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Abstract

Technology advances have promoted gene-based sequencing studies with the aim of identifying rare mutations
responsible for complex diseases. A complication in these types of association studies is that the vast majority of non-
synonymous mutations are believed to be neutral to phenotypes. It is thus critical to distinguish potential causative variants
from neutral variation before performing association tests. In this study, we used existing predicting algorithms to predict
functional amino acid substitutions, and incorporated that information into association tests. Using simulations, we
comprehensively studied the effects of several influential factors, including the sensitivity and specificity of functional
variant predictions, number of variants, and proportion of causative variants, on the performance of association tests. Our
results showed that incorporating information regarding functional variants obtained from existing prediction algorithms
improves statistical power under certain conditions, particularly when the proportion of causative variants is moderate. The
application of the proposed tests to a real sequencing study confirms our conclusions. Our work may help investigators who
are planning to pursue gene-based sequencing studies.
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Introduction

Genotyping based genetic association analyses, which are

dependent on indirect linkage disequilibrium (LD) mapping, rely

on the common disease-common variants (CDCV) hypothesis.

The CDCV hypothesis assumes that genetic variants responsible

for complex diseases are common in frequency in the human

population [1,2,3]. Despite successful utilization of genome-wide

association studies (GWAS) to identify susceptible common

variants for a variety of complex diseases [4], only a modest

fraction of phenotypic variation has been accounted for by the

identified variants. Therefore, it is reasonable to propose that there

are limitations to the CDCV hypothesis, and to consider the

alternative common disease-rare variants (CDRV) hypothesis as a

complement [5,6,7,8]. In the CDRV hypothesis, phenotypic

variation is attributable to multiple variants, each with a low

frequency and a small to moderate marginal effect.

Advances in next-generation sequencing technologies

[9,10,11,12] and the recently launched ‘1000 Genomes Project’

[13] have enhanced our ability to discover rare variants. While

knowledge regarding rare variants is becoming increasingly

detailed, statistical analyses of rare variants present a number of

challenges. Ordinary variant-by-variant methods that are suited

for analyses of common variants have a limited capacity to detect

rare variants due to their extremely low frequency. Additionally,

the high number of tests to be examined reduces statistical power

dramatically when correction for multiple testing is taken into

account. To circumvent these problems, the analytical strategy of

grouping variants has been suggested [14,15,16,17]. Grouping

strategy uses genomic regions (e.g. genes, that contain a set of

variants) as the unit of analysis. This strategy is advantageous

because it enhances the mutation signal as well as reduces the

number of tests. Nonetheless, as not all nonsynonymous rare

variants within genes are causative, grouping all of them regardless

of their functional impact may have the undesirable effect of

producing an unsatisfactory signal-to-noise ratio. Therefore,

successful use of the grouping strategy is critically dependent

upon the ability to distinguish potential causative variants from

background population variation prior to analysis.

The potential functional importance of non-synonymous

variants, or of the resulting amino acid substitutions, can be

studied from a biological perspective. The functional impact of

amino acid substitutions can be predicted by specialized

algorithms that take into account context information for the

specific protein being analyzed [18,19,20,21,22,23,24,25,26,27].

By incorporating information obtained from predicting algorithms

into association analyses, potentially causative variants can be

preliminarily distinguished from background population variation,

thereby improving the efficiency of these analyses.

In this study, we test the association between non-synonymous

variants in gene coding regions and disease. In order to determine
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the relative importance of variants in terms of phenotypic effect,

prediction algorithms were extensively utilized to identify

functional amino acid substitutions, and we incorporated results

from these prediction algorithms into association tests. We aimed

to evaluate whether, and to what extent, incorporation of results

from these prediction algorithms can improve statistical power for

detecting disease associated rare variants. We also evaluated the

performance of tests by analyzing a real sequence dataset to

demonstrate the utility of the proposed tests.

Methods

In figure 1, we outline the steps that we follow to simulate data

and perform association test. In what is followed at this section, we

will describe each of these steps in details.

Modeling site-frequency spectrum
By focusing on the European population, we simulate the full

range frequencies of sequence data using a four-parameter

demographic model [14,28]. In this model, the shape of the

European population history is assumed to start from a constant

ancestral population, followed by a population bottleneck with a

reduction in effective size, and then by an exponential expansion

until to modern population. The four parameters involved are the

constant ancestral population size N1, the bottleneck population

size Nb, the duration of time T after the bottleneck (measured by

generation), and the population growth rate c after the bottleneck.

In Appendix S1, we outline the formulation of the demographic

model and the data we use to estimate its parameters.

Simulating genotypes
Using the inferred demographic model, we simulate the full

range allele frequencies of sequence data of a gene coding region

to mimic a gene-wise sequencing study. We simulate a gene with

L = 1,500 nucleotides by assuming an average length of 500 amino

acids for proteins [14]. In accordance with a previous estimation

[29], one third of the simulated variants are assumed to be

synonymous mutations, which does not affect gene expression and

are not included in our analysis. Of the remaining non-

synonymous mutations, previous studies have indicated that the

majority are actually background population variation [30,31].

