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Abstract: Background: The brain is rich in lipid content, so a physiopathological pathway in
Alzheimer’s disease (AD) could be related to lipid metabolism impairment. The study of lipid
profiles in plasma samples could help in the identification of early AD changes and new potential
biomarkers. Methods: An untargeted lipidomic analysis was carried out in plasma samples from
preclinical AD (n = 11), mild cognitive impairment-AD (MCI-AD) (n = 31), and healthy (n = 20) partici-
pants. Variables were identified by means of two complementary methods, and lipid families’ profiles
were studied. Then, a targeted analysis was carried out for some identified lipids. Results: Statistically
significant differences were obtained for the diglycerol (DG), lysophosphatidylethanolamine (LPE),
lysophosphatidylcholine (LPC), monoglyceride (MG), and sphingomyelin (SM) families as well as for
monounsaturated (MUFAs) lipids, among the participant groups. In addition, statistically significant
differences in the levels of lipid families (ceramides (Cer), LPE, LPC, MG, and SM) were observed
between the preclinical AD and healthy groups, while statistically significant differences in the levels
of DG, MG, and PE were observed between the MCI-AD and healthy groups. In addition, 18:1 LPE
showed statistically significant differences in the targeted analysis between early AD (preclinical and
MCI) and healthy participants. Conclusion: The different plasma lipid profiles could be useful in
the early and minimally invasive detection of AD. Among the lipid families, relevant results were
obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially useful in AD
detection; while LPEs, LPCs, and SM seem to be more related to the preclinical stage, while DGs are
more related to the MCI stage. Specifically, 18:1 LPE showed a potential utility as an AD biomarker.
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1. Introduction

Alzheimer’s disease (AD) is a complex and multifactorial disease, whose mechanisms
of action are currently not fully understood [1]. The most accepted hypotheses describe the
accumulation of amyloid-β peptide and phosphorylated Tau (p-Tau) protein in the brain as
the cause of the disease [2]. These histological alterations produce neuronal loss, leading to
clinical manifestations (memory loss and cognitive decline) [2]. However, when the clinical
manifestations are visible, the brain damage is already too great, and current treatments do
not show great effectiveness [3]. Currently, the diagnosis of AD is based on cerebrospinal
fluid (CSF) biomarkers, neuropsychological evaluations, and neuroimaging [4]. Therefore,
there is a need to identify early physiopathological pathways and minimally invasive
AD biomarkers.

Lipid metabolism could be related to AD early development since the brain is rich in
lipid content, and aging could produce a dysregulation in lipid homeostasis [5]. Therefore,
several lipids have been described as potential biomarkers for the disease in different types
of biological samples [5]. In fact, the implication of lipids from the cell membrane has
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been described in APP processing and in amyloid pathology [6]. Several lipid families,
such as sphingomyelins (SM), cholesterol esters (CE), phosphatidylcholines (PC), phos-
phatidylethanolamines (PE), phosphatidylinositols (PI), ceramides (Cer), and triglycerides
(TG), have been related to AD [7,8]. These biomarkers could be useful not only for diag-
nosis but also for disease progression prediction. In fact, LysoPE (LPE) and PE are useful
biomarkers for monitoring the conversion of MCI to AD [9], and plasma sphingomyelins
have been related to cognitive decline in probable AD patients [10]. In fact, lipidomic
analyses have been carried out in order to study the involvement of lipids in AD pathology
and progression [11]. Brain tissue from elderly healthy participants and patients with
different stages of AD showed differential expression of lipids such as glycerolipids, glyc-
erophospholipids, and sphingolipids [12]. In addition, this research field focusing on these
compounds as potential biomarkers in peripheral biofluids (e.g., plasma and serum) is
gaining attention [13–15].

The aim of this work is to evaluate plasma lipid profiles from untargeted and tar-
geted approaches, identifying lipid families and single lipids involved in early AD as
potential biomarkers.

2. Material and Methods
2.1. Participants and Sample Collection

The participants were between 50 and 80 years old. They were classified into pa-
tients with preclinical AD (n = 12), patients with mild cognitive impairment (MCI) due
to AD (MCI-AD, n = 31), and healthy controls (n = 20). The clinical assessment consisted
of a neuropsychological evaluation based on the Repeatable Battery for Assessment of
Neuropsychological Status Delayed Memory (RBANS.DM) [16], Functionality Assess-
ment Questionnaire (FAQ) [17], Mini-Mental State Examination (MMSE) [18], and Clin-
ical Dementia Rating (CDR) [19]. Moreover, NMR-TAC and cerebrospinal fluid (CSF)
(β-amyloid-42 peptide, total Tau, and phosphorylated Tau) analyses were carried out. In
this sense, patients with preclinical AD show normal cognitive assessments and positive
AD biomarkers (CSF and neuroimaging); patients with MCI-AD show impaired cognitive
assessments (cutoff for mild cognitive impairment from the scales mentioned above) and
positive AD biomarkers; and control participants do not show cognitive impairment and
show negative AD biomarkers. Patients with known major neurological or psychiatric
conditions were excluded. Informed consent was obtained from all participants, and the
Ethics Committee of the Health Research Institute of La Fe (Valencia, Spain) approved the
study protocol (2019/0105).

Blood samples were collected from the participants, centrifuged to separate the plasma
fractions, and stored at −80 ◦C until the analysis.

2.2. Liquid Chromatography and Mass Spectrometry Analysis
2.2.1. Sample Preparation

The plasma sample treatment was previously described by Peña-Bautista et al. [20].
Briefly, 150 µL of cold isopropanol (IPA) was added to 50 µL of plasma, vortexed, and kept
at −20 ◦C for 30 min. Then, it was centrifuged (13,000× g, 10 min, 4 ◦C), and 90 µL of
supernatant was transferred to a 96-well plate. After that, 10 µL of an internal standard
(IS) mix solution (17:0 LPC, d18:1/17:0 SM, and 17:0 PE) (100 µg/mL, each compound)
was added to each sample. Quality control (QC) was prepared by mixing 10 µL from each
plasma sample. A blank was prepared with ultrapure water using the same extraction tube
used for blood collection.

