
cancers

Article

Deep Learning for the Preoperative Diagnosis of Metastatic
Cervical Lymph Nodes on Contrast-Enhanced Computed
ToMography in Patients with Oral Squamous Cell Carcinoma

Hayato Tomita 1,2,* , Tsuneo Yamashiro 2 , Joichi Heianna 2 , Toshiyuki Nakasone 3, Tatsuaki Kobayashi 4 ,
Sono Mishiro 5, Daisuke Hirahara 5 , Eichi Takaya 6 , Hidefumi Mimura 1, Sadayuki Murayama 2 and
Yasuyuki Kobayashi 4

����������
�������

Citation: Tomita, H.; Yamashiro, T.;

Heianna, J.; Nakasone, T.; Kobayashi,

T.; Mishiro, S.; Hirahara, D.; Takaya,

E.; Mimura, H.; Murayama, S.; et al.

Deep Learning for the Preoperative

Diagnosis of Metastatic Cervical

Lymph Nodes on Contrast-Enhanced

Computed ToMography in Patients

with Oral Squamous Cell Carcinoma.

Cancers 2021, 13, 600. https://

doi.org/10.3390/cancers13040600

Academic Editors: Khaled M. Elsayes

and Tanya W. Moseley

Received: 22 December 2020

Accepted: 31 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki,
Kanagawa 216-8511, Japan; mimura@marianna-u.ac.jp

2 Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara,
Nishihara, Okinawa 903-0215, Japan; clatsune@yahoo.co.jp (T.Y.); anna1150@med.u-ryukyu.ac.jp (J.H.);
sadayuki@med.u-ryukyu.ac.jp (S.M.)

3 Department of Oral and Maxillofacial Surgery, Graduate School of Medical Science,
University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan; nakasone4266@gmail.com

4 Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine,
2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; t_kobayashi@vis-ionary.com (T.K.);
yasukoba2@gmail.com (Y.K.)

5 Department of AI Research Lab, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima,
Kagoshima 891-0113, Japan; mishiro@harada-gakuen.ac.jp (S.M.); rt.hirahara@harada-gakuen.ac.jp (D.H.)

6 School of Science for Open and Environmental Systems, Graduate School of Science and Technology,
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan; etakaya@keio.jp

* Correspondence: m04149@yahoo.co.jp; Tel.: +81-44-977-8111

Simple Summary: Cervical lymph node (LN) metastasis in patients with oral squamous cell carci-
noma is one of the important prognostic factors. Pretreatment cervical nodal staging is performed
using computed tomography (CT) as the first-line examination. However, imaging findings focused
on morphology are not specific for detecting cervical LN metastasis. In this study, deep learning
(DL) analysis of pretreatment contrast-enhanced CT was evaluated and compared with radiologists’
assessments at levels I–II, I, and II using the independent test set. The DL model achieved higher
diagnostic performance in discriminating between benign and metastatic cervical LNs at levels I–II,
I, and II. Significant difference in the area under the curves of the DL model and the radiologists’
assessments at levels I–II and II were observed. Our findings suggest that this approach can provide
additional value to treatment strategies.

Abstract: We investigated the value of deep learning (DL) in differentiating between benign and
metastatic cervical lymph nodes (LNs) using pretreatment contrast-enhanced computed tomography
(CT). This retrospective study analyzed 86 metastatic and 234 benign (non-metastatic) cervical LNs at
levels I–V in 39 patients with oral squamous cell carcinoma (OSCC) who underwent preoperative
CT and neck dissection. LNs were randomly divided into training (70%), validation (10%), and test
(20%) sets. For the validation and test sets, cervical LNs at levels I–II were evaluated. Convolutional
neural network analysis was performed using Xception architecture. Two radiologists evaluated the
possibility of metastasis to cervical LNs using a 4-point scale. The area under the curve of the DL
model and the radiologists’ assessments were calculated and compared at levels I–II, I, and II. In the
test set, the area under the curves at levels I–II (0.898) and II (0.967) were significantly higher than
those of each reader (both, p < 0.05). DL analysis of pretreatment contrast-enhanced CT can help
classify cervical LNs in patients with OSCC with better diagnostic performance than radiologists’
assessments alone. DL may be a valuable diagnostic tool for differentiating between benign and
metastatic cervical LNs.
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1. Introduction

