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Recently, a roadmap on how to develop in vitro and in silico 
alternative methods to animal experiments has been pub-
lished (Sachinidis et al. 2019). The authors suggest a strat-
egy with five milestones:

•	 Testing of gold standard compounds and pathway con-
trols (Sachinidis et al. 2019; Hengstler et al. 2014). Gold 
standard compounds are substances for which human 
toxicity is well understood. Moreover, it should be well 
established at which concentration ranges a gold standard 
control should lead to positive and negative results. For 
example, acetaminophen (APAP) should lead to posi-
tive test results at concentrations of 1–2 mM, while con-
centrations below 0.1 mM should test negative in test 
methods for hepatotoxicity (Godoy et al. 2013). Pathway 
controls specifically interfere with specific signal trans-
duction mechanisms. For example, Wnt inhibitors should 
cause positive test results in test systems of developmen-
tal toxicity. Many novel test methods fail already when 
challenged with gold standard compounds and pathway 
controls.

•	 Establishment of test performance metrics. This step 
requires about 20 positive and negative test compounds 
of which the blood concentration, e.g., the Cmax result-
ing from a specific dosing schedule is known. Moreover, 
knowledge is required on whether this dosing schedule 
causes toxicity (positive control) or not (negative con-
trol) to a specific organ (e.g., liver or kidney). Based 
on the lowest positively tested in vitro concentration, 
two performance indices can be calculated: the toxicity 
separation index (TSI) informs how well a test system 
differentiates between toxic and non-toxic compounds; 
the toxicity estimation index (TEI) is a measure of how 

well the in vitro test estimates toxic blood concentrations 
(only for positive controls).

•	 Iterative cycles of optimization and confirmation. Many 
test parameters require optimization. A typical exam-
ple is the exposure period with test compounds. Often 
the question arises, whether inclusion of an additional 
readout into the test battery improves performance. This 
can be objectified by the above-introduced performance 
metrics TSI and TEI. However, it is important to confirm 
improvements for independent sets of positive and nega-
tive controls to avoid overfitting to a single set of data.

•	 Evaluation of inter-laboratory reproducibility. This step 
requires testing of the same compounds by independent 
laboratories to determine inter-laboratory reproducibility.

•	 Acceptance by the scientific community and regulatory 
bodies. Often regulatory bodies have been asked for 
acceptance of test methods that are by far not sufficiently 
advanced. Data of at least 300 positive and negative con-
trol compounds should be available and conventional 
performance measures such as sensitivity or specificity 
should have been determined by independent laborato-
ries.

In recent years, numerous in vitro tests have been devel-
oped, particularly for nephrotoxicity (Lee et al. 2017; Jiang 
et al. 2018; Sjögren et al. 2018), neurotoxicity (Colaianna 
et al. 2017; Sisnaike et al. 2014; Reffatto et al. 2018; Yang 
et al. 2018; Keil et al. 2018), developmental toxicity (Adam 
et al. 2019; Krug et al. 2013; Shinde et al. 2017; Rempel 
et  al. 2015; Waldmann et  al. 2014) and hepatotoxicity 
(Godoy et al. 2013, 2015; Grinberg et al. 2014, 2018; Reif 
et al. 2015; Leist et al. 2017), often supported by methods 
of systems modeling (Hoehme et al. 2010; Ghallab et al. 
2016; Vartak et al. 2016; Jansen et al. 2017). However, rela-
tively little has been done to quantitatively evaluate how well 
in vitro/in silico methods resemble the in vivo situation. For 
this purpose, the road map presented by Sachinidis and col-
leagues represents a helpful and practical guideline.
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