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ABSTRACT

Regulation of gene expression in eukaryotic gen-
omes is established through a complex cooperative
activity of proximal promoters and distant regula-
tory elements (REs) such as enhancers, repressors
and silencers. We have developed a web server
named DiRE, based on the Enhancer Identification
(EI) method, for predicting distant regulatory
elements in higher eukaryotic genomes, namely for
determining their chromosomal location and func-
tional characteristics. The server uses gene co-
expression data, comparative genomics and profiles
of transcription factor binding sites (TFBSs) to
determine TFBS-association signatures that can be
used for discriminating specific regulatory functions.
DiRE’s unique feature is its ability to detect REs
outside of proximal promoter regions, as it takes
advantage of the full gene locus to conduct the
search. DiRE can predict common REs for any set of
input genes for which the user has prior knowledge
of co-expression, co-function or other biologically
meaningful grouping. The server predicts function-
specific REs consisting of clusters of specifically-
associated TFBSs and it also scores the association
of individual transcription factors (TFs) with the
biological function shared by the group of input
genes. Its integration with the Array2BIO server
allows users to start their analysis with raw micro-
array expression data. The DiRE web server is freely
available at http://dire.dcode.org.

INTRODUCTION

High-quality sequencing of eukaryotic genomes provides
the framework for understanding the mechanisms that
underlie biological functions (1–3). In the case of the
human genome, the complete genomic sequence has
revealed fewer protein coding genes than expected (2,4),
yet the complex nature of their regulation beyond

proximal promoters remains poorly understood. The
explosion in available genomic data raised the hopes for
deciphering the ‘regulatory codes’ that govern gene
expression specific to various developmental conditions
(5,6). Considerable effort was put into finding regulatory
elements in simpler organisms, such as yeast (7–9) and
Drosophila (10–13), for which in silico predictions are
easier to validate experimentally. Most of the prediction
methods are based on local enrichment in binding sites
for specific transcription factors (TFs), but it is additional
information, such as sequence conservation across taxa
(14), nucleosome occupancy (15) or binding competition
between factors (16), that enables predictions to obtain
remarkable accuracy. A significant effort was also put into
predicting regulatory elements in mammalian genomes
(17–19), with several computational tools being developed
(20–28) for the purpose of predicting the locations of
transcription factor binding sites (TFBS) and regulatory
elements (REs). Central to most of these tools is the
concept of proximal promoter, which is a natural
extension from simpler organisms where promoter-based
regulation plays the most important role. Some tools also
provide the possibility to analyse sequences of up to 10 kb
preceding (24) or surrounding the transcription start site
(23,25), as well as any other sequences of interest (21,29),
which have made possible the investigation of REs located
further away from proximal promoters. In complex
organisms, gene regulation is established through a
cooperative activity of distant REs such as enhancers,
repressors, silencers, etc. and proximal promoters (defined
as 1.5 kb regions upstream of the transcription start site in
this case). Recent experimental evidence indicates that
distant regulatory elements can play an important role in
gene regulation (30–33), but we can only speculate on their
sequence signatures and on the extent to which these
elements populate eukaryotic genomes. We have recently
developed a new method for inferring positional and
functional information on distant REs from the analysis
of either microarray gene expression or co-regulation
data (34). This method, called Enhancer Identification
(EI), is one of the first in attempting to computationally
predict distant REs in vertebrates directly from a list of
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co-regulated genes, irrespective of the absolute distance
from REs to the genes they regulate. As described
previously, in a study of 79 groups of tissue-specific
genes, only 23% of candidate regulatory elements were
found in promoter regions and over half of the remaining
elements resided either in intronic or intergenic regions
(34). The EI method combines gene co-expression data
with conservation of regulatory signals across genomes
and takes into account the combinatorial co-occurrence of
TFBSs, which is known to enhance the prediction power
of computational methods (35,36). As a result, EI can
predict REs using a profile of evolutionarily conserved
TFBSs, which can also be used as signatures of particular
biological functions. By overlapping genome-wide predic-
tions with a set of enhancers validated in vivo in transgenic
mice, this method was previously shown to have 28%
sensitivity and 50% precision (34). Here we present a
generalized version of the method implemented as a web
server, named DiRE, which provides computational
means to investigate regulatory features of any user-sub-
mitted dataset of genes. Depending on the co-expression
behaviour (e.g. up- or down-regulation) of the input
genes, the DiRE server will predict function-specific (e.g.
time, tissue) REs that can act as enhancers or repressors
and the key regulatory TFs that potentially mediate their
effects. A convenient feature of the DiRE server is its
integration with the Array2BIO server (37), which
provides users with the ability of using raw Affymetrix
microarray expression data to start the investigation of the
common regulatory features of the genes of interest. In
short, we present a unique tool to effectively translate
functional information shared by a group of genes into
proximal and distant gene regulatory information.
Identification of candidate REs and their TF profiles can
be used for prioritizing candidates for experimental
validation and potentially for de novo detection of
synonymous REs in loci of genes not included into the
input dataset. Ultimately, the DiRE server will facilitate
enhancing the functional annotation of the human and
other genomes by providing candidate distant REs
responsible for specific biological functions.