Metastasis to the cervical lymph nodes (LNs) is one of the poor prognostic factors
in patients with oral squamous cell carcinoma (OSCC). Evaluating whether the cervical
LNs are benign or metastatic depends on the treatment strategy. Among patients with
clinically negative LNs, 15–20% are at risk of occult LN metastasis [1]. Unnecessary surgical
LN dissection without metastatic cervical LNs can lead to increased complications, while
delayed dissection of LN metastases can result in disease progression. Ultrasonography
(US), computed tomography (CT), magnetic resonance imaging (MRI), and fluorine-18-2-
fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) have been widely
used for evaluating the cervical LN status in head and neck cancer patients [2–4]. However,
the subjective nature of the morphologic criteria for visually confirming metastatic LNs on
US, CT, and MRI results in diminished reproducibility and objectivity. Although several
studies have recently described the usefulness of dual-energy CT to evaluate the cervical
LN status in head and neck cancer patients, it is not widely used [5,6]. 18F-FDG PET
has been known to be the best modality for evaluating cervical LN metastasis in these
patients. However, the diagnosis of small cervical LNs for evaluating the nodal status
using 18F-FDG PET is limited, owing to false-negative findings [7,8]. Additionally, the
sensitivity of sentinel LN biopsy and sentinel LN imaging techniques using CT or MR
lymphography and PET lymphoscintigraphy is 56–91% [9,10]. Unfortunately, metastatic
cervical LNs are not easily detected on a pretreatment clinical examination. Therefore, the
development of accurate diagnostic methods is required.

With the continued development of artificial intelligence, deep learning (DL) has
been applied to medical imaging for tissue characterization, outcome prediction, and
automated detection [11–15]. DL enables the parameters to increase and handle complex
tasks by increasing the layers of the neural networks that imitate models of brain structures
connecting a large number of neurons. Convolutional neural network (CNN), one of
the DL architectures, consists of convolutional and pooling layers. Convolutional layers
convert some pixels in the grid into one pixel and extract the image features called a feature
map. Pooling layers decrease the amount of calculation and adapt to the misalignment
of images by reducing the data of the feature map. CNNs can play an important role in
interpreting medical imaging without subjective assessment. Previous studies have shown
how CNN could effectively assess the malignancy of hepatocellular carcinoma and prostate
cancer lesions [13,14]. Furthermore, DL was able to help discriminate between benign
and metastatic cervical LNs in patients with OSCC [16]. However, its value based on the
American Head and Neck Society cervical regional lymph node level system, which has
been used to determine the extent of LN dissection and indication for radiotherapy, has
not been evaluated. Although LNs at levels I and II are known to drain from the lymphatic
tract of the OSCC, identifying metastatic cervical LNs remains challenging because of oral
and sinonasal inflammation or insufficient malignant deposits. In addition, prophylactic
cervical neck dissection is frequently performed level-by-level in clinical practice since
cervical LNs metastasis in OSCC can occur even if these are clinically diagnosed as benign
lesions. Hence, unnecessary neck dissection can be prevented if the benign or metastatic
LNs can be distinguished for each level. Therefore, we aimed to clarify the diagnostic
performance of DL in differentiating between benign and metastatic level I–II, I, and II
cervical LNs on contrast-enhanced CT in patients with OSCC.

2. Results

Patient characteristics are summarized in Table 1. Table 2 shows the number of LNs at
each level in each set.
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Table 1. Patient-based characteristics.

Characteristics
Patient-Based

n = 39

Age mean ± SD 64.0 ± 14.0
Gender male/female 23/16
Primary tumor sites Oral tongue 26

Gingiva 8
Floor of mouse 5

T stage T1 7
T2 17
T3 7
T4 8

N stage N0 7
N1 11

N2a 0
N2b 13
N2c 6
N3a 0
N3b 2

Level I 121
Ipsilateral Level I 84

Level II 132
Ipsilateral Level II 72

Level III 37
Ipsilateral Level III 19

Level IV 4
Ipsilateral Level IV 4

Level V 26
Ipsilateral Level V 13

Table 2. The number of lymph nodes (LN) at each level in train set, validation set, and test set.

