative, FP = false positive, FN = false
negative.
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Figure 2B indicates high classification accuracy. Table 1
provides the quantitative results for the low virulence model:
calculated sensitivities and specificities of 100% and RMSEP of
0.22, with an overall percentage of correctly classified test
samples of 100%. Results from the PLS-DA models show
extremely high sensitivities, specificities, and percent correct
classification, albeit with relatively high values for RMSEP.
While PLS-DA is a powerful tool for classification and

regression, it is not optimized for use with complex, nonlinear
data sets.45,46 Support vector machine-discriminant analysis
(SVM-DA) is a relatively new classification and regression
method that can produce a unique, global solution when
presented with high-dimensional inputs.47,48 We applied SVM
for classification of the high and low virulence strains described
above.
For SVM-DA analysis, a radial basis function (RBF) kernel

was used and the SVM model was calculated by grid searching
within a range of paired values of cost (C = penalty error) and
radial width (γ). In this formulation, SVM required fitting two
parameters for optimization. The first is γ, defined as γ = 1/
(2σ2), where σ is the radial width of the RBF that determines
the shape of the hyperplane that best separates the different
classes. The second parameter C takes into account the
regression errors of the training set and controls the
complexities of the class boundaries. Once the optimal
parameters were determined for the calibration set, the test
set was loaded and class membership probabilities calculated
using the established SVM-DA calibration model.
The SVM-DA model structure in terms of calibration and

validation sets was identical to that described for PLS-DA (see
above). The calibration set was first compressed by choosing an
optimized rank of latent variables as determined from a cross-
validated principal least-squares (PLS) calculation. The optimal
pair of SVM parameters (C, γ) was chosen by cross validation
(Venetian blinds, 5 splits) of the calibration set. The values
used were γ = 100 and C = 0.316 for the high virulence assay
and γ = 100 and C = 0.001 for the low virulence assay. A total
of 19 support vectors were used in the calculations for both
assays.
Figure 3 illustrates the results from the SVM-DA calculations

for a high virulence classification model. As in the case of the
PLS-DA model (Figure 2A), samples 1−40 represent the
training set of SERS spectra containing the HPAIV strains,
samples 41−105 represent the training set of low virulence
strains and controls, while samples 106−124 and 125−160 are
the test sets for the high virulence and low virulence/control
samples, respectively. The ordinate axis in Figure 3 is the
predicted class membership probability, as calculated by the
SVM-DA model. In a binary classification model, the closer the
class predicted probability is to 0.0 or 1.0, the more likely the
sample is to belong to that particular class. Figure 3A shows
that SVM fully separates the high virulence test samples from
the low virulence and control samples. Table 2 quantifies the
results: the SVM model provides 100% specificity and
sensitivity for prediction with 100% of test samples correctly
classified. In addition, the SVM model has a root-mean-square
error of class predicted probability (RMSECPP) of 0.07,
showing a much lower prediction error compare to PLS-DA
model, which had an RMSEP value of 0.21.
A similar situation occurs for the low virulence assay

illustrated in Figure 3B, in which samples 27−38 and 65−76
represent the predicted SVM class membership probabilities for
the calibration sets of SERS spectra containing the low

virulence strains WH and A/CK/PA/13609/93, while samples
112−120 and 140−146 represent the validation sets used to
test this model. Table 2 provides the quantitative results: the
SVM low virulence model showed 100% sensitivity and
specificity for prediction with 100% of the test samples
correctly classified. The SVM model also had a RMSECPP of
0.06, compared with the prediction errors associated with PLS-
DA, i.e., an RMSEP value of 0.22.

■ CONCLUSIONS
We report here the first use of oligonucleotide-modified
substrates as diagnostic tools for the direct identification of a
PB1-F2 mutation in the influenza virus genome related to
virulence, specifically the N66S gene mutation within the PB1-
F2 protein. The method employed 5′-thiol-modified ssDNA
sequences as probes to capture RNA isolated from avian and

Figure 3. SVM-DA probability plots for (A) high and (B) low
virulence assays. Each colored symbol represents the SVM predicted
class membership probability for an individual SERS spectrum after
incubation of isolated viral RNA at 37 °C for 2 h with the matching
DNA probe. The codes for each colored symbol and sample number
are WH N66S (red ▼), A/CK/TX167280-04/02 (green ★), and A/
MuteSwan/MS451072/06 (blue ■). Samples 41−105 represent the
calibration sets of low virulence strains and controls, including WH
(green ●), A/CK/PA/13609/93 (pink ◇), WH ΔPB1-F2 (yellow
▲), binding buffer (gray ◀), and DNA probe (brown ▶).

Analytical Chemistry Article

dx.doi.org/10.1021/ac500659f | Anal. Chem. 2014, 86, 6911−69176915



reverse genetics influenza viruses containing low virulence or
high virulence determinants. We used a label-free and
amplification-free optical read-out method, i.e., Raman spec-
troscopy, to determine the efficacy of binding. The Raman
spectra of both high virulence and low virulence DNA-RNA
target complexes showed high similarity; therefore, multivariate
analysis was used to identify target binding. Binary classification
models were developed to distinguish complementary from
noncomplementary DNA-RNA target hybrids. The SVM-DA
model that was developed using a radial basis function kernel
resulted in calculated values of 100% sensitivity, 100%
specificity, and 100% correct classification of the test samples
with a small root-mean-square error of prediction (RMSECPP
∼0.07).
The current study was designed to demonstrate the ability of

the SERS methodology to identify different virulence genotypes
from real RNA virus-containing specimens, not to determine a
lower limit of detection of the assay. However, a previous study
using the same ssDNA PB1-F2 probes employed in this article
demonstrated that these SERS-based methods were an order of
magnitude more sensitive than ELISA for the capture of
synthetic influenza RNA target sequences (10 nM vs 100
nM).30 Also, in terms of the use of these methods for complex
biological samples, we have previously shown that the SERS
methods described in this paper were simultaneously able to
identify eight human rotavirus strains and classify each
according to its G or P genotype with >96% accuracy.49

Other studies showed that our SERS-based methods had
equivalent-or-better detection limits than qPCR for analysis of
pathogens in complex clinical samples.50 Therefore, based on
our previous experience, we feel confident that the methods
described here can be extended to analyze biologically complex
mixtures.
These studies establish that optical-based Raman diagnostic

methods are able to sensitively and accurately detect influenza
virus RNA mutations linked to pathogenicity in emerging
highly pathogenic avian and pandemic influenza viruses without
amplification or labeling. The results are also the first
demonstration of the use of real influenza viral RNA for direct
identification of diagnostic indicators of influenza virulence.
Future work will address the applicability and robustness of this
platform for more relevant samples containing the target viral
RNA in complex influenza isolates.
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(47) Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W. J.; Buydens, L.
M. C. Chemom. Intell. Lab. Syst. 2004, 73, 169−179.
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