Using the DiRE web server to predict distant
regulatory elements

Data input. The DiRE server, located at http://dire.dcode.
org, has a simple and intuitive interface, where users can
input a list of co-regulated and a list of background (or
control) genes. The list of genes for which users have prior
knowledge of co-regulation is usually relatively small, so
that users can paste this list of records into the main
window of the DiRE server, with one record per line. The
accuracy of the underlying EI method was tested on 79
diverse groups of human genes co-expressed in different
tissues, with the number of genes per group ranging from
around 200 to 300 (9). A set of genes ranging in size from a
hundred to a thousand genes is not uncommon to
microarray gene expression studies and will constitute an
appropriate input gene set for this tool. We would
strongly recommend using at least 50 genes as input to
avoid overfitting the classifier by training it on a small set

of genes. This user supplied list needs to match any one of
the following recognized types of data (to be selected from
a pull-down menu under the main window): GenBank
nucleotide or protein accession numbers, official gene
symbols, accession numbers from the UCSC known genes
annotation or chromosomal coordinates. For the purpose
of this analysis, DiRE explores not only the genomic
region covered by gene transcripts, but also the flanking
intergenic regions. Additionally, genes need to belong to
one of the species for which precomputed alignments and
TFBS content exist, which currently include human,
mouse and rat (this list will be expanded in the future).
In case of genes supplied in the form of genomic
coordinates, users need to verify that these coordinates
match the corresponding genome assembly.

In many cases the knowledge of co-regulation for a set
of genes is inferred from microarray gene expression
experiments. Users of Affymetrix gene expression micro-
arrays have the option of starting a DiRE investigation
with the raw gene expression data through the Array2BIO
server located at http://array2bio.dcode.org (37).
Array2BIO has a newly implemented feature that allows
users to forward the list of co-regulated genes directly to
the DiRE server, without additional data manipulation.
Additionally, Array2BIO allows grouping genes into
different Gene Ontology and KEGG functional cate-
gories. Each of these gene groupings can be automatically
submitted to DiRE as well.

Users also need to input a list of genes that should serve
for computing the background distribution of TFBS
clusters. Alternatively, different static lists of up to 7500
background genes randomly selected from either the
human, mouse or rat genome are provided for the
convenience of users. These lists will remain the same, so
that results can be reproduced and compared across
different runs. However, if some genes are present in both
the signal and the background lists of genes, they will be
eliminated from the background set. Users may opt to
provide their own list of background genes, which could
be especially helpful if data for contrasting expression
exists, such as generated from microarray gene expression
experiments. In this case, the user-provided list of genes
has to be formatted similarly to the list of co-regulated
genes. For meaningful results, the list of background genes
needs to contain at least a few thousands genes, in order to
avoid biased representation of random expectations.