Level

LN-Based

Train Cohort (n = 224) Validation Cohort (n = 32) Test Cohort (n = 64)

Benign
(n = 169)

Metastasis
(n = 55)

Benign
(n = 22)

Metastasis
(n = 10)

Benign
(n = 43)

Metastasis
(n = 21)

Level I 51 24 10 5 21 10
Ipsilateral Level I 29 20 7 5 15 8

Level II 64 18 12 5 22 11
Ipsilateral Level II 26 14 4 5 12 11

Level III 27 10 - - - -
Ipsilateral Level III 12 7 - - - -

Level IV 1 3 - - - -
Ipsilateral Level IV 0 3 - - - -

Level V 26 0 - - - -
Ipsilateral Level V 13 0 - - - -

2.1. Diagnostic Performance of the Deep Learning Model in the Validation and Test Sets

In the validation set, the DL model achieved a diagnostic accuracy rate/area under
the receiver operating characteristic curve (AUC) of 97.5%/0.964 at levels I–II. A summary
of the diagnostic performances of the DL model and the radiologists’ assessments in the
test set is shown in Table 3. The DL model achieved a diagnostic accuracy rate/AUC of
85.9%/0.898 at levels I–II, 83.9%/0.824 at level I, and 90.9%/0.967 at level II.
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Table 3. Comparisons of area under the curve (AUC), diagnostic accuracy rate, sensitivity, and specificity between deep
learning models and radiologists at each level.

AUC [95% Confidence Interval] Accuracy Sensitivity Specificity

Level I/II
Deep learning 0.898 [0.778, 0.956] 85.9 66.7 95.4

Reader 1 0.780 [0.559, 0.864] * 78.1 57.1 88.4
Reader 2 0.758 [0.587, 0.873] * 78.1 66.7 83.7

Level I
Deep learning 0.824 [0.600, 0.936] 80.6 60.0 90.5

Reader 1 0.738 [0.497, 0.889] 77.4 60.0 85.7
Reader 2 0.707 [0.443, 0.880] 74.2 60.0 81.0

Level II
Deep learning 0.967 [0.854, 0.993] 90.9 72.7 100.0

Reader 1 0.771 [0.546, 0.904] * 78.8 54.6 90.9
Reader 2 0.812 [0.574, 0.933] * 81.8 72.7 86.4

* Indicates a significant difference between deep learning and radiologists (p < 0.05).

2.2. Diagnostic Performance of the Readers in the Test Set

Figure 1 shows the receiver operating characteristic curves of the DL model and the
radiologists’ assessments. Significant differences in the AUCs at levels I–II (0.898 [DL]
vs. 0.780 [R1] and 0.758 [R2]; both, p < 0.05) and level II (0.967 [DL] vs. 0.771 [R1] and
0.812 [R2]; both, p < 0.05) between the DL model and the radiologists’ assessments were
found. The DL model was more accurate at levels I–II (85.9% [DL] vs. 78.1% [R1] and
78.1% [R2]), level I (80.6% [DL] vs. 77.4% [R1] and 74.2% [R2]), and level II (90.9% [DL]
vs. 78.8% [R1] and 81.4% [R2]). The DL model improved 16 diagnostic decisions of the
readers. For the benign LNs at levels I–II, the DL model accurately diagnosed four and
seven LNs that were misdiagnosed by R1 and R2, respectively, while one and two LNs that
were accurately diagnosed by the readers were not accurately diagnosed by the DL model.
For the metastatic LNs, the DL model improved four and one LNs that were diagnosed
as benign lesions by R1 and R2, respectively, while two and one LNs that were accurately
diagnosed by the readers were not accurately diagnosed by the DL model. A representative
case of different diagnostic decisions between the DL model and radiologists is shown in
Figure 2.
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Figure 2. A representative case of cervical LN at level IIA on the right in a 56-year-old man with gingival cancer of T4
classification whose diagnosis differed between the deep learning (DL) model and radiologists’ assessments. The targeted
LN size was 8.2 mm. The DL model diagnosed it as a metastatic LN, while two radiologists diagnosed it as a benign LN.