We thus set the proportion of causative variants f = 0.2 [31].

However, we also evaluate two other proportions (0.5 and 0.8) for

comparison.

Simulating the pool of quantitatively phenotyped
individuals

Though we test association with a case/control study design,

individuals are sampled from the two tails of the distribution of a

quantitatively phenotyped population. This extreme sampling

scheme is advantageous because enlarging the size of phenotyped

pool alone could improve statistical power to detect the association;

this approach has been widely adopted by several well-established

sequencing-based association studies [14,32,33,34]. As a baseline,

we generate a pool with 50,000 quantitatively phenotyped

individuals. Causative variants are randomly selected, and they

affect the phenotype in a cumulative matter in that individuals

carrying more causative mutations have larger shifts of the

Figure 1. Flow chart of simulation studies.
doi:10.1371/journal.pone.0013857.g001
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phenotypic mean. Specifically, for each individual j, define a

causative score xj~
PLn

l~1

Ilgjl , where Ln is the number of non-

synonymous rare variants; Il (1 or 0) is the indicator of causative

variant, and gjl (0, 1, or 2) is the genotype score at the variant. The

relationship between the phenotype and genotype is modeled by a

linear regression equation

yj~mzbxjzej ,

where m is the grand phenotypic mean; ej is the random error which

follows a normal distribution with zero mean. The coefficient b is

determined by the locus heritability h2, which is defined as

h2~
b2 var(x)

b2 var(x)zvar(e)
:

As a baseline, we set h2 to be equal to 0.5%.

When common variants are selected as causative, they affect the

phenotype individually by the above linear regression equation. Of

the total 0.5% locus heritability, 10% is attributable to common

variants.

Sampling extreme phenotyped individuals for
sequencing

After the pool of phenotyped individuals is generated, we select

individuals with lowest and highest phenotypes for sequencing. As

a baseline, we select nu = 1,000 individuals with the lowest

phenotypes and label them as control subjects. Similarly, we

select nc = 1,000 individuals with the highest phenotypes and label

them as case subjects.

Predicting the functional impact of non-synonymous
SNPs

Since not all non-synonymous mutations are causative, we add a

step to differentiate functional variants from background neutral

variation based on the specific amino acid substitutions using

existing prediction algorithms, e.g., PolyPhen [19] and SIFT [21].

We assume that functional variants are all causative. The

information obtained from predicting algorithms can be used to

generate qualitative (e.g., the variant results in damaged protein) or

quantitative (e.g., a continuous score reflecting the degree of impact

on protein function) measures. We assume that both measures are

available. For simplicity, we take an indicator O as the qualitative

measure of being functional (O = 1) or not (O = 0), and we take a

probability p (0ƒpƒ1) as the quantitative measure, though the

bounds 0 and 1 on the range of measure are not required.

The performance of a specific predicting algorithm is measured

by its sensitivity, e.g., the probability of correctly identifying a truly

functional mutation, and specificity, e.g., the probability of

incorrectly classifying a non-functional mutation as a functional

one. Assume that the sensitivity and the specificity are b and a.

Specifically, we have P(O~1DI~1)~b, and P(O~1DI~0)~a.

Thus, O is simulated from a Bernoulli distribution Ber(b) for

causative variants, and from Ber(a) for neutral variants. Given

O = 1 or 0, we simulate quantitative measure p from the Uniform

distribution U(a, 1) or U(0, a), where a is the threshold to declare a

causative variant. We set a = 0.9.

Estimations of sensitivity and specificity are available for most

predicting algorithms [27]. The sensitivity ranges from 0.69 to

0.88, and specificity from 0.08 to 0.2. In this study, we set them to

average values, e.g., sensitivity to 0.8 and specificity to 0.15, unless

otherwise specified.

Testing association
Individual rare variants, e.g., MAF,1%, provide limited

information to detect the association, and an effective approach

to analyze them is to group them together [15,16]. The first step

for analyzing a group of rare variants involves encoding a

genotypic score, sj, for each individual j in the group. An infinite

number of encoding schemes are available. Here we study three

encoding schemes. In the first one, the genotypic score is the sum

of individual genotypes

sj~
XLn

l~1

gjl ,

where Ln is the number of rare non-synonymous variants, and gjl

(0, 1, or 2) is the genotype at the lth variant for the jth individual.

This encoding scheme is also adopted by a recent study [35]. The

second and third schemes involve weighting each variant by its

score simulated in the previous section. Denote, for each variant l,

pl and ol as the continuous and binary functional measures. The

genotypic score is given by

sj~
XLn

l~1

plgjl

for the second encoding scheme, and is given by

sj~
XLn

l~1

olgjl

for the third scheme.