2.2.2. Liquid Chromatography

Samples were analyzed by ultra-performance liquid chromatography coupled to
time-of-flight mass spectrometry (UPLC-TOF/MS-Orbitrap QExactive Plus MS) follow-
ing the normalized protocol from the Analytical Unit in Health Research Unit La Fe
(Valencia, Spain).
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Briefly, the chromatographic conditions consisted of using an Acquity UPLC CSH
C18 column (100 × 2.1 mm, 1.7 µm) from Waters. The mobile phase in the positive
ionization mode was acetonitrile/water (60:40) with formic acid (10 mM) (A) and iso-
propyl alcohol/acetonitrile (90:10) with formic acid (10 mM) (B); in the negative ioniza-
tion mode, it was acetonitrile/water (60:40) with acetic acid (10 mM) (A) and isopropyl
alcohol/acetonitrile (90:10) with acetic acid (10 mM) (B). The flow rate was 0.40 mL min−1,
the column temperature was 65 ◦C, and the injection volume was 5 µL.

2.2.3. Untargeted Analysis

In the untargeted analysis, the mass spectrometry conditions consisted of positive and
negative ionization, an m/z range of 70–1700 Da, a resolution full scan of 70,000, a capillary
voltage of 2.5 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15, a sweep gas
flow rate of 0, a capillary temperature of 250 ◦C, an s-lens RF level of 65, and an auxiliary
gas heater temperature of 200 ◦C. Samples were randomly injected in the chromatographic
system in order to avoid intrabatch variability. Regarding the QC sample, it was analyzed
every seven injections to monitor and correct changes in the instrument response. Moreover,
it was repeatedly analyzed under the auto MS/MS and all-ion (MSE) fragmentation modes
to provide useful information of fragment ions for identification purposes. The stability of
the analytical system during the analysis was investigated through the trends and drifts of
IS intensities over the course of the batch analysis. A blank analysis was performed at the
end of the sequence and was used to identify artefacts from sampling, the preparation of
samples, and analysis.

Then, some variables were annotated, with a mass error <5 ppm, and some of them
were selected for a subsequent targeted analysis.

2.2.4. Targeted Analysis

Some of previous variables were selected for a targeted analysis through the analysis
of chemical standards, attending to the following criteria. First, lipid families that showed
statistically significant differences among the participant groups were selected. Then,
individual compounds from these families that showed statistically significant differences
between groups were selected. In the case of no commercially available standards, similar
lipid compounds from the same family were selected.

The sample treatment and the MS/MS method were developed for the simultaneous
targeted analysis of seven lipid compounds (18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1),
16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM). In
addition, 17:0 LPC, 17:0 SM (d18:1/17:0), and 17:0 PE were used as internal standards.
Metabolite concentrations were calculated by an internal calibration using a reaction and
multiple monitoring (MRM) method. The employed mass spectrometry conditions con-
sisted of positive ionization, a capillary voltage of 3 kV, a sheath gas flow rate of 35,
an auxiliary gas flow rate of 15, a sweep gas flow rate, a capillary temperature of 250 ◦C,
an s-lens RF level, and an auxiliary gas heater temperature of 200 ◦C. The normalized colli-
sion energy was 25 for all compounds. The multiple reaction monitoring (MRM) method
parameters are summarized in Table 1.

Analytical Method Validation

The analytical characteristics assayed during the validation procedure were the linear-
ity range, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ).
The accuracy was evaluated by means of the recovery test. For this, standards were spiked
at three concentration levels, and they were analyzed in triplicate. The precision was esti-
mated from the analysis of standards and spiked samples at three concentration levels (i.e.,
low, medium, and high) in triplicate. The LOD and LOQ were established experimentally
as the concentrations required to generate signal-to-noise ratios of 3 and 10, respectively.
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Table 1. Acquisition parameters for targeted lipid analysis.

Compound Mass to Charge (m/z)
Precursor Ion Chemical Formula (M) Product Ion (m/z)

(Quantitative)
Product Ion (m/z)

(Qualitative)

18:1 LPE 480.30847 C23H46NO7P 308.294
18:0 LPC 524.37107 C26H54NO7P 184.073 104.107

16:1 SM (d18:1/16:1) 701.5592 C39H77N2O6P 184.073 104.107
16:0 SM (d18:1/16:0) 703.57485 C39H79N2O6P 184.073 104.107
18:0 SM (d18:1/18:0) 731.60615 C41H83N2O6P 184.073 104.107

18:1 (9-Cis) PE (DOPE) 744.55378 C41H78NO8P 308.294
24:0 SM 815.70005 C47H95N2O6P 184.073 86.0963
17:0 LPC 568.3626 C25H52NO7P 184.073

17:0 SM (d18:1/17:0) 717.5905 C40H81N2O6P 184.073
17:0 PE 720.22537 C39H78NO8P 184.073

LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; SM: sphingomyelin; PE: phos-
phatidylethanolamine; DOPE: dioleoyl phosphatidylethanolamine.

2.3. Preprocessing and Data Analysis

The results from the untargeted analytical method were converted to the mzXML file
format, and the data were processed (peak detection, noise filtering, and peak alignment)
using an in-house R processing script based in the LipidMS package published by Alcoriza-
Balaguer et al. and developed in the Analytical Unit of the Health Research Institute of
La Fe (Valencia) [21]. Then, the obtained dataset was filtered, considering the criteria of
the coefficient of variation (CV) <30% in the QC samples, the presence of the feature in
60% of the samples in at least one group, and the blank (water processed as a sample). In
fact, a fold-change cutoff (biological sample signal/blank signal < 5) was used to remove
features that were not sufficiently abundant in the biological samples. After that, a drift
correction from QC-based robust locally weighted scatter plot smoothing (LOESS) for
data normalization was performed (excluding potential artefacts). Finally, the obtained
normalized dataset was annotated and statistically analyzed.

In order to increase the metabolic coverage, two data analysis strategies were used.
The variables were identified by two complementary methods in order to identify more
metabolites with different polarity ranges. As a first method, annotation using the LipidMS
package and statistical analysis was carried out with the variables. As a second method,
annotation by means of the variable accurate mass (AM), using the CEU mass mediator
database (including the Kegg, LipidMaps, Metlin, and Human Metabolome databases),
a mass range of ±5 ppm, and some adducts ([M+H], [M+Na], [2M+NH4], [M+NH4],
and [M+H-2O] for the positive ionization mode and [M-H], [M+HCOOH-H], [2M-H],
and [M+Na-2H] for the negative ionization mode), was carried out. In this second ap-
proach, the identity of the metabolites was confirmed by comparing the obtained MS/MS
fragmentation spectra with those predicted and proposed in the databases. In this sense,
four annotation confidence levels were evaluated, as proposed by E. Schymanski et al.
(2014) [22]. They were level 1 (identified compounds with structures confirmed by AM,
MS/MS spectra, retention time (rt), and reference standards); level 2 (compounds puta-
tively annotated through AM and experimental or predicted MS/MS spectra matched with
online libraries); level 3 (compounds putatively characterized by AM matched with online
databases); and level 4 (unknown compounds) [23,24].