DiRE processing. Once the initial data submitted, the
DiRE server will display a dynamically updated progress
report. The report will highlight the main computational
steps (parameter optimization, characterization of REs)
which were previously described in great detail (34). In
short, DiRE server first maps the input genes onto the
reference genome, and then it selects a set of candidate
REs from their loci based on the inter-species conserva-
tion pattern, which is available in the form of precom-
puted alignments if evolutionary conserved regions (ECR)
(38). Also the locations of putative TFBS are precom-
puted and are determined independently for each genome
using �400 families of vertebrate position weight matrices
(PWM) available from the 10.2 version of the
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TRANSFAC Professional database (due to redundancy in
TRANSFAC, 584 TRANSFAC PWMs effectively repre-
sent only �400 TFBSs). Using these readily available
datasets, DiRE determines the TFBS content of these
candidate REs. This step is followed by the maximization
of the F t scoring function (34), which is established by
assigning and varying TFBS weights. The optimization
effectively increases the number of candidate REs
recognized by the profile of TFBS in the loci of input
genes while decreasing the number of such predictions
in the loci of background genes. The optimization process
is stopped once no positively scoring elements are found
in at least 85% loci of background genes. Next, positively
scoring elements in loci of signal genes are reported
as candidate REs for driving the expression pattern
specific to the initial set of genes. The run time depends
on the total number of input and background genes;
a typical analysis, with <500 co-regulated genes and

5000 background genes, is usually completed within
10min. Using fewer background genes can decrease the
running time significantly (to less than a minute), but this
might result in unreliable predictions because of the
background signal under-sampling.

DiRE output. Users are provided with the results as
exemplified in Figure 1. The Request ID provided at the
top can be used for future data retrieval. A summary of
the detected REs follows, both relative to the input genes
(categorized as promoter, intronic, intergenic or UTR
elements) and as a graphical representation of their
chromosomal distribution. Also provided is a link to the
detailed description of candidate REs. The candidate RE
score, as described above and defined previously (34),
is obtained for each RE by summing the assigned
weights of all its constituent TFBSs (scores below 0.1
should generally indicate low confidence predictions).

Figure 1. Example of a summary output generated by the DiRE server, publicly available at http://dire.dcode.org/?id=example. The request ID is
normally a 16-digit number that replaces ‘example’ in this figure. While visually comprehensive, the output provides easy access to the detailed
description (chromosomal location, score, TF content) of candidate REs, to the graphical representation of their genomic distribution and to the list
of most important TFs. The ‘occurrence’ represents the fraction of putative REs that contain a particular TFBS, while the ‘importance’ is defined as
the product of the TF occurrence and its weight. For users’ convenience links to the original gene lists are provided, as well as to the results of their
mapping onto the corresponding genome.
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Candidate RE description also contains an annotation
based on the element location relative to the features of
the gene locus (UTR, intron, intergenic), the coordinates
of the gene locus, the official symbol(s) of the gene and a
list of positively-scoring TFBSs located in that element.
Users have the option of exploring the conservation and
the genomic landscape of each candidate element in
the ECR Browser (38) by clicking on its coordinates in the
‘Regulatory element’ column. The next section of the
output is dedicated to TFs found in candidate REs; the
occurrence and importance measures (34) being reported
for each TF. The occurrence indicates the fraction of REs
containing a particular TF, while the importance is the
product between the occurrence and the weight assigned
to each TF after the optimization. Finally, the original list
of genes used in the computation and their mapped
location on the target genome is provided for convenience.

DISCUSSION

The DiRE web server is the latest addition to the
Dcode.org set of comparative genomic tools, allowing
researchers to computationally predict common regula-
tory features of co-regulated genes. While other tools
(20–28) focus on detecting REs in promoter regions,
DiRE predicts distant REs in vertebrate genomes inde-
pendently of their position relative to the gene they
regulate. It can predict either enhancer or repressor
elements, depending on whether the genes of interest are
up- or down-regulated, or general regulatory elements of
any type if the input data originates from a particular
biological group that does not necessarily involve expres-
sion data (such as a Gene Ontology or KEGG category,
for example). The EI method underlying the DiRE server
was previously used to predict REs for different sets of
genes co-expressed in 79 human and 61 mouse tissues and
the predictions were experimentally validated in transgenic
mice (34). This provided the motivation for the general-
ization of the method and its implementation into a
web server that would allow exploring other sets of
co-regulated genes, thus contributing to enhancing the
functional annotation of genomes.
When using the DiRE web server, users should keep in

