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Abstract: As researchers are increasingly able to collect data on a large scale from multiple clinical and
omics modalities, multi-omics integration is becoming a critical component of metabolomics research.
This introduces a need for increased understanding by the metabolomics researcher of computational
and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common
types of analyses performed in multi-omics studies and the computational and statistical methods
that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis
methods, including required parameters, sample size and data distribution requirements, sources of
a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of
analyses discussed, we provide examples of the applications of corresponding methods to clinical
and basic research. We intend that our review may be used as a guide for metabolomics researchers
to choose effective techniques for multi-omics analyses relevant to their field of study.

Keywords: multi-omics integration; dimensionality reduction; co-regulation; pathway enrichment;
clustering; machine learning; deep learning; network analysis; visualization; biological pathways

1. Introduction

Biomedical researchers are increasingly relying on metabolomics and other omics data types to
study and evaluate disease mechanisms and phenotypes. Omics data include, but are not limited to,
measurements of the metabolome, proteome, transcriptome, genome, microbiome, and exposome.
These measurements include the presence (binary), quantification (abundance), and/or characterization
(chemical or biological function) of molecules or entities, such as metabolites, proteins, microbial taxa,
genes, or transcripts. For simplicity, we refer to these molecules or entities as “analytes” throughout
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this work. Multi-omics data may also include descriptors from multiple timepoints in one or more
omic modalities, phenotype information such as case/control labels, and relevant clinical variables such
as age and sex. Collectively, these data provide holistic insights into disease-driven biological pathway
dysregulation, which in turn provides preliminary evidence to drive the identification of new targets
or intervention strategies [1]. While the utility of assessing multi-omics data is clear, the integration of
metabolomic data with other omic data poses significant computational challenges that range from
the need for developing statistical methods that are appropriately adapted to multi-omics integration,
to the need for providing comprehensive open-source resources that provide validated relationships
between omics types, biological pathways, and diseases. Multi-omics integration typically follows the
general workflow depicted in Figure 1.
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Figure 1. The metabolome in the context of other omics data types and broad approaches for
their integration.

Ongoing efforts to support the integrative analysis of multi-omics data include the development
of statistical methods, computational tools, and pipelines/workflows. Statistical and computational
methods comprise novel metrics or novel applications of metrics that describe the relationship
between multiple omic data. These include univariate and multivariate analyses, correlation networks,
and traditional machine learning and deep learning techniques. A tool is an implementation of a
method with proven utility, many of which are designed to be user-friendly software. Tools are often
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downloadable as an executable file or stored in a public code repository. A series of methods and
tools can be combined into workflows to perform an analysis. Supported analyses could span the
conversion of raw data (e.g., direct output from instruments or a matrix of un-normalized metabolite
and gene levels) to interpretable data that explain a biological system under study. Workflows are
particularly useful for conducting repetitive tasks, and typically provide default parameters that are
globally applicable, hence making them user-friendly. Examples of open-source and user-friendly
workflows include MetaboAnalyst [2], XCMS [3], mixomics [4], miodin [5], and many others reviewed
elsewhere [1]. These workflows are particularly useful for end users that may not have a strong data
analysis or computational background and are invaluable for outputting reproducible results. Ideally,
methods, tools, and workflows provide up-to-date, publicly available datasets that can be used as an
input for testing and benchmarking, allowing users to readily evaluate the utility of these workflows
for their own purpose.

Many high-level analytical concepts are employed across workflows and data modalities.
Understanding the general steps taken by many workflows is crucial to compare the different
resources available for performing these tasks. Starting with raw data, prior to analysis, the data
quality of each omic data must be carefully assessed to ensure that measurements are reproducible.
This step typically requires a comparison of analyte measurements across technical replicates using
metrics such as standard deviation or the coefficient of variation. Samples should also be evaluated,
making sure that the overall distribution of analyte measurements is consistent across samples. We note
that identification of potential outliers (analytes or samples) is critical, as some analytical models for
multi-omics analyses (e.g., Principal Components Analysis and Student’s t-test) could be strongly
affected by the presence of outliers [6,7]. Other preprocessing steps may include normalization to
account for differences in experimental effects such as differences in amounts of starting material
and batch effects. Data are then typically transformed so that they follow a Gaussian or “Normal”
distribution, which is commonly used for statistical analyses. Importantly, as some analyses will not
work on missing data, missing values can be imputed. We note that the imputation method used can
affect downstream analysis results [8,9], and thus imputation is still an active area of research [10,11].
Finally, noting that the range of values may differ between omic modalities, appropriate scaling (e.g.,
to a standard deviation of 1, z-scores) within and across omic datasets is critical for ensuring that each
omic modality contributes to the analyses and that the effect of one omic modality does not dominate all
analyses performed [12]. Special scaling considerations should also be taken for time-series data [13].

After preprocessing, omics data can be integrated in multiple ways. One can analyze or model
each omic modality separately and then integrate results (a posteriori integration) or one can integrate
data for all omic modalities before any statistical or computational modeling (a priori integration) [14].
Depending on which integration approach is utilized, data may be pretreated differently. For example,
scaling analyte measurements appropriately within each omic modality is particularly critical when
applying a priori integration. Additionally, the sample origin of the multi-omics datasets dictates
which integration approach can be used. For example, a priori integration requires the measurements
to be collected in the same biospecimens (tissue, blood, etc.) or individuals to allow measurements to
be matched to the same sample, while a posteriori integration does not. When the analysis is performed
on the same individual but different biospecimens, e.g., genomic data from blood and metabolomic
data from urine, we note that it is not possible to evaluate direct relationships between genes and
metabolites and how they may relate to phenotype. However, it is feasible to evaluate whether one
omic modality (e.g., metabolites) could act as a biomarker for what is occurring at another level
(e.g., genome), or one omic modality can be used to corroborate findings (e.g., biological pathways)
uncovered in another omic modality [12].