The association between the phenotype and encoded genotypic

score is then examined by a logistic regression model. Specifically,

logit(qj)~ log
qj

1{qj

~b0zb1Sj ,

where qj is the risk of developing the disease for the individual.

Common variants can be analyzed in the combination with

grouped rare variants in the above logistic regression model.

Denote gj~(sj ,gj1,:::,gjm)
0
as the vector of the combination of rare

and common variants, where m is the number common variants.

The above logistic regression test is rewritten as

logit(qj)~ log
qj

1{qj

~b0zb0gj :

We denote tests with the three different encoding schemes as

sum test (ST), functional variant weighted continuous sum test

(FWCST) and functional variant weighted binary sum test

(FWBST).

For comparison, we include two extensive tests that involve

grouping rare variants for testing association. The first is the

collapsing and its relevant combined multivariate collapsing

(CMC) tests [15]. In the collapsing method, genotypic score is

an indicator of the presence of rare variants

sj~
1, if rare variants present

0, otherwise

� �
:

The association between the disease status and genotypic score is

examined by the Fisher’s exact test or x2 test. When common

Detecting Rare Variants
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variants are involved, CMC was proposed to test the combination

of common and grouped rare variants in a multivariate model,

such as Hotelling’s T2 test [15].

The second test is the group-wise weighted sum statistic

(GWWS) [16]. In GWWS, the genotypic score is another weighted

sum of individual genotypes

sj~
XLn

l~1

wlgjl :

wl is assigned so that rarer variants get heavier weights, because

rarer variants tend to have a larger effect on phenotype. The

association is examined by a rank-sum statistic, and the

significance is evaluated by permuting and replicating the test k,

e.g., 1000, times.

Evaluating performance
We evaluate statistical properties, including type-I error rates

and power, of various tests by simulation. Type-I error rates are

estimated by setting the locus heritability to zero, and power is

estimated by setting it to a specified proportion, e.g., 0.5%. Both

type-I error rates and power are estimated on 10,000 replicates,

where power is defined as the proportion of replicates in which the

association is detected at the predefined significance level 1.0E-6.

We also study the effects of several influential factors, e.g., the

sensitivity and specificity of predicting algorithms, number of

variants, and proportion of variants, on power estimates. When

evaluating the effect of one particular factor, other parameters will

be fixed at base line values.

Application
As an application, we analyze the sequence data produced by

Cohen et al. [34]. In their study, the authors sequenced three

candidate genes (ABCA1, APOA1, and LCAT) in an initial sample

with two groups of individuals to identify mutations that cause low

high-density lipoprotein cholesterol (HDL-C) levels. The two

groups each comprising 128 individuals were selected from the

upper and lower 5% of the distribution of plasma HDL-C levels in

the Dallas Heart Study (DHS) (Dallas sample). The authors

identified a total number of 29 non-synonymous variants, but only

18 variants that were exclusive to either group were reported. As

in [34], we combined variants of these three genes and analyzed

them together. Two variants, each having four alleles in the 64

black individuals (Bayesian posterior frequency 3.8%), were

considered as common variants, and the other 16 rare variants

were grouped together.

The authors also sequenced the same three genes in a second

sample comprising 155 white Canadians who had low levels of

HDL-C and 108 who had high levels (Canada sample). A total

number of 32 non-synonymous variants were identified, but only 23

variants, which were all rare, were reported and thus were available

for us to analyze.

In their analysis, the authors predicted the impact of each

variant on maintaining protein function using the predicting

algorithm PolyPhen [19]. There are three qualitative measures

available from PolyPhen: ‘‘benign’’, ‘‘possibly damaging protein’’,

and ‘‘probably damaging protein’’. We take ‘‘benign’’ variants as

non-functional, and the other two types as functional. In addition,

a position-specific independent counts (PSIC) profile score [36]

from PolyPhen is available as a quantitative measure for each

variant, which will be used in this study. Non-sense mutations, e.g.,

mutations that truncate proteins, could not be predicted by

PolyPhen. As non-sense mutations probably change protein

function, we category them as functional variants, and assign

them the highest quantitative weight among others.

Results

In this section, we first estimated the demographic model by

analyzing the real sequence dataset produced by the ENOCDE3

project [37]. Based on the inferred demographic model, we then

performed a series of simulation studies to evaluate the

performance of several rare variant aimed association tests,

including the proposed functional variant weighted continuous

sum test (FWCST), binary sum test (FWBST), and sum test

without weighting (ST). Two other existing tests, namely

combined multivariate collapsing test (CMC) [15] and group-wise

weighted sum statistic test (GWWS) [16], were also included in our

analysis for comparison. We finally re-analyzed the real study

reported by Cohen et al. [34].