mind that the results depend on a series of precomputed
datasets and future updates should positively impact the
data processing of the DiRE server. Precomputed ECR
Browser (39) alignments might be compromised by draft
quality of genomes (human and mouse genomes are of
highest available quality). Gene annotation is very
important, because for the purpose of the EI method,
the locus of a gene is defined as the sequence between its
two neighbouring genes, which can be altered by adding
new genes or eliminating incorrect annotations with direct
implications on the predictions associated with that
particular locus. The TRANSFAC database (40), which
defines TFBS used by DiRE, is another important factor.
A TF missing from TRANSFAC, a poorly defined TF
binding specificity, different TFs with very similar binding
specificities—all these and other factors might negatively
impact the quality of DiRE predictions. One should thus

expect that the constant update of the TRANSFAC
database should result in improved DiRE predictions.

Despite these uncertainties, it is possible to demonstrate
that the DiRE analysis can consistently lead to informa-
tive biological findings. For example, Figure 1, which
illustrates the main DiRE output, represents the result of
re-analysing the regulatory landscape of the top 300 genes
highly expressed in the mouse liver (34,41). It was
generated using mm8 mouse and hg18 human genome
assemblies, corresponding gene annotation tracks, and the
10.2 version of the TRANSFAC Professional database.
We compared these results to the original mouse liver
analysis (34), which used previous genome assemblies,
mm7 and hg17, accompanied by an earlier, version 9.4,
release of the TRANSFAC database. Comparing the lists
of top 10 TFs with the highest predicted importance in the
liver gene regulation, we observed that Nr2f1a, Hnf1a,
Hnf4a, Ppara and Nr1h4 TFs, known to play an
important role in liver-specific gene activation, are
shared by both the new and the previous analysis
(Table 1). One factor, Srebf1 [Figure 4A in (34)], however,
was missing from the top 10 TF list in the new analysis.
However, the updated analysis picked up two other
additional known liver regulatory factors, Nr5a1 (42)
and Pax4 (43). There was only 1 TF, Tal1, in the top 10
TF list predicted by the new analysis, for which we cannot
confirm its liver regulatory function, despite its known
expression in liver (44).

It is interesting to note that despite big differences in the
computational approach, other tools produce results
comparable to those of DiRE. Among the available
tools, oPOSSUM (23) is probably the most similar to
DiRE. It uses a fixed precomputed set of phylogenetically
conserved TFBSs, employs matrices from the JASPAR
database and can estimate the statistical significance of
TFBS co-occurrence (only for groups of two or three
TFBSs) in windows of up to 20 kb surrounding the
transcription start sites. We provided the oPOSSUM
Combination Site Analysis (CSA) with the initial set of
300 genes highly expressed in the mouse liver mentioned
above to find shared groups of three TFBSs. It only
used 193 of the input genes for the analysis, which
identified Nr2f1 and Hnf1a as the most abundant TFs in
the five top scoring groups of TFBSs (data not shown).
These two TFs are also the top two scoring factors in the
DiRE output. As expected, despite these similarities, there
were discrepancies between the oPOSSUM and DiRE
predictions that highlight differences in computational
approaches employed by these tools, such as using
matrices from the JASPAR database in the case of
oPOSSUM as opposed to matrices from TRASNFAC in
the case of DiRE. From the user’s point of view, it might
be practical to give priority to overlapping predictions,
while treating predictions specific to a single tool with
more caution.

We also show here that the DiRE server produces
results consistent with known biological facts. We
compared the gene expression profile of mouse embryonic
fibroblasts (MEFs) derived from MyoD�/�/Myf5�/� mice
after transcriptional induction of the wild type MyoD TF
to that of MEFs in which an unacetylable MyoD version
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was transcriptionally induced (45). The experiment
effectively contrasts expression profiles of two cell lines
that differ only by the impact of functional and non-
functional versions of the MyoD TF, respectively.
Therefore, the difference in gene expression levels should
only be due to the deviant behaviour of the mutant
MyoD, given the same double knockout background for
the two MEF cell lines. We used the dataset of genes
differentially expressed in these two experiments to
determine whether DiRE can trace back the difference in
expression to the disruption of the MyoD regulatory
pathway or not. Using the Gene Expression Omnibus (46)
with the accession number GDS2854, we found 135 genes
with significantly (at the 0.005 level) lower expression in
MEFs expressing the mutant MyoD 24 h following its
transcriptional induction. By optimizing the weights of
�400 TF families and selecting candidate regulatory
elements in loci of the co-regulated genes, DiRE
determined MyoD to be second only to Tal1 in the list
of the predicted most important TFs. However, the
binding site for MyoD is present in more gene loci than