Recognizing that other reviews provide a comprehensive list of available methods, software,
and/or workflows [1,15–18], we instead focus on providing concepts and considerations that are useful
when choosing a method or tool appropriate for one’s desired data types and analyses. As such,
we discuss existing guidelines in data curation and tool development and describe the building blocks
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that are used for developing computational tools and workflows, namely unsupervised clustering
approaches to assess data quality or separation by sample type, approaches for modeling co-regulations
between multiple omic modalities, approaches for identifying multi-omics factors associated with a
phenotype (supervised methods), and methods that provide a biological, chemical, and/or disease
context to multi-omics data (e.g., pathway analysis). We provide a summary illustration of these
approaches in Figure 2.
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Figure 2. Analysis techniques on a dataset with n samples and d analytes in two classes. Blue represents
one class of samples, and red represents another class of samples. Class typically corresponds to
phenotype but could also correspond to batch or another variable of interest. Analyses include
unsupervised clustering approaches (Section 3), modeling co-regulation (Section 4), approaches for
identifying analytes associated with class (Section 5), and pathway analysis (Section 6).

Further, the review focuses on open-source resources, and we reference example research projects
that make use of these resources in the context of metabolomic and other omic data, denoting whether
and to what extent the data used is publicly available.

2. Open-Source Tool Development and Data Guidelines

The publication of the Findable, Accessible, Interoperable, Reproducible (FAIR) guiding principles
for biomedical research data [19] and their adaptation to software development [20] provides clear
guidelines to improve data and software infrastructure. Following these guidelines is critical to ensure
the reproducibility and reuse of data and software resources. Currently, guidelines for producing
tools and workflows exist, yet they are not widely adopted by the bioinformatics community as the
tools and workflows are seldom developed by professional software developers [21,22]. Producing
detailed documentation, example sets, and maintenance of tools and resources requires substantial
resources and efforts, which are difficult to obtain through large biomedical research funding agencies.
Open-source code should ideally include clear documentation detailing how to use the tool and
providing example inputs to easily test the software. An analysis of publications in Oxford Presses’
Bioinformatics revealed that roughly half of all publications examined had links to a code repository
in their abstracts, mostly GitHub [23]. However, it is unknown how many of these repositories
include documentation.
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We note that the availability of high-quality, well documented, publicly available omics data to
use as input for new proposed methods, tools, and workflows is critical to optimize the multi-omics
research process. It has been shown that the majority of studies are not reproducible given the
information disclosed in manuscripts. This could lead to intangible results. For instance, Begley
and Ellis conducted an analysis of 53 high-impact pre-clinical cancer research papers and showed
that only six were reproducible given the information provided in the paper, due either to lack of
documentation or unpublished data [24]. While standards for reporting data analysis approaches
are not well established, standards do exist for disclosing experimental data. Data standards include
Minimum Information About a Microarray Experiment (MIAME) [25], the National Center for
Biotechnology Information (NCBI)’s Minimum Information About a Next-generation Sequencing
Experiment (MINSEQE), Metabolomics Standards Initiative (MSI) [26,27], and Minimum Information
About a Proteomics Experiment (MIAPE) [28]. However, compliance is variable. For example, <50%
of manuscripts published in journals requiring MIAME compliance actually met compliance [29].
For MSI compliance of metabolomics datasets, 90%–100% of clinical datasets include tissue or biofluid
information, yet < 10% of these datasets include information about the ethnicity of the patient, location
of collection, and/or volume of sample collection, and reporting of quality control metrics for in vitro
datasets are largely missing [30].

Ideally, all multi-omics data from an experiment should be made accessible from the same
location; however, the researcher must be aware of the constraints within a repository when submitting
data. For instance, some of the most well-known repositories supporting multiple omic modalities
are cancer-specific. These repositories include The Cancer Genome Atlas [31], the Cancer Cell Line
Encyclopedia (CCLE) [32], the Therapeutically Applicable Research to Generate Effective Treatments
Data Matrix [33], the Clinical Proteomic Tumor Analysis Consortium [34], and the NCI-60 Human
Tumor Cell Line Screen (NCI-60) [35]. Of these, CCLE and NCI-60 support metabolomics. In scenarios
where the data is not appropriate for an existing multi-omic repository, storing the data across
multiple single-omic repositories can present an alternative solution. Single-omic repositories
include MetaboLights [36] and Metabolomics Workbench [37] for metabolome data, the PRoteomics
IDEntifications Database [38] for proteome data, Gene Expression Omnibus [39] and Sequence Read
Archive [40] for genomic data, the Encyclopedia of DNA Elements [41] for functional elements in the
genome, and the Human Microbiome Project Data Portal [42], MicrobiomeDB [43], and the Human
Oral Microbiome Database [44] for microbiome data. When data is spread across multiple repositories,
it can be challenging to identify and organize multi-omic datasets that are collected as part of the same
study. Efforts that aim to consolidate different data sources as they pertain to publications, such as the
Biostudies database [45], are useful for such multi-omic data identification.

3. Unsupervised Clustering of Samples to Assess Data Quality or Separation by Sample Type

Unsupervised analyses use algorithms that are agnostic to phenotype to learn the inherent
distributions of the underlying data, discover relationships between analytes (regardless of phenotypes),
or assess the overall quality of the data. These analyses may be executed on each omic modality
separately and the results integrated using a posteriori techniques, or they may be executed on
multi-omics data that has been integrated a priori. We describe methods that are commonly used for
multi-omics data, especially focusing on the key role of metabolomics data. It should be noted that this
list is in no way exhaustive. Examples of applications corresponding to these methods are given in
Table 1.
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Table 1. Examples of multi-omics applications using unsupervised analysis.

Type of Method Functionality Reference

Dimensionality
Reduction

t-Distributed Stochastic
Neighbor Embedding

(t-SNE)

Visualize gut microbial communities
and serum metabolites by diet and

supplements.
[46]

Visualize prefrontal cortex metabolites
and lipids by human population group. [47] †

Clustering Hierarchical Clustering Identify multi-omic molecular subtypes
in hepatocellular carcinoma. [48] ‡

Identify multi-omic clusters in breast
tumor tissue associated with prognosis. [49] †‡

k-means
Identify lipid–protein–metabolite

clusters associated with diabetes and
periodontal disease.