3. Discussion

In this study, the DL model achieved higher diagnostic performance in discriminating
between benign and malignant cervical LNs on contrast-enhanced CT in patients with
OSCC. In the test set, a significant difference in the AUCs of the DL models and radiologists
was observed. Our results suggest that preoperative cervical nodal status at level I and II
in patients with OSCC can be evaluated by DL.

The following CT and MR morphologic criteria have been widely used to determine
the malignancy of cervical LNs in patients with head and neck cancer: Nodal size, periph-
eral shape, heterogeneous enhancement, and clustering of LNs. The diagnosis of LNs has
depended on the judgment of radiologists and clinicians. Park et al. have reported that
the sensitivity/specificity/accuracy of CT/MR for the visual assessment of cervical LNs in
patients with head and neck SCC were 42/94/85% and 70/91/84 % at the bilateral levels I
and II, respectively [2].

Kann et al. [17] demonstrated that a test set evaluated using DualNet DL achieved
a sensitivity/specificity/accuracy of 84/87/86%, respectively. Similarly, an AUC of 0.91
for the assessment of the overall cervical LNs in head and neck cancer patients was found.
However, no previous studies have reported the diagnostic performance of DL models at
each LN level in OSCC patients. Our study can provide useful information about preopera-
tive evaluation of cervical LN at levels I and II. In two studies, the entire LN was segmented
for the assessment of the cervical LN status using CNNs [17,18]. However, in our study, the
largest slice of the cervical LNs was used to simplify the workflow and avoid unnecessary
CNN calculations. The center of the cervical LN can play a key role in its evaluation using
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CNNs. Ariji et al. [16] have described that DL with AlexNet could be useful in distinguish-
ing benign and metastatic LNs from overall cervical LNs in OSCC patients. However,
no significant difference between the DL model and the radiologists’ assessments was
found. Segmented CT images using an arbitrary-sized square included soft tissue struc-
tures around LNs in their study. Meanwhile, segmentation of the border of LNs without
soft tissue structures was performed in our study. That might lead to improvement of the
diagnostic performance using the DL model. However, these approaches of segmentation
are not entirely automated and require human intervention. Fully automatic detection and
classification of cervical LNs are required to improve the reproducibility. The targeted area
of the cervical LN dissection should be precisely determined to minimize complications
and the risk of residual tumor. For level-based analysis, especially at level I, small deposits
of cancer cells that may not influence the appearance of the LN’s internal architecture on CT
can lead to false negatives. Thus, while CT exhibits high specificity for metastatic LN, it is
not particularly sensitive. In our study, the accuracy of DL assessment of cervical LNs was
superior to those of visual assessments. CNNs learn by reducing the differences between
input and output data using backpropagation and loss function and identifying the useful
connections within the neural network by itself. A large amount of excellent quality input
data would allow high CNN performance. We utilized transfer learning using Xception
in this study. In transfer leaning, the CNN architecture is pretrained from a large dataset,
such as ImageNet, as the imaging features have already been extracted. Therefore, transfer
learning improves the model’s performance in limited datasets, and previous studies have
utilized this approach for medical imaging [19–21]. Regarding showing a higher diag-
nostic performance of CNN compared with radiologists, CNN may have extracted some
sort of image features that the radiologists could not recognize, which contributed to the
discrimination between benign and metastatic cervical LNs.