The results from the targeted analytical method were the signal intensities (arbitrary
units) obtained for each lipid compound in plasma samples, and their concentrations were
determined from the corresponding calibration curves.

2.4. Statistical Analysis

Participant’s characteristics (demographic and clinical) were analyzed using the me-
dian and interquartile range (IQR) for continuous variables and relative and absolute
frequencies for categorical variables. Differences between participant groups (age controls
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and early AD) were evaluated by means of the Mann–Whitney test for numerical variables
and the Chi-square test for categorical variables.

The variables identified by the LipidMS package [21] were grouped into lipid families
(CE, Cer, diglycerol (DG), fatty acid (FA), lysophosphatidylethanolamine (LPE), lysophos-
phatidylcholine (LPC), monoglyceride (MG), PC, PE, PI, SM, and TG). In addition, we cal-
culated the variables monounsaturated (MUFAS), polyunsaturated (PUFAS), and saturated
(SFAS) as the sum of levels (MUFAS, PUFAS, and SFAS, respectively), including all previous
lipid families. Then, a univariate statistical analysis was carried out for each lipid class (the
sum of signals from the individual lipids in each family). Specifically, the Kruskal–Wallis
and Mann–Whitney tests were used to compare the lipid levels among the participant
groups. From these lipid families, some compounds were selected for the targeted analysis.
Similarly, the univariate analysis was based on the Kruskal–Wallis and Mann–Whitney
tests for quantitative variables and the Chi-square test for categorical variables. Correlation
analyses were carried out by Pearson correlation test. Analyses were carried out with the
software IBM® SPSS® Statistics version 20.0 (SPSS, Inc., Chicago, IL, USA). Statistically
significant differences were considered from p value <0.05 for all analyses.

On the other hand, a multivariate statistical analysis was carried out with the vari-
ables detected in the untargeted analysis in order to identify other potential biomarkers
(not identified by the LipidMS package). For this, data from the positive and negative
ionization modes were considered simultaneously. First, the normalized variables were
visualized in a volcano plot carried out using an in-house script in R platform. From this,
variables with a stronger combination of fold change (FC) (abs (log2 FC) > 1) and statis-
tical significance (p value of t-test < 0.05) in each comparison (MCI-AD vs. control and
preclinical AD vs. control) were FDR-adjusted and selected for a supervised orthogonal
least squares discriminant analysis (OPLS-DA). The OPLS-DA was carried out using Simca
14.1 software (Sartorius Stedim Biotech, Aubagne, France), and it was validated by a seven
cross-validation procedure (CV, dataset split into seven subsets). The corresponding models
were evaluated by R2(Y) (model fit) and Q2(Y) (predictive ability) diagnostic indexes, the
p-value of the CV-ANOVA model, and a permutation test. The most discriminant variables
were selected according to their variance importance in projection plot values (VIP > 1.0).
Once selected, these features were annotated as potential metabolites by the CEU mass
mediator database according to the Schymanski levels of identification [22]. In summary,
Figure 1 shows the workflow of these analyses.
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3. Results
3.1. Participant Demographic and Clinical Data

In Table 2, the clinical and demographic characteristics of the participants are summa-
rized. As was expected, neuropsychological variables (CDR, RBANS, FAQ, and MMSE) and
CSF biomarkers (amyloid β42, t-Tau, and p-Tau) showed statistically significant differences
among the participant groups. In addition, age showed statistically significant differences
among the groups. In this sense, the correlations between age and all lipids (from the
untargeted and targeted analyses) were assessed, without obtaining significant results for
any lipids (see Table S1 in the Supplementary Material).

Table 2. Clinical and demographic participant characteristics.

Healthy
(n = 31)

MCI-AD
(n = 20)

Preclinical AD
(n = 11)

p Value
(Kruskal–Wallis)

Median Age (years) (IQR) 62 (58, 68) 72 (69, 74) 70 (60, 74) 0.000
Gender (Female, n (%)) 19 (61%) 10 (53%) 6 (50%) 0.737

Educational Level
Primary (n (%)) 10 (32%) 7 (39%) 4 (33%)

0.023Secondary (n (%)) 7 (23%) 10 (56%) 2 (17%)
University (n (%)) 14 (45%) 2 (18%) 6 (50%)

Concomitant
Medication

Statins (n (%)) 9 (41%) 12 (63%) 3 (25%) 0.335
Fibrates (n (%)) 0 (0%) 3 (17%) 1 (8%) 0.143

Benzodiazepines (n (%)) 6 (27%) 3 (16%) 2 (17%) 0.635
Antidepressants (n (%)) 7 (32%) 2 (11%) 0 (0%) 0.085

Antiepileptics (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Antihypertensives (n (%)) 7 (32%) 9 (50%) 2 (29%) 0.424

Corticoids (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Anti-inflammatories (n (%)) 3 (14%) 0 (0%) 0 (0%) 0.151

Comorbidities

Dyslipidemia (n (%)) 11 (50%) 11 (58%) 3 (43%) 0.766
Diabetes (n (%)) 3 (14%) 2 (11%) 0 (0%) 0.589

Hypertension (n (%)) 8 (36%) 9 (47%) 2 (29%) 0.628
Heart Disease (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547

Cerebrovascular (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Smoke (Yes, n (%)) 6 (27%) 3 (16%) 1 (14%) 0.598
Alcohol (Yes, n (%)) 6 (27%) 2 (11%) 0 (0%) 0.157

Depression (Yes, n (%)) 5 (23%) 5 (26%) 2 (29%) 0.939
Anxiety (Yes, n (%)) 4 (18%) 3 (16%) 2 (29%) 0.757

Amyloid β42 (pg mL−1)
Median (IQR)

1224 (964, 1421) 495 (452, 622) 572 (383, 694) 0.000

t-Tau (pg mL−1)
Median (IQR)

212 (181, 259) 578 (449, 793) 444 (208, 611) 0.000

p-Tau (pg mL−1)
Median (IQR)

34 (25, 39) 91 (62, 109) 74 (28, 94) 0.000

CDR
Median (IQR) 0.5 (0, 0.5) 0.5 (0.5, 0.5) 0.5 (0, 0.5) 0.001

MMSE
Median (IQR) 29 (28, 29) 24 (22, 25) 29 (27, 30) 0.000

RBANS.DM
Median (IQR) 98 (94, 103) 42 (40, 53) 95 (87, 101) 0.000

FAQ
Median (IQR) 1 (0, 4) 7 (5, 10) 1 (0, 3) 0.000

IQR: Inter-quartile range; AD: Alzheimer Disease; MCI-AD: mils cognitive impairment due to Alzheimer Dis-
ease; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State Examination; FAQ: Functionality Assessment
Questionnaire; RBANS: Repeatable Battery for Assessment of Neuropsychological Status; DM: Delayed memory.