Estimating demographic model
The four parameters of demographic model estimated by

maximum likelihood estimation are N1 = 20,000, Nb = 14,000,

T = 3,300, and c = 0.001 (See figure 2 for illustration). N1 and Nb

are larger than a previous report by two fold [38]. Given an

average 20 years per human generation, the estimated T implies

that the bottleneck occurred ,66,000 years ago (66 kya). This

estimation is consistent with the ‘‘out-of-Africa’’ event which

presumes that the European branch was expanded from Africa

,80–40 kya. The estimated effective size of today’s population is

,380,000, much larger than that reported in [38] (20,000), but

smaller than that reported in [14] (900,000). For neutral variants

the estimated allele frequencies from simulations matched quite

well with experimental data (figure 3A). Due to the limited number

of non-synonymous variants in this dataset, the strength of natural

selection could not be evaluated. Instead, using a model with

neutral selection, the frequency predicted by simulation for alleles

in gene coding regions matched quite well with the experimental

data from the ENCODE3 project (figure 3B). This may be

Figure 2. Demographic model. The constant ancestral population
(N1) is followed by a population bottleneck with a reduction of effective
size (Nb), and then by an exponentially expansion with T generations,
until to the present population (Ne).
doi:10.1371/journal.pone.0013857.g002
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because the effect of selection was too weak to be detected by the

limited number of available non-synonymous variants.

Testing association
Type-I error rates. As shown in table 1, all methods have

reasonable type-I error rates that are close to target levels in all

situations that were studied.

Power with proportion of causative variants. All methods

had increased power as the proportion of causative variants

increased; their relative performance depended on the proportion

(figure 4). When the proportion was lower than 0.7, FWCST and

FWBST had the highest power. When the proportion exceeded

0.7, however, the power of ST exceeded that of FWBST. When

the proportion was as high as 0.9, the power of ST exceeded that

of FWCST, and the power of GWWS exceeded that of FWBST.

Comparing FWCST to FWBST, FWBST had higher power when

the proportion was below 0.5 but, at levels above 0.5 FWCST had

higher power. Comparing ST to GWWS, GWWS had higher

power when the proportion was below 0.4 but, at levels above 0.4,

ST had higher power. CMC had the lowest power under all tested

conditions.

Power with predicting sensitivity. The sensitivity of

functional variant prediction is defined as the probability of

correctly identifying a truly functional mutation (Functional

variants are assumed to be causative/relevant to phenotype).

Sensitivity affected the performance of FWCST and FWBST in

that power increased with greater sensitivity (figure 5). The relative

performance of FWCST and FWBST to other tests also depended

on the proportion of causative variants. At low (20%, figure 5A),

medium (50%, figure 5B), and high (80%, figure 5C) proportions,

their power exceeded that of other tests when sensitivity exceeded

approximately 0.4, 0.6, and 0.8, respectively. When sensitivity was

low, FWCST was more powerful than FWBST, but power

increased more rapidly for FWBST than for FWCST with

Figure 3. Fitness of simulated variants to experimental variants. The fitness of allele frequencies simulated by the demographic model to
that of experimental data for neutral variants (A) and coding variants (B).
doi:10.1371/journal.pone.0013857.g003
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increasing sensitivity. Consequently, when sensitivity was high,

FWBST was more powerful than FWCST. Among the other

methods, GWWS and ST had approximately equal power, while

the power of CMC was lowest.

Power with predicting specificity. The specificity of

functional variant prediction is defined as the probability of

incorrectly classifying a non-functional mutation as a functional

one. Specificity affected the performance of FWCST and FWBST

in that power decreased with increasing specificity (figure 6).

Again, the relative performance among tests depended on the

proportion of causative variants. At low proportion (figure 6A), the

power of FWCST and FWBST was higher when specificity was

lower than ,0.6. At medium and high proportions (figure 6B&C),

the specificity criteria for power improvement was around 0.5 and

0.3, respectively. GWWS and ST had approximately equal power,

while that of CMC was lowest.

Power with effective proportion of causative variants.

Since FWCST and FWBST improved power by increasing the

effective proportion of causative variants, it is of interest to

evaluate their performance when the effective proportion after

weighting remains equal to that without weighting. This could

occur when the information available does not facilitate selection

of true functional variants. To remain the effective proportion

equal to that without weighting, the sensitivity and specificity have

to be equal (see the Discussion section for the derivation). It was

clear that both FWCST and FWBST had lower power than ST

(figure 7), implying that uninformative weighting schemes would

cause a loss of power. The power of both tests increased with

increasing sensitivity. Finally when sensitivity reached 1.0,

FWBST was equivalent to ST, but FWCST was still inferior to

ST. The power loss was more severe for FWBST than for FWCST

in most cases.

Power with gene length. Gene length affected the

performance of different tests quite differently (figure 8). For

FWCST and FWBST, power increased with increasing gene

length, though the magnitude of this change was minor. For the

other tests, however, power decreased with increasing gene length.