[50]

Partitioning Around
Medoids (PAM)

Identify microbial–metabolite clusters
associated with diarrhea. [51] *†‡

Gaussian Mixture
Modeling (GMM)

Identify clinical depression score
clusters associated with blood

metabolomic and genomic data in blood
to predict drug response.

[52] ‡

Density-Based Spatial
Clustering of

Applications with Noise
(DBSCAN)

Evaluate the impact of bacterial
metabolism on mucosal immunity. [53]

Other Machine Learning
Methods Random Forest

Identify clusters of histological stromal
features associated with prognosis and

metabolites in cancer-associated
fibroblasts.

[54] ‡

Autoencoder
Cluster plasma protein and metabolite

levels to identify temporal trends in
murine cardiac remodeling.

[55]

* Raw data are available in the supplementary of the referenced manuscript, or a public repository. † Preprocessed
data are available in the supplementary of the referenced manuscript, or a public repository. ‡ Descriptive statistics
are available in a table or supplementary materials of referenced manuscript. Unmarked data are available upon
request from the authors or from a consortium.

3.1. Dimensionality Reduction

The number of dimensions in a dataset generally refers to the number of analytes measured.
In multi-omics workflows, the number of dimensions is typically much larger than the number of
samples, a phenomenon known as the curse of dimensionality problem. This phenomenon can lead
to overfitting in downstream models, where models may not reproduce in other datasets. Reducing
the number of dimensions in the dataset can help mitigate this issue. Principal Components Analysis
(PCA) is a commonly used method that accepts a matrix of analytes and samples as input, and reduces
the dataset to fewer dimensions, or components, that capture the largest variance in the data. The data
can be projected on the first two or more components, thereby potentially revealing clusters of samples.
By labeling the samples, for example by batch or phenotype, one can identify clusters that may help
evaluate data quality. When using PCA, it is important to report the percent variance explained by
each component so that the number of components that capture most of the variance can readily
be determined. Sample loadings can be incorporated into PCA that reflect the extent of a variable’s
contribution to a component. Noting that a component may separate samples by a phenotype or other
metric of interest, loadings can be used to identify phenotype-associated analytes in an unsupervised
fashion. When the goal is to assess data quality, PCA is performed on individual omic types, and
for metabolomics, data collected from different instruments or ionization modes should be evaluated
separately. When the goal is to look for separation and loadings, data can be combined, although care
should be taken to appropriately scale the data, particularly since the dynamic ranges of metabolomics
data can vary greatly and few datapoints could easily dominate the components. Because of potential
differences in the variance of analytes from different omic modalities, it is pertinent to factor in
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contributions of individual modalities to the final loadings. Multi-Omics Factor Analysis (MOFA) [56]
and Multiple Co-Inertia Analysis (MCIA) [57] are two techniques for doing so.

Multi-Dimensional Scaling (MDS) is another related, and commonly used unsupervised
dimensionality reduction technique. The input for MDS is a distance matrix representing pairwise
distances between samples (or analytes) [58]. Examples of commonly used distance metrics include
Euclidean distance and 1-correlation for relative abundance data (transcriptomics, metabolomics, etc.),
and the Jaccard and the Bray-Curtis for binary data (e.g., microbiome, genomic variants) [59].

T-distributed Stochastic Neighbor Embedding (t-SNE) is another technique used for dimensionality
reduction and visualization [60]. Like MDS, t-SNE attempts to produce a lower dimensional embedding
of high-dimensional data where distances in the embedding represent similarities between samples.
However, rather than using linear correspondence of similarities directly, t-SNE adopts a non-linear
adaptive approach based on matching Gaussian probability distributions over similarities. t-SNE can
be very helpful for visualizing complex geometry observed in higher-dimensional spaces. However,
t-SNE should be used and interpreted with caution, because changes in input hyperparameters (e.g.,
perplexity) can produce radically different plots, and misleading apparent clusters can result from
random data [61].

3.2. Clustering

Clustering methods are often used to group samples and/or analytes together by shared
characteristics (e.g., abundances, presence/absence). Hierarchical clustering assembles clusters of
related samples using either an agglomerative “bottom-up”, or divisive “top-down” methodology [62].
An agglomerative clustering algorithm starts with each observation in the dataset belonging to separate
clusters. Each iteration combines clusters based on their similarity, and the algorithm stops when all
observations belong to one cluster [62]. In contrast, a divisive algorithm starts with one cluster, which
is iteratively divided into many. Hierarchical clusters can be visualized as dendrograms, and users can
“cut” the dendrogram to produce a desired and relevant number of clusters.

Other methods require that the user specify the number of expected output clusters prior to running
the algorithm. One of these is k-means [63], which aims to divide all samples into well-separated
clusters, where the number of clusters is specified by the input k. A related method, Partitioning Around
Medoids (PAM) [64] is similar to k-means, but can take dissimilarity matrices as input. Silhouette plots,
which measure the ratio of within-cluster similarity to between-cluster similarity for differing values
of k, can be used to help the user determine the number of clusters that best matches the data [65].
Another metric that can be used to determine k is the gap statistic, which computes within-cluster
dispersion for each value of k and subtracts from it the expected within-cluster dispersion for the same
value k on a uniform distribution of observations [66]. The optimal value of k is the one that maximizes
this difference.