3.2. Lipids Identified by LipidMS Package

From the untargeted analysis, 197 features were annotated by the LipidMS package.
They were grouped into some lipid families (4 CE, 16 Cer, 2 DG, 20 FA, 3 LPE, 16 LPC,
2 MG, 73 PC, 9 PE, 5 PI, 12 SM, and 35 TG). As can be seen in Figure 2, the main families
were PC (37%), TG (18%), and FA (10%). In Table 3, the DG, LPE, LPC, MG, and SM
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families and monounsaturated lipids showed statistically significant differences among the
three participant groups (preclinical AD, MCI-AD, and healthy). Moreover, the healthy and
preclinical AD groups showed statistically significant differences in the levels of the Cer,
LPE, LPC, MG, and SM families, while the MCI-AD and healthy groups showed statistically
significant differences in the levels of DG, MG, and PE. In addition, Figure 3 shows the
boxplots representing the levels of the lipid families in the participant groups (preclinical
AD, MCI-AD, and healthy). In general, higher levels were obtained for the preclinical
AD group, and lower levels were obtained for the MCI-AD group. A similar tendency
was observed for monounsaturated, polyunsaturated, and saturated lipids, although only
monounsaturated compounds showed statistically significant differences. In general,
a trend was not found for any of the lipid families between the preclinical and MCI groups.
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(n = 11)
p Value

(Kruskal–Wallis)
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Preclinical AD

(Mann–Whitney,
p Value)
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MCI-AD
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p Value)

CE (a.u.) 4.15 (2.86, 4.83) 3.60 (3.03, 5.04) 4.47 (3.86, 4.96) 0.416 0.350 0.685
Cer (a.u.) 4.39 (3.52, 4.39) 3.94 (2.42, 5.75) 5.67 (5.09, 6.87) 0.070 0.038 * 0.452
DG (a.u.) 2.05 (1.56, 2.22) 1.51 (1.25, 1.98) 2.20 (1.94, 2.73) 0.007 * 0.155 0.023 *
FA (a.u.) 15.04 (9.29, 22.21) 13.42 (9.44, 18.38) 22.32 (11.48, 26.24) 0.299 0.201 0.685

LPE (a.u.) 8.68 (7.16, 11.41) 7.61 (4.77, 12.73) 13.86 (10.32, 17.10) 0.006 * 0.002 * 0.418
LPC (a.u.) 18.48 (13.62, 12.39) 15.75 (8.93, 24.98) 27.37 (22.68, 35.24) 0.006 * 0.001 * 0.396

MG (a.u.) 1.48 (1.02, 2.83) 0.81 (0.48, 1.10) 2.52 (1.77, 3.56) <0.001 * 0.017 * 0.002 *
PC (a.u.) 46.66 (35.34, 56.80) 41.08 (27.78, 55.27) 53.13 (43.75, 59.73) 0.202 0.257 0.316
PE (a.u.) 7.04 (5.09, 8.78) 4.76 (3.05, 9.53) 6.85 (6.13, 10.46) 0.061 0.572 0.034 *
PI (a.u.) 3.50 (2.86, 4.99) 3.08 (2.09, 5.00) 3.77 (2.70, 6.13) 0.366 0.553 0.307

SM (a.u.) 8.63 (6.13, 10.48) 5.79 (3.13, 10.02) 11.21 (9.65, 12.90) 0.001 * 0.003 * 0.061
TG (a.u.) 24.05 (19.40, 28.94) 21.00 (18.36, 29.71) 22.21 (17.83, 27.27) 0.625 0.381 0.537

Monounsaturated
(a.u.) 39.78 (31.30, 47.49) 33.35 (22.55, 46.09) 47.79 (45.98, 60.65) 0.011 * 0.009 * 0.232

Polyunsaturated
(a.u.) 93.13 (74.29, 113.90) 78.75 (58.62, 106.44) 104.67 (88.91, 111.74) 0.170 0.233 0.307

Saturated (a.u.) 156.73 (132.57, 189.15) 138.36 (99.15, 168.83) 191.35 (155.78, 203.83) 0.100 0.054 0.452

a.u.: arbitrary units. * p < 0.05. HC: healthy control.
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3.2.1. Targeted Analysis

From previous results, the selected lipids were 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1),
16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM. The
corresponding analytical method was developed and validated, obtaining satisfactory ana-
lytical performance for 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)
(see Table 4). In fact, the accuracy was satisfactory, with recoveries around 100%, except for
18:0 LPC with recoveries >130%, probably due to the matrix effect. Moreover, a suitable
sensitivity was obtained, with LODs between 0.548 and 4.185 nmol L−1 and LOQs between
1.83 and 13.95 nmol L−1. The other analytes did not show suitable analytical performance
(18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM), and they were not determined
in plasma samples.
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Table 4. Analytical method validation.

Analyte
Standard

Concentration
(nmol L−1)

Recovery
(%)

LOD
(nmol L−1)

LOQ
(nmol L−1)

Linearity
Range

(nmol L−1)

Equation (y = a + bx)
a ± sa
b ± sb

R2

18:1 LPE
6.25 108 ± 14

0.548 1.83 1.83–26.30
0.0019 ± 0.0008

9.38 109 ± 15 0.0027 ± 0.000063
12.5 104 ± 17 0.998

18:0 LPC
50 153 ± 15

4.185 13.95 13.95–209.38
0.012 ± 0.024

75 147 ± 15 0.0072 ± 0.00022
100 134 ± 21 0.997

16:1 SM
(d18:1/16:1)

50 101 ± 11
2.857 9.52 9.52–208.11

0.0774 ± 0.021
75 101 ± 11 0.0064 ± 0.00019

100 96 ± 16 0.997

16:0 SM
(d18:1/16:0)

12.5 108 ± 58
1.240 4.13 4.13–52.51

−0.0041 ± 0.0063
18.75 102 ± 6 0.012 ± 0.00024

25 82 ± 5 0.999

18:0 SM
(d18:1/d18:0)

3.13
0.289 0.96 0.96–13.23

0.0014 ± 0.0011
4.69 100 ± 26 0.0047 ± 0.00017
6.25 119 ± 59 0.996

18:1 (9-Cis)
PE (DOPE)

0.78
0.069 0.23 0.23–3.30

0.00019 ± 0.00015
1.17 103 ± 65 0.0024 ± 0.000089
1.56 62 ± 62 0.996

24:0 SM
6.25

0.306 1.02 1.02–26.02
0.24 ± 0.03

9.38 0.044 ± 0.003
12.50 0.990

3.2.2. Sample Analysis

A panel of four lipids (previously selected) was determined in plasma samples from
healthy participants (n = 20) and patients with preclinical AD (n = 11) and MCI-AD (n = 31).
The concentrations of each lipid in the participant groups are summarized in Table 5. As
can be seen, statistically significant differences were observed for 18:1 LPE among the
three groups (p = 0.010) and between the AD (preclinical + MCI) and healthy groups
(p = 0.003). In addition, this potential AD biomarker showed a correlation with some CSF
biomarkers (t-Tau (0.299, p = 0.022) and p-Tau (0.290, p = 0.026)). It should be mentioned
that no correlation was observed between the lipids levels and age (see Table S1 in the
Supplementary Material).