The power loss was much more severe for CMC than for ST and

GWWS. Comparing the two functional variant weighted tests,

FWBST was more powerful at low proportion (figure 8A), but had

approximately equal power to that FWCST had at the other two

proportions (figure 8B and 8C). At low and medium proportions,

FWBST and FWCST were most powerful, followed by ST and

GWWS, which had approximately equal power, and then by

CMC, which had the lowest power. At the high proportion, while

all other tests maintained power at high levels, the power of CMC

decreased substantially with increasing gene length.

Power with gene effect. The power of all methods increased

with increasing locus heritability (figure 9). Among the tests,

FWCST and FWBST were most powerful, followed by GWWS,

ST, and CMC. At a low proportion of causative variants

(figure 9A), FWCST, FWBST, and GWWS had the ability to

Table 1. Type I error rates.

Sequenced Nominal level

sample Gene 5% 1%

size length FWCST FWBST ST GWWS CMC FWCST FWBST ST GWWS CMC

1,000

500 5.6 5.5 5.0 5.1 4.7 1.2 1.1 0.8 1.0 1.2

1,000 5.1 5.5 4.9 5.1 5.2 1.2 1.1 1.1 1.0 1.1

1,500 5.5 5.3 5.4 5.1 5.5 1.1 1.3 1.2 1.2 1.3

2,000 4.8 5.1 4.8 4.9 4.5 0.9 0.7 1.2 0.9 1.0

2,500 5.2 4.7 4.9 4.9 4.7 1.2 1.2 1.1 1.0 0.8

3,000 4.7 5.4 4.9 4.8 5.5 1.1 1.2 0.8 0.9 1.3

2,000

500 5.5 5.7 5.1 5.0 5.3 1.0 1.1 0.9 1.0 0.8

1,000 4.8 4.5 5.1 4.7 4.8 1.0 1.1 0.8 0.9 0.9

1,500 4.2 5.0 4.5 4.5 5.0 0.8 0.9 0.9 1.0 1.0

2,000 4.5 4.3 5.2 5.4 5.5 0.8 1.0 1.0 1.4 1.5

2,500 4.8 4.3 5.3 5.5 5.1 0.8 0.8 1.2 1.1 1.2

3,000 5.0 4.7 4.4 4.2 5.4 1.1 1.2 0.9 1.1 1.1

4,000

500 5.2 5.3 5.1 5.2 4.7 1.1 1.0 1.2 1.0 1.2

1,000 5.5 5.2 5.0 4.8 4.9 1.1 1.1 0.9 0.8 1.0

1,500 5.4 5.1 5.1 5.1 5.2 1.0 1.2 0.9 1.2 0.9

2,000 4.6 4.8 4.5 4.8 4.5 0.8 1.0 0.8 0.8 1.0

2,500 5.5 5.5 5.3 5.1 5.1 1.0 1.2 1.0 1.0 1.1

3,000 4.9 5.0 4.4 4.5 4.5 0.8 0.7 0.8 0.8 0.8

Sequenced sample size varies from 1,000 to 4,000, while the gene length varies from 500 to 3,000 nucleotides. Type I error rate is estimated on 10,000 replicates at
significance levels 5% and 1%.
Abbreviation: FWCST, the proposed functional variant weighted continuous sum test; FWBST, the proposed functional variant weighted binary sum test; ST, the sum
test without weighting; GWWS, the group-wise weighted sum test [16]; CMC, the combined multivariate collapsing test [15].
doi:10.1371/journal.pone.0013857.t001
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detect genes with heritability of 1.5% with nearly 100% power.

For ST and CMC, at a low proportion of causative variants, 100%

power was achieved at heritability levels of 2.0 and 3.0%,

respectively. At high proportions (figure 9C), all tests had nearly

100% power to detect genes with heritability of 1.0% or more, and

similar results were obtained at medium proportions (figure 9B)

with all tests except CMC, which did not achieve 100% power

until heritability reached 1.5%.

Power with phenotyped and sequenced sample size.

Since we simulated a large pool of phenotyped individuals and

selected individuals with extreme phenotypes from the pool for

sequencing, we investigated the effect of the number of phenotyped

and sequenced individuals on power estimation. As shown in table 2,

sequencing greater numbers of individuals certainly increased

power for all tests, as did increasing the pool of phenotyped

individuals. When sequencing 2,000 individuals from a pool of

50,000 phenotyped individuals, the power of FWCST and FWBST

was 81% and 87%, respectively, for detecting a gene with 1,500

nucleotides. When the number of phenotyped individuals increased

to 100,000, the power of FWCST and FWBST increased to 90%

and 92%, respectively, without additional sequencing cost.

Comparing the tests, the power of FWCST and FWBST was

highest, followed by ST, GWWS, and CMC.

Application
In order to verify the results of our simulation studies, we

analyzed the sequence dataset produced by Cohen et al. [34].