There were several limitations to this study. First, selection bias was present, because
patients who were suspected of having metastatic cervical LNs underwent dissection.
Second, only a small number of LNs were used to create the DL model in this retrospective
study. The cervical LNs at levels I and II were evaluated in the validation and test sets
while LNs at levels I to V were included in the training set. Third, the image preprocessing
protocol and DL model algorithm that we adopted might not be optimally suited for
discriminating between benign and metastatic LNs since DL models for medical imaging
are not yet sufficiently developed. Data volume and quality have a key role in improv-
ing the performance of DL models. Additionally, CT images that were acquired using
two CT scanners were used. Although image standardization was performed, different
image intensities originating from two scanners can affect the consistency of our results.
For future studies, using the same CT scanner and protocol are preferable. Fourth, the
diagnostic values of DL models have not been compared with those of PET-CT, which
has widely spread as the best modality for the assessment of cervical LNs in head and
neck cancers. The comparison leads to confirmation of the clinical significance of the DL
models. Therefore, further large, multicenter studies are required to investigate the DL
model with the optimal protocols for each level, compared with PET-CT. Fifth, there were
seven patients who underwent dissection of their cervical LNs after the primary surgery.
Postoperative inflammation might influence the LNs since cross sectional imaging for the
assessment of recurrence is recommended after 2 to 3 months to avoid false lesions [22].
Sixth, eight cervical LN metastases were not identified on CT due to rapid growth. Hence,
shortening the time between the CT examination and surgery is needed.

4. Materials and Methods
4.1. Ethical Statement

This retrospective study was approved by the Bioethics Committee of St. Marianna
University School of Medicine (ethical code: 4469); the committee waived the requirement
for informed consent due to the design of the study. All procedures were conducted
according to the Declaration of Helsinki.
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4.2. Subjects

The study flowchart is shown in Figure 3. We reviewed our electronic medical records
to identify patients with OSCC who underwent neck LN dissection and contrast-enhanced
CT within 1 month before neck dissection between April 2013 and November 2017. The
inclusion criteria were as follows: (1) Histopathologically confirmed OSCC (tongue cancer,
gingival cancer, and floor of the mouth cancer); (2) histopathologically confirmed benign
and metastatic cervical LNs at levels I–V; and (3) available preoperative CT data. The
exclusion criteria were motion artifacts on CT (n = 1), preoperative chemotherapy (n = 2),
and induction chemotherapy (n = 2). In total, 39 patients were enrolled in this study.
The mean interval between cervical neck dissection and CT was 21.3 ± 8.9 days. Among
39 patients, 31 underwent primary resection and neck dissection and 7 underwent cervical
neck dissection after primary resection based on the suspicion of metastatic cervical LNs.
For the seven patients, the median interval between initial surgery and CT was 181 (range,
44–308) days.
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4.3. Computed Tomography

CT from the base of the skull to the bottom of the neck was performed using 320-row
scanners (Aquilion ONE; Canon Medical Systems, Otawara, Tochigi, Japan) for 23 patients
and 64-row scanners (LightSpeed VCT; GE Healthcare, Milwaukee, WI, USA) for 16 patients
according to the following protocols: For 320-row CT scanners: Collimation, 320 × 0.5 mm;
tube voltage, 120 kVp; tube current, automatic exposure control; gantry rotation time, 0.5 s;
and beam pitch, 0.813. For 64-row CT scanners: Collimation, 64 × 0.5 mm; tube voltage,
120 kVp; tube current, automatic exposure control; gantry rotation time, 0.4 s; and beam
pitch, 0.984. CT images with a 2-mm slice thickness without any overlap of serial sections
were used. The imaging field of view was 230 × 230 mm. Iodine contrast material of
100 mL (300 mg I/mL) was intravenously injected at 1.5 mL/s for both protocols.
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4.4. Labeling of Cervical Lymph Nodes and Targeted Lymph Node

Twenty-five patients underwent bilateral radical neck dissection, 11 underwent unilat-
eral radical neck dissection, and 3 underwent unilateral supraomohyoid neck dissection.
During surgery, the surgeon identified the cervical LNs for dissection using preoperative
CT images. The operators set aside cervical LNs to determine their relative positions with
reference to the size and location of LNs, vessels, muscles, salivary glands, and bones on
these images. The dissected cervical LNs were stained with hematoxylin and eosin and
evaluated by pathologists. LNs with histopathologically proven metastasis were labeled
one-by-one at each level (levels I–IV). Initially, 334 cervical LNs were identified. However,
six LNs were excluded because of severe metallic artifacts on CT images. Eight metastatic
LNs were also excluded because they were not detected on CT owing to their rapid en-
largement after performing CT. Therefore, 320 cervical LNs, comprising 234 benign and
86 metastatic LNs, at levels I–V were included in this study. We randomly categorized the
cervical LNs into three sets: A training set at levels I–V (n = 224 [70%], 169 benign and
55 metastatic), a validation set at levels I–II (n = 32 [10%], 22 benign and 10 metastatic), and
a test set at levels I–II (n = 64 [20%], 43 benign and 21 metastatic). In the validation and
test sets, cervical LNs at levels III–V were not used because the necessary sample sizes for
each level, as mentioned in the “statistical analysis” section, were unavailable, which could
weaken the statistical power.