Another method, the Self-Organizing Map (SOM) is a single-layer neural network with nodes laid
out in a grid [67]. Each node has weights that are trained to emulate the analyte abundance/expression
values of a set of observations that are similar to one another. Training is done by a mapping process
where each observation is mapped to its best matching unit/node in the grid, and that unit and its
neighbors in the grid are updated to reflect the features observed. After training is complete, each unit
represents the centroid of its own cluster. SOM requires specification of the grid size (number of units)
by the user. The user must also specify the learning rate, or the rate at which node weights update
in each iteration of the algorithm, and neighborhood size, or the size of a node’s sphere of influence
on its neighbors [67]. Specialized metrics for evaluating the results of SOM include map embedding
accuracy [68] and topographic accuracy [69]. We note that Milone et al. developed a specialized tool
for integrating the metabolome and transcriptome in plant studies using SOM [70].

While the methods described above result in all points being assigned to a cluster and do not allow
overlap between clusters, this is not the case for all clustering methods. Gaussian Mixture Models
(GMM) assume that all the data are generated from a mixture of Gaussians, thereby allowing overlap
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between clusters [71]. GMM require an upper bound on k, the number of clusters, and can be evaluated
for performance (in terms of information captured) using the Bayesian Information Criterion [72] or the
Akaike Information Criterion [73]. Another method, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), is designed to detect clusters of arbitrary shape and automatically excludes
some observations from clustering by designating them as noise [74]. DBSCAN does not require
specification of the expected number of clusters a priori, although it requires the user to specify the
minimum number of observations per cluster and a minimum distance between adjacent observations
within a cluster.

3.3. Other Machine Learning Methods

Other machine learning methods, such as random forest (RF) and support vector machines (SVM),
that are typically run in supervised modes can be used in an unsupervised manner to characterize
data structure. RF algorithms combine many different decision trees that are built on a subset of the
samples and features (e.g., analytes) [75]. In unsupervised mode, synthetic data are generated, and RF
is trained to differentiate between the real data and the synthetic data, where class (e.g., phenotype)
labels are randomized. The algorithm then tracks the number of times two samples are placed into the
same terminal node by the trees, which is then weighted and used as a distance metric between all
pairs of samples. This distance metric can then be used as input to the clustering methods described
above. Support Vector Machines (SVM) [76] can also be run in unsupervised mode, reviewed in [77].
The algorithm learns to separate samples with random class assignments and then iteratively changes
the class assignments to optimize the classification accuracy. This results in an optimally separated
set of clusters, where cluster membership corresponds to the random class assignment learned by
the algorithm.

Autoencoders are another type of unsupervised learning method used in omics data exploration;
they are used for learning a set of latent variables that can be used to reconstruct data [78]. Autoencoders
are a type of neural network in which the number of nodes per layer is highest in the first and last layer
and lowest in the middle, where the middle layer is called the encoding and is the representation of
latent variables. The encoding can be used for clustering. The reconstruction error can then be used as
a measure of performance. While autoencoders can learn the complex latent variables underlying the
data, a downside is that autoencoders, like neural networks in general, can be difficult to interpret [79].

Although other types of deep learning approaches to clustering also exist, these have not been
used in multi-omics applications, to our knowledge. However, their usage in general bioinformatics
research is reviewed in [80].

3.4. Time-Series Data

Clustering of time-series omic data is most easily accomplished when aggregating the individual
feature profiles into clusters (e.g., clustering individuals which have similar time-profiles of a single
metabolite or clustering genes in a single individual based on similar expression changes). When
using multi-omic datasets, features from separate modalities can be concatenated. In this case, any of
the above methods can be straightforwardly applied to the vector representations of the time-series.
Unfortunately, the simplicity of this technique comes at the cost of discarding information which could
be gained by considering time as a continuously varying, or even ordered, dimension.

A common way that a continuous notion of time can be directly incorporated into clustering
techniques is by fitting a model and then clustering on model parameters. Fitting splines, a type of
piecewise polynomial curve, is a popular approach [81,82]. Models based on the assumed statistical
properties of the processes which create the time series have also been explored, such as auto-regressive
moving average (ARMA) models [83,84] or hidden Markov models (HMM) [85,86]. Machine learning
techniques developed to process data collected in one timepoint can similarly process time-series into
latent vectors which can then be clustered [55].
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Notably, the choice of distance metric used may greatly affect clustering [87], and metrics that
consider possible time-lags between series can provide a more biologically relevant notion of profile
similarity. For example, Dynamic Time Warping (DTW) [88] aligns timepoints so that the distance
between the aligned samples is minimized and Lag Penalized Weighted Correlation (LPWC) [89]
includes a penalty based on the length of lag between series.

4. Identifying Groups of Multi-Omics Analytes that are Co-Regulated

Assessing relationships between metabolites and other analytes could shed light on the mechanisms
that underlie a given phenotype. Researchers may wish to assess relationships within a single omic
modality (integrating modalities using further analytical methods) or across multiple omic modalities.
These relationships are typically not causative, and statistical associations between analytes do not
necessarily capture direct, physical relationships, and often ignore complex relationships such as
post-translational modifications and non-linear reaction kinetics. For instance, Camacho et al. observed
that correlations between metabolite abundance levels could arise from both metabolites being near
chemical equilibrium or from a large concentration response to a common enzyme, whereas negative
correlations could result from two metabolites being part of the same moiety-conserved cycle [90].
Nonetheless, it is feasible that associative networks capture associations that are functionally relevant.
Examples of applications that assess co-regulations of metabolites are provided in Table 2.

Table 2. Examples of multi-omics applications using co-regulation analysis.

Type of Method Functionality Reference

Associative Networks Correlation Networks Find metabolite–metabolite associations specific
to or shared across blood, urine, and saliva. [91] †

Find modules of blood metabolites and genes
associated with body weight change. [92] ‡

Find associations between serum, blood, and gut
antibodies, metabolites, and microbiome and

patient disease activity reports in inflammatory
bowel disease.

[93] *†‡

Find associations between metabolites,
transcripts, cytokines, and cell frequencies in

plasma and whole blood associated with
adaptive immune response to

Herpes zoster vaccine.

[94] †‡

Partial Correlation
Networks

Visualize associations between sleep survey
responses and levels of serum cytokines,
metabolites, lipids, proteins, and genes.