When applied to the Dallas sample, FWCST and FWBST had p-

values of 4.03E-4 and 4.41E-4, which were higher than that of ST

(2.46E-4) and GWWS (7.71E-5), but lower than that of CMC

(1.17E-3) (table 3). The inferior performance of FWCST and

FWBST compared to ST and GWWS was caused by the fact that

of the 3 variants that were exclusive in the control group (high

HDL-C), two were predicted to be ‘‘damaging protein’’, resulting

in a specificity rate as high as 0.7. However, this comparison

probably created an advantage for un-weighted tests because

another 11 variants, that were present in both case and control

groups, were not included in the authors’ analysis. If these

variants, which were likely to be neutral, had been included, the

specificity of prediction would be expected to decrease, thereby the

relative performance of FWCST and FWBST compared to other

tests would be improved.

When applied to the Canada sample, both FWCST and

FWBST produced lower p-values (thus likely higher power)

(1.97E-4 and 1.46E-5) than those of other tests (ST: 1.35E-3;

GWWS: 1.81E-3; CMC: 2.74E-3). In this sample, both variants

exclusive to the control group were predicted to be neutral,

Figure 4. Power with proportion of causative variants. Genotype data of a gene with 1,500 nucleotides are simulated. A pool of 50,000
quantitatively phenotyped individuals is generated, from which 1,000/1,000 individuals with the lowest and highest phenotypes are selected and
labeled as control/case subjects. Causative variants explain cumulatively 0.5% of the total phenotypic variation, of which 90% is explained by rare
variants, and the remaining 10% by common variants. The sensitivity and specificity of prediction algorithms are set to 0.8 and 0.15, respectively.
Power is estimated on 10,000 replicates, defined as the proportion of replicates in which the gene is detected at the significance level 1.0E-6.
Abbreviation: FWCST, the proposed functional variant weighted continuous sum test; FWBST, the proposed functional variant weighted binary sum
test; ST, the sum test without weighting; GWWS, the group-wise weighted sum test [16]; CMC, the combined multivariate collapsing test [15].
doi:10.1371/journal.pone.0013857.g004
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Figure 5. Power with sensitivity of predicting functional variants. Three proportions of causative variants are considered: 20% (A), 50% (B),
and 80% (C). The specificity for identifying functional variants is set to 0.15. See the legend for figure 4 for abbreviations and simulation detail.
doi:10.1371/journal.pone.0013857.g005
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Figure 6. Power with specificity of predicting functional variants. The sensitivity for predicting functional variants is set to 0.8. See the
legend for figure 4 for abbreviations and simulation detail.
doi:10.1371/journal.pone.0013857.g006
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Figure 7. Power with equaling effective proportion of causative variants. The sensitivity and specificity are set to be equal, in order to retain the
effective proportion of causative variants after weighting to that without weighting. See the legend for figure 4 for abbreviations and simulation detail.
doi:10.1371/journal.pone.0013857.g007
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Figure 8. Power with gene length. Gene length varies from 500 to 3,000 nucleotides, corresponding to a protein length of 170 to 1,000 amino
acids. See the legend for figure 4 for abbreviations and simulation details.
doi:10.1371/journal.pone.0013857.g008

Detecting Rare Variants

PLoS ONE | www.plosone.org 11 November 2010 | Volume 5 | Issue 11 | e13857



Figure 9. Power with gene effect. Locus heritability varies from 0% to 3%. See the legend for figure 4 for abbreviations and simulation detail.
doi:10.1371/journal.pone.0013857.g009
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resulting in a specificity rate as low as zero. Again, the comparison

would be fairer if the additional 9 variants, that were present in

both case and control groups, had been included for analysis.

Discussion

In this study, we have proposed and evaluated a novel method

to test the association between disease and variants in gene coding

regions. Specifically, we incorporated information generated by

extensive use of predicting algorithms into group-wise association

tests. This was done in order to improve the power of these tests by

distinguishing potential causative variants from background

neutral variation. We also studied the effects of several influential

factors on the performance of the proposed tests. Simulation

studies showed that the use of predicting algorithms to identify

potentially functional variants improves statistical power under

certain conditions, especially when the proportion of functional

variants is moderate. Application of the proposed tests to a real

sequencing study confirmed the results of our simulation studies.

Association, referring to the correlation between phenotype and

genetic variants, can be categorized into indirect and direct

associations. With indirect association, the genetic variants to be

examined are usually neutral bio-markers, e.g., SNPs, while the

causative variants are untyped. In order for indirect association

studies to be effective, there must be linkage disequilibrium (LD;

i.e., nonrandom association), between these neutral bio-markers

and the causative variants. Variant alleles in indirect association

usually have no functional biological impact, and are often

encoded as 1 or 0 to indicate the presence or absence of a

particular allele. With direct association, in contrast, the variants

that are examined are assumed to be functional, and not only the

presence or absence of a particular allele but also its type (e.g., A,

G, C, or T) is informative. This distinction has made analytical

approaches for sequencing-based direct association studies differ-

ent from those used for genotyping-based indirect association

studies.