4.5. Image Preprocessing for Deep Learning

The study workflow is shown in Figure 4. Three CT images, namely the image
showing the largest cross-sectional area of the targeted LN and the adjacent images (one
cranial and one caudal image), were obtained using OsirixMD software (Pixmeo, Bernex,
Switzerland). The margin of the LNs on the selected images were contoured as close as
possible by a single radiologist (**blinded** with 9 years of experience).
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All images were resized to 300 × 300 pixels. All images were normalized and divided
by 255 before the augmentation. The resized images were augmented by horizontal
flip, vertical flip, width shift, and height shift. The programming language used for
augmentation was Python 3.6 (https://www.python.org).

https://www.python.org


Cancers 2021, 13, 600 9 of 11

4.6. Classification with Convolutional Neural Networks and Transfer Learning

In this study, the network architecture was based on the Xception architecture [23].
This network comprised three flows, namely entry flow, middle flow, and exit flow.
Each flow is composed of several modules called Inception, which is a component of
GoogleNet [24]. A detailed description of the Xception architecture is given in Appendix A
(Figure A1). For our experiment, we used the Xception architecture pretrained on the Ima-
geNet dataset. Only the Exit flow of the network was fine tuned to our dataset to classify
benign and metastatic cervical LNs. Early stopping was conducted to avoid overfitting
in the training set. This method stops training without fixing the number of epochs when
validation loss is confirmed. For the validation and test sets, the performance of the trained
DL model was evaluated. In the test set, to match the DL model and visual assessment
findings, the largest slice of the cervical LN was used for the final analysis.

4.7. Visual Analysis

The interpretation of CT images was based on visual assessment by two board-certified
radiologists (R1 and R2, with 9 and 19 years of experience reading head and neck CT, re-
spectively) who were blinded to patients’ clinical information, including histopathological
results. Both radiologists evaluated the cervical LNs and graded them using a 4-point scale:
1 = definitely benign; 2 = likely benign; 3 = likely metastatic; and 4 = definitely metastatic.
The following CT characteristics were considered to judge the scale: Shortest maximum
diameter of more than 11 mm in the jugulo-digastric area and 10 mm in other cervical
areas, heterogeneous enhancement or central necrosis, or loss of fatty hilum [2,3].

4.8. Statistical Analysis

The necessary number of LNs was calculated to evaluate the area under the curve
(AUC) with a type I error of 5% and power of 80% using the R statistical package (version
3.6.1; R Project for Statistical Computing, R Foundation, Vienna, Austria). A previous
study had reported an AUC of 0.801 in quantitative detection of metastatic cervical LNs in
patients with OSCC [25]. Our training cohort showed a benign to metastatic LN ratio of
3:1. We estimated that a sample size of at least 27 was required.

Statistical analysis was performed using Python 3.6 or JMP pro 14.2.0 software (SAS
Institute, Cary, NC, USA). In the test set, sensitivities, specificities, diagnostic accuracy rates,
and AUCs of the DL model and the radiologists’ assessments were analyzed to determine
their ability to differentiate between benign and metastatic cervical LNs at levels I–II, I,
and II. The AUCs were compared between the DL model and the radiologists’ assessments.
p-values <0.05 were considered to indicate a statistically significant difference.

5. Conclusions

In conclusion, DL can differentiate between benign and metastatic cervical LNs on
preoperative contrast-enhanced CT of patients with OSCC, which can help guide treatment
decisions on neck dissection in a reproducible manner. Further investigation will be
required to establish the optimal diagnostic method for cervical LN status.
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