[95] *‡

Visualize associations between metabolites and
lipids associated with metabolic disease

treatment in rat liver tissue and clinical chemistry
measurements from serum.

[96] †

Weighted Gene
Co-Expression Network

Analysis (WGCNA)

Characterize complex transcriptomic and
metabolic traits in major depressive disorder. [97] ‡

Identify co-regulated modules of blood
metabolites and transcripts in children

with asthma.
[98] ‡

Identify co-regulated modules of metabolites and
transcripts in glioblastoma multiforme. [99]

Topological Analysis of
Networks Subnetworks

Identify subnetworks of correlated proteins and
metabolites in adrenocorticotropic

hormone-secreting pituitary adenomas.
[100]

Identify subnetworks of correlated genetic,
proteomic, metabolomic, clinical, and

microbiome data from multiple biofluids in
cardiometabolic disease.

[101] ‡

* Raw data are available in the supplementary of the referenced manuscript, or a public repository. † Preprocessed
data are available in the supplementary of the referenced manuscript, or a public repository. ‡ Descriptive statistics
are available in a table or supplementary materials of referenced manuscript. Unmarked data are available upon
request from the authors or from a consortium.
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4.1. Associative Networks

Associative networks are built to model relationships between analytes. One example of such
networks, correlation networks, or “relevance networks” [102], can be used to evaluate relationships
between differentially expressed analytes. In these networks, nodes represent analytes, and edges
represent significant correlations between analytes (for example, based on a p-value and/or effect size
cutoff). Such networks can be built to infer groups of analytes within or across omic modalities that
could regulate one another.

Alternatively, partial correlations can be used in lieu of correlations, where “partial” refers to
the correlation between analytes, while removing the effect of other covariables. For example, partial
correlations can be used to identify the major influencers (e.g., enzymes) of metabolites whose levels
are highly correlated [103]. They can also be used to sparsify relevance networks by conditioning
correlations between each pair of analytes on the values of other analytes in the dataset and retaining
only those “relevant” and “independent” correlations that do not depend on the values of other
analytes [104].

Identifying clusters of coregulated metabolites can be used as a feature selection step to select
analytes of interest. For example, Weighted Gene Co-Expression Network Analysis (WGCNA) is
commonly applied to study relationships between clusters of samples in high-dimensional datasets [105].
WGCNA identifies clusters of highly correlated analytes in samples and builds dendrograms of
these clusters for the user to investigate further [105]. These clusters can then be evaluated for
biological relevance.

4.2. Topological Analysis of Networks

Given a large number of analytes in omic datasets, networks produced can be very complex,
oftentimes described as ‘hairballs’ [106]. To simplify interpretation, the topology of the network can
be evaluated. For example, one can evaluate the significance of nodes by identifying hub nodes
or nodes that have many connections and thereby contribute considerably to the topology of the
graph. The identification of hubs has been used to study gene essentiality [107] and protein robustness
to knockdown [108]. Metrics such as degree of a node (the number of nodes to which the node is
connected) or betweenness-centrality of a node (the number of node pairs whose shortest path passes
through the node) can be used to find hubs, as discussed in Jalili et al.’s review on the topic [109].
However, the existence of hubs must be interpreted carefully. Hubs may represent analytes that are
abundant in a cell or that have interactions with or relationships to many other analytes, but this does
not necessarily mean that they are relevant to the experimental context of the study [110].

Global network characteristics are also potentially useful. The small-world structure, i.e.,
the tendency of nodes to be connected by paths of short lengths, of analyte networks can also be
informative for inferring the evolutionary history of a metabolic network [111] and the level of
communication between substructures in the network [110]. In addition, topological analysis can
produce submodules, which represent tightly connected substructures which are oftentimes biologically
relevant [112]. A strict definition of a submodule is a clique, which refers to a group of analytes that all
share an edge with all other analytes in that group. This definition has been used in the single-omic
context to find groups of correlated microbiome samples in Crohn’s disease [113]. Methods for the
detection of submodules that are tightly connected, but that need not be cliques as such, include
module graphical Least Absolute Shrinkage and Selection Operator (LASSO), which has been used
for gene expression data but can be extended to multi-omics contexts [114] and Louvain community
detection [115]. Submodules can also be detected by spectral clustering, which has been applied to
expression quantitative trait loci (eQTL) data but could be extended to multi-omics contexts [116], and
by clique conductance, defined by the sizes of and connections between cliques in the graph [117].
Multilayer N-Cut (MuNCut) [118] was developed specifically for multi-omics networks, and aims to
optimize submodule detection by minimizing the “cut” (i.e., the sum of weights of the edges removed)
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as compared to the size of the submodules (i.e., the sum of weights of all edges in the submodules)
across multiple omic modalities.

5. Identifying Multi-Omics Analytes Associated with Phenotype

Identifying analytes associated with a phenotype can be done in a variety of ways, including
by finding differentially expressed analytes between sample groups, by exploring relationships
between analytes and how these relationships differ between phenotypes, and by modeling the direct
relationship between sets of (possibly related) analytes and a phenotype. These methods are described
below, and applications corresponding to these methods are given in Table 3.

Table 3. Examples of multi-omics applications that identify analytes associated with phenotype.