Sequencing genomic regions identifies a greater number of rare

variants than that identified by genotyping platforms. The

challenge in analyzing rare variants is attributable both to their

rarity, and to the fact that a large proportion of these rare variants

represent background population variation with no functional

impact. While grouping strategies could enlarge mutation signals,

the anticipated excess number of neutral variants within the group

would decrease signal-to-noise ratios to very low levels. Therefore,

it would be highly advantageous to differentiate potential causative

variants from neutral ones, prior to association analyses, with the

goal of increasing signal-to-noise ratios.

In gene coding regions, the functional impact of a variant can be

predicted from protein structure and function, and multiple

sequence alignments. Functional variants predicted by existing

algorithms distribute differently between disease-affected and

normal populations. For example, when applied to a disease-

causing mutation database annotated in SwissProt, PolyPhen

predicts that ,82% of all mutations will result in damaged protein

[19]. When applied to a control set of between-species

substitutions, however, only ,8% of mutations fall into this

category [19]. Several recent sequencing studies provide additional

evidence for this relationship between predicted functional

variants and phenotype [30,33,34,39]. For example, in the study

of Cohen et al. [34], 17 of 25 non-synonymous SNPs (nsSNPs)

identified in the ABCA1 gene in case group are predicted to be

‘‘damaging protein’’. Given PolyPhen’s false positive rate on

neutral substitutions being 0.08, the p-value for observing this data

from a binomial distribution is as low as 1.30E-13. Similar analysis

on nsSNPs in control group (2 of 4 being ‘‘damaging protein’’)

presents a much higher p-value 0.03 [27]. Therefore, predicted

functional variants are highly correlated with disease phenotype,

which justifies the importance and attests to the feasibility of

identifying putative functional variants prior to grouped associa-

tion analyses.

A variety of algorithms have been proposed to predict the

functional impact of amino acid substitutions [18,19,20,21,22,23,

24,25,26,40]. Prediction could be based on multiple ortholog

sequences, protein structures, and annotation of variants. In our real

data analysis, we used PolyPhen [19] which uses sequence-,

structure-, and annotation-based information as input. The benefits

of using these prediction algorithms are dependent on the capacity

to increase the effective proportion of causative variants, which is

highly dependent on the sensitivity and specificity of the algorithm

used. For a particular sample with N variants, let f represent the

Table 2. Power with phenotyped and sequenced sample
sizes.

Phenotyped Sequenced Tests

sample size sample size FWCST FWBST ST GWWS CMC

25,000

1,000 0.29 0.41 0.05 0.06 0.01

2,000 0.57 0.70 0.16 0.17 0.06

4,000 0.76 0.84 0.27 0.29 0.10

50,000

1,000 0.44 0.59 0.09 0.11 0.02

2,000 0.81 0.87 0.30 0.34 0.10

4,000 0.95 0.96 0.64 0.69 0.30

100,000

1,000 0.60 0.72 0.15 0.20 0.04

2,000 0.90 0.92 0.49 0.59 0.20

4,000 0.99 0.99 0.84 0.91 0.51

The pool of phenotyped individuals with varies sizes is generated. For each
pool, equal numbers of individuals with the lowest and highest phenotypes are
selected for sequencing. A gene with 1,500 nucleotides is simulated. Power is
estimated on 10,000 replicates at the significance level 1.0E-6.
doi:10.1371/journal.pone.0013857.t002

Table 3. Analyses of the real sequence data.

Tests p-value

Dallas Canada

FWCST 4.03E-4 1.97E-4

FWBST 4.41E-4 1.46E-5

ST 2.46E-4 1.35E-3

GWWS 7.71E-5 1.81E-3

CMC 1.17E-3 2.74E-3

In the Dallas sample, three genes (ABCA1, APOA1, and LCAT) were sequenced in
two groups, each of which contained 128 individuals. A total of 29 non-
synonymous variants were identified, but only 18 variants were available for
analysis. 16 of these 18 variants were exclusive to the case group, and the
remaining 2 were exclusive to the control group. In the Canada sample, the
same three genes were sequenced in two groups containing 155 and 108
individuals. Of the 23 variants that were available for analysis, 21 were exclusive
to the case group and the remaining 2 were exclusive to the control group.
doi:10.1371/journal.pone.0013857.t003
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proportion of causative variants, and let b and a represent the

sensitivity and specificity of a particular predicting algorithm. The

effective numbers of causative and neutral variants after weighting

are thus bfN and a(1{f )N, respectively, so that the effective

proportion of causative variants after weighting is
bfN

bfNza(1{f )N
.