Table 5. Lipid concentrations in plasma from participant groups (healthy, MCI-AD, and preclinical AD).

Lipids

Healthy Control (HC)
(n = 31)

Median (IQR)
(nmol L−1)

MCI-AD (n = 20)
Median (IQR)

(nmol L−1)

Preclinical AD
(n = 11)

Median (IQR)
(nmol L−1)

Kruskal-Wallis
p Value

(Three Groups)

Mann–Whitney
p Value

(AD vs. Non-AD)

18:1 LPE 1.37 (0.38, 1.83) 1.8 (1.2, 4.2) 1.8 (0.9, 3.7) 0.010 * 0.003 *
18:0 LPC 67 (61, 80) 65 (56, 96) 81 (60, 105) 0.504 0.569
16:1 SM 15 (7, 27) 13 (8, 24) 19 (15, 25) 0.501 0.647
16:0 SM 177 (137, 206) 168 (132, 213) 209 (159, 239) 0.374 0.371

* p value < 0.05.

In addition, LPE 18:1 showed an AUC-ROC of 0.722 (95% CI, 0.595–0.848), discrimi-
nating between early AD (preclinical + MCI) and healthy participants.

3.3. Compounds Identified by CEU Mass Mediator Database
3.3.1. Preclinical AD vs. Healthy Subjects

The volcano plot analysis from the preclinical AD and healthy groups showed
48 significant variables (Figure 4a). The OPLS-DA analysis was carried out with these
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variables in order to identify the most discriminant variables between the groups. This
model showed a p value <0.001 and a clear separation between preclinical AD cases and
healthy participants (Figure 4b), with good R2Y (0.637) and Q2Y (0.566) parameters. The
model was satisfactorily validated (1000 iterations) with R2Y = 0.202 and Q2Y = −0.373.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 17 
 

 

A panel of four lipids (previously selected) was determined in plasma samples from 
healthy participants (n = 20) and patients with preclinical AD (n = 11) and MCI-AD (n = 
31). The concentrations of each lipid in the participant groups are summarized in Table 5. 
As can be seen, statistically significant differences were observed for 18:1 LPE among the 
three groups (p = 0.010) and between the AD (preclinical + MCI) and healthy groups (p = 
0.003). In addition, this potential AD biomarker showed a correlation with some CSF bi-
omarkers (t-Tau (0.299, p = 0.022) and p-Tau (0.290, p = 0.026)). It should be mentioned that 
no correlation was observed between the lipids levels and age (see Table S1 in the Supple-
mentary Material). 

Table 5. Lipid concentrations in plasma from participant groups (healthy, MCI-AD, and preclinical 
AD). 

Lipids 

Healthy Control (HC) 
break\\ 

(n = 31) break\\ 
Median (IQR) break\\ 

(nmol L−1) 

MCI-AD (n = 20) 
break\\ 

Median (IQR) 
break\\ 

(nmol L−1) 

Preclinical AD 
break\\ 

(n = 11) break\\ 
Median (IQR) break\\ 

(nmol L−1) 

Kruskal-Wallis 
p Value break\\ 
(three groups) 

Mann–Whitney 
p Value break\\ 

(AD vs. non-
AD) 

18:1 LPE 1.37 (0.38, 1.83) 1.8 (1.2, 4.2) 1.8 (0.9, 3.7) 0.010 * 0.003 * 
18:0 LPC 67 (61, 80) 65 (56, 96) 81 (60, 105) 0.504 0.569 
16:1 SM 15 (7, 27) 13 (8, 24) 19 (15, 25) 0.501 0.647 
16:0 SM 177 (137, 206) 168 (132, 213) 209 (159, 239) 0.374 0.371 

* p value < 0.05. 

In addition, LPE 18:1 showed an AUC-ROC of 0.722 (95% CI, 0.595–0.848), discrimi-
nating between early AD (preclinical + MCI) and healthy participants. 

3.3. Compounds Identified by CEU Mass Mediator Database 
Preclinical AD vs. Healthy Subjects 

The volcano plot analysis from the preclinical AD and healthy groups showed 48 
significant variables (Figure 4a). The OPLS-DA analysis was carried out with these varia-
bles in order to identify the most discriminant variables between the groups. This model 
showed a p value <0.001 and a clear separation between preclinical AD cases and healthy 
participants (Figure 4b), with good R2Y (0.637) and Q2Y (0.566) parameters. The model 
was satisfactorily validated (1000 iterations) with R2Y = 0.202 and Q2Y = −0.373. 

 
Figure 4. (a) Volcano Plot representing the significant variables in the discrimination between 
healthy controls and preclinical AD participants. Statistically significant variables are represented 

Figure 4. (a) Volcano Plot representing the significant variables in the discrimination between healthy
controls and preclinical AD participants. Statistically significant variables are represented in red
(p < 0.05, FC > 2); (b) OPLS-DA plot represents differential distribution between healthy controls and
preclinical AD; (c) Threshold VIP plot value > 1 (red variables).

Potential compounds were subjected to identification and confirmation based on
a threshold of VIP value >1 (27 variables) (Figure 4c). Finally, 16 variables were tentatively
characterized by querying our experimental MS data with those provided in the commercial
databases (see Table S2 in the Supplementary Material). From them, some variables showed
more weight over the model (m/z 1484.140079, 508.3767054, 494.3609278, and 770.6063157).
In addition, two variables were putatively annotated through AM and MS/MS mass
spectra with online databases. These variables were pisumionoside (m/z 405.2102471) and
1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine (m/z 520.3404329).