Type of Method Functionality Reference

Univariate Statistical
Methods

Student’s t-test and effect
size

Identify metabolites, miRNAs, mRNAs, and
lncRNAs altered by exposure to benzo[a]pyrene

to identify mechanisms of toxicity.
[119]

Multivariate Statistical
Methods

Partial Least Squares
Discriminant Analysis

(PLS-DA) (and variants)

Identify breast tumor tissue metabolites that
differentiate MRI features. [120] ‡

Identify metabolites that differentiate normal and
tumor tissue in the prostate. [121] ‡

Identify differences between fibromyalgia and
control groups in gut microbes, serum

metabolites, miRNA, and cytokine levels.
[122] *‡

Discover temporal changes in plasma lipid and
metabolite patterns from normal and

hyperlipidemic patients.
[123] †

Linear Models (and
variants)

Identify metabolites from bronchial alveolar
lavage associated with continuous CT scan

features in cystic fibrosis.
[124] ‡

Identify serum metabolites associated with
visceral adipose tissue features from MRI and

tomography.
[125] ‡

Identify plasma metabolites and proteins
associated with prognosis in septic shock

patients.
[126] ‡

Find associations between blood DNA
methylation and metabolite levels in smokers. [127] ‡

Identifying Analyte
Relationships that Differ by

Phenotype
DiffCorr

Identify differences in metabolite-metabolite
correlations between traumatic brain injury and

control groups.
[128]

IntLIM
Identify synovial fluid metabolites and blood and

bone marrow transcripts that differentiate
between osteoarthritis and rheumatoid arthritis.

[129] *

Machine Learning Methods
for Predicting Phenotype Random Forest

Identify serum metabolites, proteins, and
peptides differentiating between metabolic

syndrome and control groups.
[130]

Identify metabolites and other analytes
predictive of weight gain and loss. [131] *‡

Identify metabolites, transcripts, and proteins
predictive of potato quality traits. [132] †

Identify metabolites and transcripts predictive of
heat stress in the liver. [133] †

Support Vector Machine
(SVM)

Predict metabolite levels using genes and
metabolites in breast and hepatocellular

carcinoma.
[134]

Multilayer Perceptron
(MLP)

Predict early and late stage bladder cancer using
urinary metabolites and genes. [135]

Predict early renal injury using serum
metabolites and lipids. [136] †‡

Convolutional Neural
Network (CNN)

Predict early renal injury using serum
metabolites and lipids. [136] †‡

Recurrent Neural Network
(RNN)

Integrate transcript and metabolite levels to
predict cellular state in Escherichia coli. [137] *†

* Raw data are available in the supplementary of the referenced manuscript, or a public repository. † Preprocessed
data are available in the supplementary of the referenced manuscript, or a public repository. ‡ Descriptive statistics
are available in a table or supplementary materials of referenced manuscript. Unmarked data are available upon
request from the authors or from a consortium.
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5.1. Identifying Differentially Expressed Analytes (Univariate Statistical Methods)

Hypothesis testing methods determine, for each analyte, whether to accept the null hypothesis
that a statistic of the analyte’s distribution (such as mean or variance) is unrelated to the phenotype.
These methods can be used for analytes across multiple omic modalities or within a single omic
modality. These methods can be either parametric or non-parametric in nature. Parametric tests require
the user to input data that fit a distribution, such as a “Normal” or Gaussian distribution, whereas
non-parametric tests do not impose requirements on the underlying data distributions. Well-known
examples of parametric and non-parametric hypothesis testing include the Student’s t-test and the
Wilcoxon Rank-Sum test, respectively. While these methods are restricted to comparing two phenotypes,
one-way analysis of variance (ANOVA) (parametric) or a Kruskal–Wallis test (non-parametric) can
handle multiple phenotypic groups.

Univariate tests result in p-values, which quantify the probability of the null hypothesis being
correct given the observed data. When evaluating many analytes, p-values must be corrected to
account for multiple comparisons to reduce the number of false positives. Examples of methods that
can be used for multiple comparison correction include the Family-Wise Error Rate (FWER), such
as Bonferroni correction, and False Discovery Rate (FDR), which includes the Benjamini–Hochberg
procedure [138]. For a review of these methods and the challenges inherent in multiple comparisons in
the omics space, we direct the reader to [139]. Particularly relevant for multi-omics analyses, Karathanasis
et al. [140] developed a method for combining results of hypothesis testing applied to separate omic
modalities (referred to as “partial p-values”) in which an underlying permutation test is used that addresses
correlations between the omic modalities. Other methods tailored to multiple comparison corrections in
omics data include the tail statistic, which is based on an expected distribution of p-values [141,142], and
an Empirical Bayes method originally developed for microarrays but applicable to other omic data [143].

It is well known that using a p-value cutoff of 0.05 (or other values) is subjective and that the
interpretation of p-values has been mishandled [144]. It is useful to also consider effect size, such as fold
changes, when determining which analytes are most relevant to a phenotype of interest. A common
visualization method, the volcano plot, combines both p-values and fold change, highlighting analytes
that have both high fold change and low p-values between two phenotypic groups.

Univariate analysis of omic data in a time series, as opposed to a single timepoint scenario,
is complicated by the need to account for multiple timepoints. One approach to dealing with multiple
timepoints is to collapse them into a single summary value before testing for differences between
groups. Examples of this technique include calculating a per-individual mean, area-under-curve [145],
time-at-maximum [145], or slope in linear regression [146]. The summary value can then be tested for
significance using any of the above techniques. By treating time as a discrete effect, the existence of
differential time profiles can be tested for directly with a two-way extension of ANOVA [147]. Two-way
ANOVA directly tests for statistically different distributions by either experimental condition or time
point, or, importantly, for a statistically significant interaction between the condition and timepoint.
MetATT [148] supports the comparison of time-course profiles while allowing for variability both
within and between timepoints, thereby reducing false positives and false negatives. The fitting of
more complex curves to time-course data will generally require statistical tests specific to the type of
curve fit. For instance, Berk et al. developed a modified F-statistic for significance testing in their
smoothing splines mixed effects (SME) model [149].

5.2. Multivariate Statistical Methods

Multivariate methods are slightly more complex (and more informative) than univariate methods
in that they consider possible dependencies between analytes and the effects of possible confounders.
These methods may either be run on each omic modality separately or on integrated omic data.
One common class of multivariate method is Partial Least Squares Discriminant Analysis (PLS-DA).
PLS-DA can be thought of as a supervised variation of PCA, where instead of projecting the data
to dimensions that maximize the overall variance, data are projected to maximize the covariance
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between the projected data and phenotype. Notably, PLS-DA is prone to overfitting [150], as it will
always find a projection that separates phenotypes, even with randomized data [151,152]. Metrics that
evaluate overfitting, such as R2, Q2, number of misclassifications (NMC), and Area Under the Receiver
Operating Characteristic (AUROC), must be then be evaluated carefully. These metrics are compared
for statistical significance in [153].