When b.a, it is clear that the effective proportion will be larger

than f, and the proposed tests tend to be more powerful. In contrast,

the effective number of causative variants decreases from fN to

b:fN, thereby reducing power. Therefore, the relative performance

of weighted tests reflects the balance of these two opposite effects.

When b = a, the effective proportion remains f, but the effective

number is still reduced to b:fN. This leads to reduced power, where

the power loss gets less severe with increasing b, as shown by our

simulations. For a particular b, the loss of power is influenced by the

diversity of weights being assigned. For the binary weighting scheme

FWBST where extreme weights (1 or 0) are assigned, power loss is

severe. For the continuous weighting scheme, FWCST, where

intermediate continuous weights (between 0 and 1) are assigned,

power loss gets less severe.

Weighting variants within a group has been proposed by Madsen

& Browning [16], however, their weighting scheme is derived from

the sample that is being studied. Specifically, they assigned heavier

weights to rarer variants in the control population. The merit of

their method relies heavily on the assumption that rarer variants

have larger per-allele effects. Violation of this assumption, as

observed in the simulations used in this study, would diminish the

advantages of their test. In our simulations, GWWS had a greater

power than ST, without weighting, only when the proportion of

causative variants was low; otherwise, ST actually had a slightly

greater power. When prior knowledge that is independent of the

sample under investigation is available, GWWS could be inferior to

the proposed functional variant weighted tests. Another assump-

tion-related observation is that CMC is generally inferior to the

other tests. This observation depends on the underlying biological

mechanism for the phenotype. In CMC, individuals with one or

more mutations are encoded with the same genetic score.

Corresponding to the underlying mechanism of gene expression,

it assumes that any single mutation will cause complete loss of

protein function, which probably only occurs for non-sense

mutations. In our simulations, however, mutations affect phenotype

in a cumulative way such that each mutation causes only a partial

loss of protein function. This critical difference between their

assumption and our simulations may account for the inferior

performance of CMC in this study.

Weighting variants based on prior information has also been a

research focus for years in common variants based association

studies [41,42,43,44]. Among previous studies, Genovese et al.

[42] proposed a general framework that incorporated prior

information into genome-wide association studies (GWAS) to

overcome the problem of multiple hypothesis testing. In brief, they

assigned each SNP a weight so that SNPs with heavier weights

were penalized less when using multiple testing corrections.

Following their work, Roeder et al. [43] proposed formulating

weights based on previous linkage traces. They divided association

p-values by weights that were predefined, and applied the

traditional FDR procedure to the weighted p-values. Roeder et

al. [44] also proposed a weighted multiple testing procedure. Later

work proposed by Chen and Witte [41] incorporated various

sources of prior information, such as linkage signal, functional

category, conservation, and LD, into a Bayesian hierarchical

model to reflect the prior likelihood of the SNP being associated.

All of these methods were shown to have the ability to improve

power of detecting the association assuming that the prior

information was correctly specified.

Rare and common variants aimed weightings share, in

common, the idea of using prior information to improve power,

however they are different in the following aspects. First, common

variants are tested individually, and weighting operates on the

resulting individual p-values, while rare variants are tested

together and weighting operates on individual genotypes. Second,

the aim of weighting for common variants is to relieve the problem

of multiple hypotheses testing by punishing different tests

differently through the weights they are assigned. In contrast the

aim of weighting for rare variants is to improve the effective

proportion of causative variants within group. Hence, largely

speaking, the general goal and detailed specific strategies involved

are largely different in rare and common variants aimed

weightings.

In this study, we restrict our attention to non-synonymous

variants in gene coding regions because these variants have direct

functional implications. In principal, the weighting scheme could

also be extended to variants in other genomic regions, e.g., gene

introns, regulatory regions (enhancer, silencer, and etc.), splicing

sites, and ultra-conserved regions, by studying ortholog sequences

between and/or within species. However, caution should be taken

when studying these non-coding variants, because they have no

direct functional meaning in terms of affecting gene expression,

and the relationship between their conservation and phenotype

may not be well established. A study reported by Ahituv et al. [45]

showed that after deleting four non-coding ultra-conserved

elements from the mouse genome, the mice remained viable and

fertile, and revealed no abnormalities for a variety of phenotypes

that were studied. The effects of these conservative genomic

regions in maintaining the normality of species is still being

debated, and whether they can be used to direct the selection of

causative variants may warrant further consideration. Focusing

analyses on gene-coding regions provides a plausible trade-off

between sequencing cost and discovery of informative variants,

and may be an attractive study design before genome-wide

sequencing study becomes widely available [14,30,46,47,48].

In conclusion, we propose that the use of predicting algorithms

to distinguish causative variants from background population

variation, and incorporation of this information into association

tests, can improve statistical power for detecting rare variants that

are associated with diseases. This conclusion is supported by both

simulation studies and the application of this approach to real

sequencing data. Our work may help investigators who are

planning to pursue large-scale gene based sequencing studies.
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