3.3.2. Mild Cognitive Impairment-AD vs. Healthy Controls

The volcano plot analysis from the MCI-AD and healthy groups showed 153 significant
variables (Figure 5a). The OPLS-DA analysis was carried out with these variables in order
to identify the most discriminant lipids between the groups. This model showed a CV
p-value <0.001 and a clear separation between MCI-AD and healthy control participants
(Figure 5b), with good R2Y (0.926) and Q2Y (0.785) parameters. The model was satisfactorily
validated (1000 iterations) with R2Y = 0.572 and Q2Y = −0.686.

Potential metabolites were subjected to identification and confirmation based on
a threshold of VIP value > 1 (22 variables) (Figure 5c). Finally, 11 variables were tentatively
characterized by using the corresponding databases (see Table S3 in the Supplementary
Material). From them, some variables showed more weight over the model (m/z 409.3113,
362.2550, 350.3417, and 518.351396). In addition, the variable m/z 766.573457 was putatively
annotated trough AM and MS/MS mass spectra with online databases, and it was identified
as a phosphocholine.
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4. Discussion

A lipidomic approach was developed in plasma samples from participants classified
according to their amyloid status (CSF biomarkers) to identify lipid alterations involved in
the onset of AD. For this, an untargeted analysis was carried out, and comparisons between
early AD (preclinical or MCI) and healthy participants were evaluated. Some significant
variables were identified in early AD deregulation, and lipid families were evaluated.
Finally, a complementary multivariate analysis was carried out in order to identify other
potential discriminative variables.

Lipid families identified by the LipidMS database revealed the potential implication
of DG, LPE, LPC, MG, and SM in early AD. In the comparison between preclinical AD
and healthy groups, some lipid families were identified as potential biomarkers (Cer, LPEs,
LPCs, MGs, and SMs), as they were differentially expressed, especially the monounsatu-
rated species. Similarly, Mielke et al. found an association between Cer and SMs with the
risk of AD, although they described differential risks between men and women [25]. In
addition, Jazvinšćak Jembrek et al. described the role of ceramides as mediators of neuronal
apoptosis related to oxidative stress and Aβ accumulation [26]. Therefore, this deregulation
of ceramides in the preclinical stages of the disease could contribute to the advancement of
clinical manifestations contributing to neuronal loss. Moreover, Panchal et al. described
ceramide accumulation in AD plaques [27]. In addition, SM/ceramide has been related to
AD cognitive decline [10]. However, the utility of ceramides as biomarkers for dementias
requires further investigation [28]. LPE was described as a biomarker for progression to
AD [9], although our results suggest that it could be a potential biomarker for preclinical
stages. Similarly, LPCs could be a potential biomarker for the first stages of AD. In this
sense, LPCs play a role in polyunsaturated fatty acid (PUFAs) transport across the blood
brain barrier, perhaps controlling the availability of these essential compounds for the
proper functioning of the brain [29]. In the comparison between MCI-AD and healthy
controls, different lipid families were identified as potential biomarkers (DGs, MGs, and
PEs). Similarly, Wood et al. found increased levels of DGs and MGs in early AD [30]. PEs
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could be involved in the physiopathology of AD due to their involvement in cell processes
such as oxidative phosphorylation, mitochondrial biogenesis, and autophagy [31]. Our
results show that MGs could be potential biomarkers of early AD, including both the
preclinical and MCI-AD stages. In addition, LPE, LPC, and SM seem to be more specifically
altered in the preclinical stage, while DGs could be useful as biomarkers for the MCI stage.

On the other hand, the annotation of variables by means of other databases (HMDB,
Kegg, and Metlin) reported other important annotated variables and metabolite classes. In
the discrimination between preclinical AD and healthy subjects, some lipid families were
found, such as phosphatidylglicerol, glicerophosphocholine, glicerophosphoserine, phos-
phoethanolamine, phosphocholine, glicoesphingolipid, diacilglicerol, terpenes, steroids,
flavonoid classes, and vitamin E. Specifically, plasma glycerophosphocholine compounds
were observed at higher levels in the preclinical AD group. Similarly, other studies showed
elevated levels of this lipid in AD brains [32] as well as in cerebrospinal fluid samples from
AD patients [33,34], indicating that abnormal phospholipid metabolism in the brain is char-
acteristic of AD. In addition, the present study found that plasma phosphoethanolamine
levels were lower in the preclinical AD group, and a previous work found lower levels
for PE in AD brain samples [35]. In fact, PE is a precursor for phosphatidylcholine and
a substrate for important posttranslational modifications [31]. Moreover, phosphocholine
is a precursor of phosphatidylcholine, and higher levels were obtained for the preclinical
AD group, indicating a potential membrane impairment in the early disease process [36].
Moreover, glycosphingolipids could be involved in preclinical AD since higher levels were
obtained in plasma samples from these participants. In this regard, ceramides, which are
involved in sphingolipid metabolism, showed an association with neuropsychiatric symp-
toms [37]. Moreover, we found higher levels of DGs in the preclinical AD group, similar
to the increased plasma levels in early AD, suggesting that lipidomics alterations lead to
the accumulation of DGs in MCI subjects [30]. On the other hand, in the present study,
phosphatidylglycerol (PG) and flavonoids showed lower plasma levels in the preclinical
AD group. Flavonoid compounds could act against AD pathology by inhibiting microglia
activation and Aβ aggregation. Therefore, a reduction in these compounds early in the
disease may contribute to the development of AD pathways. However, a search of the
literature failed to reveal any studies related to this finding. Studies have been reported that
vitamin D showed higher levels in preclinical AD compared to healthy participants, but we
found that prior investigations reported reduced levels of these vitamins in AD and MIC-
AD cases [38]. Since the cases examined here were classified as preclinical AD, it is possible
that this group was exhibiting a compensatory response to the disease process. In addition,
the discrimination between preclinical AD and healthy controls is characterized by the
biomarkers 1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine and pisumionoside,
which were putatively annotated. Pisumionoside is an exogenous compound derived
from vegetables, such as seedpods of garden peas, that could have a hepatoprotective
function [39]. These levels are elevated in healthy subjects compared to preclinical AD
subjects. Therefore, pisumionoside could have a protective effect against AD. Moreover,
1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine is a glycerophosphorylcholine
that showed increased levels in AD, in concordance with previous studies [40]. Its oxidized
products were considered biomarkers of neuroinflammation in other pathologies such
as multiple sclerosis [41]. Moreover, other lipid families (glycosyldiacylglycerols, fatty
acids, terpenoids, sesquiterpene mycotoxins, terpene lactones, phosphocholines, gluco-
sylceramides, and fucopentanoses) were annotated by HMDB comparing MCI-AD and
healthy groups. First, glycosyldiacylglycerols showed lower levels in the MCI-AD group.
Previous studies found an increase in diacylglycerols in the frontal cortex in neurodegener-
ative diseases such as dementia with Lewy bodies or AD [42]. In addition, glycosylation
showed a relationship with neurodegeneration and AD. Therefore, it could be an indicator
of disease progression [43]. Moreover, fatty acids showed lower levels in the MCI-AD
group, similar to previous reports [44,45], reflecting differences in intake and metabolism.
Moreover, terpenoids and some vitamins showed higher levels in the MCI-AD group. In
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this sense, there is some controversy since previous studies showed protective effects for
these compounds [46,47].