Variations of PLS-DA include the Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) [154], which removes variation in the set of analyte abundances that is unrelated to
the phenotype. Another variation is Sparse Partial Least Squares Discriminant Analysis (SPLS-DA) [155],
which ensures that the number of analytes contributing to the model is relatively small compared to
the total number of analytes in the input. We note that both OPLS-DA and SPLS-DA suffer from the
same overfitting drawback as PLS-DA.

Another class of multivariate methods uses linear models [156]. Linear models assume a linear
relationship between a continuous response variable (e.g., analyte levels) and one or more independent
variables or covariates (e.g., phenotype). These models are learned by minimizing the error between a
predicted response variable and the true response variable, and produce weights, also called coefficients,
for each independent variable that indicates the influence or significance of independent variables
to the response variable. An extension of this type of model is the linear mixed effects model, which
assumes that some independent variables contribute random effects to the model, where the coefficient
of that independent variable is randomly drawn from a distribution rather than being a fixed coefficient.
As with linear models, linear mixed effects models assume that the relationship between a combination
of covariates (e.g., age, gender, or batch) and expression or abundance of each analyte is linear.
The effect sizes (fold change) between the actual expression levels and those predicted by the linear
model can be computed across sample groups to obtain a list of differentially expressed analytes.

Linear models can be extended to include other types of regression models with non-linear
functions. In logistic regression models, such as Semi-Parametric Differential Abundance analysis [157],
a sigmoidal function, rather than a line, is learned to fit the data. Linear models also may include
regularization for enforcing sparsity (i.e., reducing the total number of analytes determined to
differentiate between groups) or discouraging overfitting of the model to the data. One such method
developed for multi-omics data is collaborative regression [158], in which the model is learned by
minimizing error between each omic modality and the phenotype and between linear combinations of
separate omic modalities. Additional standard regularization terms include ridge regression [159],
which minimizes the sum of squared coefficients, and Least Absolute Shrinkage and Selection Operator
(LASSO) [160], which minimizes the sum of absolute valued coefficients; the elastic net combines both
regularization terms [161].

We note that, like PLS-DA, linear models and their variations will always learn a model that
separates phenotypes, but the model may not necessarily be robust. The coefficient of determination
(the proportion of output variance determined by input) or the root-mean square error (the standard
deviation of output prediction error) can be used to measure the robustness of the model.

5.3. Identifying Analyte Relationships that Differ by Phenotype

Identifying analyte relationships that differ by phenotype can shed light on phenotype-specific
mechanisms. Various methods and tools aim to identify phenotype-specific pairs of analytes within
one or more omic modalities. For example, DiffCorr calculates correlation coefficients between
pairs of analytes within each group and compares correlation coefficients between categorical
phenotypes. It does this by transforming correlation differences between phenotypes into z-scores to
test their statistical significance [162]. The Discordant Method [163] bins analyte pairs with discordant
relationships, identified through a mixture model, into categories based on the type of differential
relationship (e.g., positively correlated in Group 1 and negatively correlated in Group 2, positively
correlated in Group 1 and no correlation in Group 2). Differential Network Enrichment Analysis [164]
computes partial correlation networks across multiple phenotypes, and then finds network modules
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that differentiate between phenotypes. Finally, Sparse Multiple Canonical Correlation Network
Analysis (SmCCNet) extends canonical correlation analysis methods by considering phenotypes
when evaluating relationships between two omics modalities [165]. Other methods, such as IntLIM,
capture phenotype-specific analyte relationships based on linear models that test interactions between
a phenotype and an independent variable (e.g., analyte) [166].

5.4. Causative (Flux-Balance) Networks

Flux-balance networks are built on experimentally derived associations between analytes for
predicting biomass. These networks are particularly useful for predicting the effects of perturbing
certain nodes/analytes of the network. Flux-balance analysis relies on the principle that modeling the
concentration of biomolecules is mathematically equivalent to modeling flux [167]. These networks
thus use a set of equations relating reaction to biomass that can be solved using linear programming to
determine which reactions are essential given quantitative (not relative) analyte abundances. While
relative abundances are not used to construct these causative networks, they have recently been shown
to enhance flux prediction [168]. The current state of flux-balance analysis in the multi-omics space
and software implementations for such analyses are reviewed elsewhere [169,170].

5.5. Machine Learning Methods for Predicting Phenotype

Machine learning methods can be used to predict phenotype given analytes from a single omic
modality or multiple omic modalities that have been integrated a priori. Unlike in multivariate
statistics, machine learning methods do not require a priori selection of confounders or multi-analyte
dependencies, as they model dependencies directly from the data. Like statistical models, machine
learning models make assumptions that differ based on the model type. The machine learning models
used in multi-omics integration include both traditional machine learning and deep learning models.

Traditional machine learning methods include Support Vector Machines (SVM) [76] and Random
Forests [75]. While the application of these methods can also uncover global data structures in their
unsupervised forms, as described in Section 3, we describe here their supervised functionality. SVM
assumes that two phenotypes are separated by a hyperplane, which is a linear combination of analyte
characteristics (e.g., levels). SVM algorithms learn the hyperplane that optimally separates two
phenotypes. SVMs can also be extended to learn non-linear separators using the kernel trick [76], yet
we note that these are more difficult to interpret than linear hyperplanes [171]. From SVM models,
one can also evaluate the contribution of each analyte to separating the optimal hyperplane, which is
calculated as the magnitude of the linear weights of the hyperplane [172–174]. Another approach to
decipher the analytes most relevant to the model is to consider both the weight and margin between
the hyperplane [175].