that for Tal1 (Table 2). Interestingly, the three most
frequent predicted TFBSs, those for MyoD, Tal1 and
Myogenin, all share a palindromic CAgcTG core
(Figure 2). This might indicate that some of the predicted
Tal1 and Myogenin binding sites might be in fact MyoD
binding sites and the DiRE server was not capable of
effectively distinguishing them given the mapping of such
highly similar binding sites. We found that REs containing
at least one of the three TFs sharing the same binding core
motif are present in 54 out of the 117 loci (46.1%) found
by DiRE to contain positively scoring REs. Assuming that
MyoD actually binds to all predicted TFBSs containing
this core motif, one can speculate that these down-
regulated genes are being directly regulated by MyoD,
while the remaining genes represent secondary effects—
genes located downstream in the regulatory pathway of
MyoD. It is interesting to note that MyoD was not found
to be positively associated with genes down-regulated at
the 6- and 12-h time points. This indicates that regulatory
effects of TFs might be detectable only at certain time
points, as cell expression profiles are highly dynamic.

Table 1. List of TFs with the highest importance found in regulatory elements detected by the DiRE server to be associated with liver up-regulation

of 300 mouse genes (Figure 1)

TF name in
TRANSFAC

Gene name TF function Reference

COUP Nr2f1a Essential for postnatal development and
normal lymphopoiesis; required for
hematopoietic development.

(47)

HNF1 Hnf1a Regulates proline metabolism in adult liver; (48)
HNF4/
HNF4ALPHA

Hnf4a Regulates genes involved in drug metabolism
and detoxification as well as maintenance
of liver function.

(49)

PAX4 Pax4 Promotes late-stage beta-cell differentiation
and maturation.

(43)

PPAR Ppara Hepatic activation of Ppara underlies
glucocorticoid-induced insulin resistance.

(50)

DR1 Dr1 Forms dimers with Hnf4a and Ppara.
TAL1 Tal1 Development of murine primitive hematopoiesis. (51)
FXR Nr1h4 Modulator of hepatic carbohydrate metabolism. (52)
IR1 Ir1 Forms dimer with Nr1h4.
SF1 Nr5a1 Regulates genes that are involved in sterol

and steroid metabolism in gonads,
adrenals, liver and other tissues.

(42)

Table 2. The list of 10 most important TFs determined by DiRE to be associated with down-regulation of 135 genes at 24 h after transcriptional

induction of unacetylable MyoD mutant in double knockout mutant mouse fibroblast cells (DiRE ID: myod)

TF Importance DiRE rank Occurrence in REs (%) Occurrence in gene loci (%)

MYOD 0.483 2 27.91 36.75
TAL1 1.013 1 29.07 34.19
MYOGENIN 0.225 5 20.93 27.35
YY1 0.341 4 20.35 24.79
NFKAPPAB50 0.344 3 13.37 16.24
MOVOB 0.140 10 9.3 13.68
LFA1 0.166 7 9.3 11.97
FOX 0.171 6 8.14 9.40
PBX 0.160 8 6.4 9.40
PU1 0.159 9 8.14 9.40

TFs are ordered here based on their occurrence in gene loci.
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This is reinforced by the fact that we found only six genes
to be common among the sets of genes down-regulated at
6-, 12- and 24-h time points.
In conclusion, the DiRE web server is capable of

predicting distant REs and candidate regulatory TFs for a
set of vertebrate input genes. This tool can help narrowing
down and prioritizing genomic regions and TFs as
candidates for further experimental validation. This
should ultimately lead to enhancing the functional
annotation of genomes and better understanding of
mechanism of gene regulation in higher eukaryotes.
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