Regarding the targeted analysis, the developed analytical method was able to deter-
mine low plasma levels of some lipids that could be useful as potential AD biomarkers
(18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)). Accuracy was satisfac-
tory for all of them. However, only 18:1 LPE showed statistically significant increased levels
in preclinical and MCI-AD in comparison with healthy controls. Su et al. found this lipid
increased in brain-derived extracellular vesicles from AD patients [48]. For LPC in plasma
samples, a previous study showed an increase with aging, which is more evident under
AD conditions [49]. Similarly, the present study found higher levels of LPC 18:1 and lower
levels of L-α-phosphatidilcholine and PC in AD patients. However, Mulder et al. found
a decrease in the ratio LysoPC/PC under MCI or dementia due to AD conditions [50]. In
addition, the present study showed plasma 18:1 LPC correlations with CSF Tau and p-Tau,
which are biomarkers currently employed in AD diagnosis. Specifically, Tau is considered
a neurodegeneration biomarker [51]. In this sense, the correlation found between 18:1 LPC
and Tau showed the potential utility of 18:1 LPC as a neurodegeneration biomarker. Sim-
ilarly, previous studies showed the utility of the metabolites 18:0 LPC and 18:2 LPC as
potential biomarkers for AD [52]. These discrepancies could be explained by the different
types of samples used (plasma and CSF) as well as by the different isomers determined
in these compounds’ families. In addition, the ratio between LPC and PC in the plasma
samples showed the capacity to differentiate between AD and non-AD participants [53].

The main limitation of this study is the small sample size. However, the participants
were accurately classified into groups according to their amyloid status, cognitive state,
and brain alterations with neuroimaging. Moreover, there is a lack of confirmation studies
to identify the metabolites as reliable AD biomarkers. Nevertheless, this work provides
a detailed lipidomic approach from untargeted and targeted analyses that identified po-
tential biomarkers and pathways involved in early AD development. Although analyses
of confounding variables, such as age, were not performed, correlations between age and
lipids or lipid class were assessed.

5. Conclusions

A lipidomic approach was developed from untargeted and targeted analyses of plasma
samples. It showed some differential expression of lipids between healthy participants and
patients at the early stages of AD. Therefore, the plasma lipid profile could be useful in the
early and minimally invasive detection of AD. Among lipid families, relevant results were
obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially
useful in AD detection, while LPEs, LPCs, and SM are related more specifically to their
preclinical stage and DGs are related to the MCI stage. Among these families, 18:1 LPE
showed potential utility as a biomarker for AD and neurodegeneration. In addition, other
analyte families, such as phosphatidylglicerol, phosphocholine, glicerophosphocholine,
glicerophosphoserine, glicoesphingolipid, vitamin E, terpenes, steroids, flavonoids, glyco-
syldiacylglycerols, fatty acids, glucosylceramides, and fucopentanoses, showed potential
alterations in early AD stages. However, further analysis in a large number of samples is
required to validate these preliminary results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11175030/s1, Table S1: Correlation analysis between age and
lipid class or targeted lipids.; Table S2: Metabolites’ annotation from metabolome comparison of
preclinical-AD vs. healthy subjects; Table S3: Metabolites’ annotation from metabolome comparison
of MCI-AD vs. healthy subjects.

Author Contributions: Conceptualization, C.C.-P. and M.B.; methodology, C.P.-B., L.Á.-S. and L.G.-V.;
validation, C.P.-B. and M.R.; formal analysis, M.R. and C.C.-P.; data curation, M.R.; writing—original
draft preparation, C.P.-B.; writing—review and editing, C.C.-P.; supervision, M.B.; funding acquisition,
C.C.-P. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/jcm11175030/s1
https://www.mdpi.com/article/10.3390/jcm11175030/s1


J. Clin. Med. 2022, 11, 5030 14 of 17

Funding: This work was supported by the Instituto de Salud Carlos III Project PI19/00570 (Spanish
Ministry of Economy and Competitiveness, cofunded by European Union). CCP acknowledges
CPII21/00006. CPB acknowledges PFIS FI20/00022. LAS acknowledges Río Hortega CM20/00140.
Part of the equipment used in this work was cofunded by the Generalitat Valenciana and European
Regional Development Fund (FEDER) funds (PO FEDER of Comunitat Valenciana 2014–2020).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Instituto de
Investigación Sanitaria La Fe (protocol code 2019/0105 and date of approval 22 May 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available in the BioStudies public repository with the accession
number S-BSST877.

Acknowledgments: CC-P acknowledges a postdoctoral “Miguel Servet” grant CPII21/00006 and
an FIS PI19/00570 grant from the Health Institute Carlos III (Spanish Ministry of Economy, Industry
and Innovation). LA-S acknowledges an “RH” grant CM16/00174 from the Health Institute Carlos
III. CP-B acknowledges a predoctoral “PFIS” grant FI20/00022 from the Health Institute Carlos III.

Conflicts of Interest: The authors report no conflict of interest.

Abbreviations
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AD Alzheimer’s Disease
CDR Clinical Dementia Rating
CE Cholesterol Esters
Cer Ceramides
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DG Diglycerols
FA Fatty Acids
FAQ Functionality Assessment Questionnaire
IPA Isopropanol
IQR Interquartile Range
LOD Limit of Detection
LOQ Limit of Quantification
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MCI Mild Cognitive Impairment
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MMSE Mini-Mental State Examination
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QC Quality Control
RBANS Repeatable Battery for Assessment of Neuropsychological Status Delayed Memory
SM Sphingomyelins
TG Triglycerides
TOF-MS Time-of-Flight Mass Spectrometry
UPLC Ultra-Performance Liquid Chromatography
VIP Variance Importance in Projection

References
1. Gong, C.-X.; Liu, F.; Iqbal, K. Multifactorial Hypothesis and Multi-Targets for Alzheimer’s Disease. J. Alzheimer’s Dis. 2018,

64, S107–S117. [CrossRef] [PubMed]
2. Bloom, G.S. Amyloid-β and Tau. JAMA Neurol. 2014, 71, 505. [CrossRef] [PubMed]

http://doi.org/10.3233/JAD-179921
http://www.ncbi.nlm.nih.gov/pubmed/29562523
http://doi.org/10.1001/jamaneurol.2013.5847
http://www.ncbi.nlm.nih.gov/pubmed/24493463


J. Clin. Med. 2022, 11, 5030 15 of 17

3. Pais, M.; Martinez, L.; Ribeiro, O.; Loureiro, J.; Fernandez, R.; Valiengo, L.; Canineu, P.; Stella, F.; Talib, L.; Radanovic, M.; et al.
Early Diagnosis and Treatment of Alzheimer’s Disease: New Definitions and Challenges. Braz. J. Psychiatry 2020, 42, 431–441.
[CrossRef] [PubMed]

4. Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Research 2018, 7, 1161.
[CrossRef]

5. Kao, Y.-C.; Ho, P.-C.; Tu, Y.-K.; Jou, I.-M.; Tsai, K.-J. Lipids and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1505. [CrossRef]
6. Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front.

Physiol. 2020, 11, 598. [CrossRef]
7. Liu, Y.; Thalamuthu, A.; Mather, K.A.; Crawford, J.; Ulanova, M.; Wong, M.W.K.; Pickford, R.; Sachdev, P.S.; Braidy, N. Plasma

Lipidome Is Dysregulated in Alzheimer’s Disease and Is Associated with Disease Risk Genes. Transl. Psychiatry 2021, 11, 344.
[CrossRef]

8. Zhang, X.; Liu, W.; Zan, J.; Wu, C.; Tan, W. Untargeted Lipidomics Reveals Progression of Early Alzheimer’s Disease in APP/PS1
Transgenic Mice. Sci. Rep. 2020, 10, 14509. [CrossRef]

9. Llano, D.A.; Devanarayan, V. Serum Phosphatidylethanolamine and Lysophosphatidylethanolamine Levels Differentiate
Alzheimer’s Disease from Controls and Predict Progression from Mild Cognitive Impairment. J. Alzheimer’s Dis. 2021, 80, 311–319.
[CrossRef]

10. Mielke, M.M.; Haughey, N.J.; Bandaru, V.V.R.; Weinberg, D.D.; Darby, E.; Zaidi, N.; Pavlik, V.; Doody, R.S.; Lyketsos, C.G.
Plasma Sphingomyelins Are Associated with Cognitive Progression in Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 27, 259–269.
[CrossRef]

11. Lim, W.L.F.; Martins, I.J.; Martins, R.N. The Involvement of Lipids in Alzheimer’s Disease. J. Genet. Genom. 2014, 41, 261–274.
[CrossRef] [PubMed]

12. Akyol, S.; Ugur, Z.; Yilmaz, A.; Ustun, I.; Gorti, S.K.K.; Oh, K.; McGuinness, B.; Passmore, P.; Kehoe, P.G.; Maddens, M.E.; et al.
Lipid Profiling of Alzheimer’s Disease Brain Highlights Enrichment in Glycerol(Phospho)Lipid, and Sphingolipid Metabolism.
Cells 2021, 10, 2591. [CrossRef] [PubMed]

13. Proitsi, P.; Kim, M.; Whiley, L.; Simmons, A.; Sattlecker, M.; Velayudhan, L.; Lupton, M.K.; Soininen, H.; Kloszewska, I.; Mecocci,
P.; et al. Association of Blood Lipids with Alzheimer’s Disease: A Comprehensive Lipidomics Analysis. Alzheimer’s Dement. 2017,
13, 140–151. [CrossRef] [PubMed]

14. Zhang, L.; Li, L.; Meng, F.; Yu, J.; He, F.; Lin, Y.; Su, Y.; Hu, M.; Liu, X.; Liu, Y.; et al. Serum Metabolites Differentiate Amnestic
Mild Cognitive Impairment From Healthy Controls and Predict Early Alzheimer’s Disease via Untargeted Lipidomics Analysis.
Front. Neurol. 2021, 12, 1305. [CrossRef]

15. Fote, G.; Wu, J.; Mapstone, M.; Macciardi, F.; Fiandaca, M.S.; Federoff, H.J. Plasma Sphingomyelins in Late-Onset Alzheimer’s
Disease. J. Alzheimer’s Dis. 2021, 83, 1161–1171. [CrossRef]

16. Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS): Preliminary Clinical Validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [CrossRef]

17. Pfeffer, R.I.; Kurosaki, T.T.; Harrah, C.H.; Chance, J.M.; Filos, S. Measurement of Functional Activities in Older Adults in the
Community. J. Gerontol. 1982, 37, 323–329. [CrossRef]

18. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State. J. Psychiatric Res. 1975, 12, 189–198. [CrossRef]
19. Hughes, C.P.; Berg, L.; Danziger, W.; Coben, L.A.; Martin, R.L. A New Clinical Scale for the Staging of Dementia. Br. J. Psychiatry

1982, 140, 566–572. [CrossRef]
20. Peña-Bautista, C.; Roca, M.; Hervás, D.; Cuevas, A.; López-Cuevas, R.; Vento, M.; Baquero, M.; García-Blanco, A.; Cháfer-Pericás,

C. Plasma Metabolomics in Early Alzheimer’s Disease Patients Diagnosed with Amyloid Biomarker. J. Proteom. 2019, 200, 144–152.
[CrossRef]

21. Alcoriza-Balaguer, M.I.; García-Cañaveras, J.C.; López, A.; Conde, I.; Juan, O.; Carretero, J.; Lahoz, A. LipidMS: An R Package
for Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics.
Anal. Chem. 2019, 91, 836–845. [CrossRef] [PubMed]

22. Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High
Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [CrossRef] [PubMed]

23. Misra, B.B. New Tools and Resources in Metabolomics: 2016–2017. Electrophoresis 2018, 39, 909–923. [CrossRef] [PubMed]
24. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How Close Are We to Complete Annotation of Metabolomes? Curr. Opin.

Chem. Biol. 2017, 36, 64–69. [CrossRef]
25. Mielke, M.M.; Haughey, N.J.; Han, D.; An, Y.; Bandaru, V.V.R.; Lyketsos, C.G.; Ferrucci, L.; Resnick, S.M. The Association Between

Plasma Ceramides and Sphingomyelins and Risk of Alzheimer’s Disease Differs by Sex and APOE in the Baltimore Longitudinal
Study of Aging. J. Alzheimer’s Dis. 2017, 60, 819–828. [CrossRef]
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