Another popular machine learning model is the Random Forest (RF) [75], which is based on
decision trees. Each tree represents a branched chain of “decisions”, where the decision to branch right
or left in the tree is based on one feature (e.g., one analyte) and an optimal cutoff for that feature (e.g.,
abundance level cutoff). Each decision tree is optimized using metrics such as Gini impurity [176]
or information gain [177]. Each RF model constructs many decision trees using subsets of the input
samples and subsets of analytes. The predictions of all decision trees are combined into an ensemble to
obtain the final output. Like SVM, various metrics exist to determine the influence of each analyte in
the RF model. Generally, metrics either evaluate the decrease in model fitness (e.g., Mean Decrease
Accuracy [178] or Mean Decrease Gini [179,180]) when features are removed, or compare the influence
of analytes on the model using the original values and shuffled values [181].

To evaluate the extent of separation by phenotype, one can use the information retrieval metrics
precision, recall, percent accuracy, and F-score, reviewed in [182]. To visualize overall model performance,
receiver operating characteristic (ROC) can be plotted [183]. Lastly and like other statistical learning
approaches, such as PLS-DA, all models are prone to overfitting the data. To ensure models are not
overfitting, samples should be split into training and testing datasets, where the training samples
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are used to fit the model and the testing set is used to test predictions made by the model. Ideally,
a completely independent validation set of samples should be used as an additional model evaluation.

Deep learning models consist of multiple functions of the input data or subsets thereof, that feed
into each other in a series of layers, with the outcome (e.g., phenotype) being predicted in the final
layer. There are many neural network architectures that can be used for deep learning, including
multilayer perceptrons (MLP) [184], convolutional neural networks (CNN) [185], and recurrent neural
networks (RNN) [186]. The breadth of each layer, the number of layers, and the function of inputs
used at each layer are customizable to a large extent. Neural networks are sometimes referred to
as universal function approximators because they can approximate a broad spectrum of underlying
models. However, these deep learning models are difficult to interpret and require many samples to
accurately train: for example, recent estimations on Monte Carlo simulated data for MLP estimate a
requirement of 50 times the number of adjustable parameters in the network (e.g., number of analytes,
number of nodes per layer, and number of layers) [187]. Because omic data typically suffer from the
curse of dimensionality problem, where the number of samples is far lower than the number of analytes
and hence the dimensions, thereby increasing the risk of overfitting, the application of neural networks
is a challenge in multi-omics contexts [188]. Nonetheless, neural networks have been successfully
applied in some multi-omics studies, as shown in Table 3. Additionally, Yu et al. explored the use
of MLP and CNN architectures for classification on 37 transcriptomic and metabolomic The Cancer
Genome Atlas (TCGA) datasets, finding that MLP outperformed CNN in this case [189]. Although
other deep learning architectures exist in addition to those described here, they have not been applied
in the multi-omics context, to our knowledge. However, the use of other deep learning methods in
bioinformatics research in general is reviewed in [190].

6. Interpreting a List of Phenotype-Related Analytes in the Context of Biology, Diseases,
or Chemistry

Identifications of analytes or analyte relationships that reflect a phenotype of interest are typically
not useful unless the biological, disease, or other relevant contexts are considered. Common methods to
guide the biological interpretation of these data include identifying enriched pathways, and visualizing
relationships between analytes. Applications using these methods are outlined in Table 4.

Table 4. Multi-omics applications using biological or visual interpretation methods.

Type of Method Functionality Reference

Pathway enrichment
methods

Overrepresentation
Analysis (ORA)

Identify dysregulated pathways in prostate tumor
tissue using metabolite and transcript data. [191]

Identify dysregulated pathways in the murine
hippocampus and left ventricle during proton

irradiation using metabolite and DNA
methylation data.

[192]

Identify dysregulated pathways in cationic liposome
treatment of human hepatocyte cells using

metabolomic and proteomic data.
[193]

Identify dysregulated pathways in kidney disease in
the rat serum metabolome and proteome. [194] ‡

Identify dysregulated gut microbial pathways in
gastrectomy patients. [195] *‡

Identify dysregulated gut microbial pathways in
sports classification groups of Irish athletes. [196] *‡

Identify dysregulated gut microbial pathways as a
result of whey protein supplementation. [197] *‡

Topological Scoring
Identify functional connections between dysregulated
pathways in Alzheimer’s using genes, metabolites,

miRNA, and proteins from multiple sources.
[198]

Visualization of biological
pathways and networks

Visualize metabolic networks in drug-susceptible and
drug-resistant strains of Acinetobacter baumannii. [199]

Visualize interactions between metabolites and genes
in non-small cell lung cancer. [200]

* Raw data are available in the supplementary of the referenced manuscript, or a public repository. † Preprocessed
data are available in the supplementary of the referenced manuscript, or a public repository. ‡ Descriptive statistics
are available in a table or supplementary materials of referenced manuscript. Unmarked data are available upon
request from the authors or from a consortium.
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6.1. Pathway Enrichment Analysis

Identifying enriched pathways is a common approach to the biological interpretation of
differentially expressed analytes, and numerous approaches exist for this type of analysis, each
with advantages and disadvantages [201]. Not only do enriched pathways add interpretability to the
data, but dysregulations of pathways are also more reproducible across samples than altered levels
of individual analytes. [1,202,203]. While published pathways remain the gold standard for context
relevance, pathway analysis tools produce relevant results when publications are sparse [204].

Overrepresentation Analyses (ORA) are based on the Fisher’s or Hypergeometric test and are
commonly used to identify enriched pathways. Broadly, these methods test the hypothesis that a given
pathway is associated more frequently with analytes in the list of interest than would be expected by
chance. A major caveat in ORA is the dependence of the result on the background set of analytes
(e.g., all analytes measured, or all analytes in a pathway database) used for each pathway [205,206].
In metabolomics, pathway coverage of different metabolite classes is unequal [207]. For example, lipids
suffer from lower pathway annotation coverage than other metabolite classes due to the structural
complexity of lipid species [207]. Unequal coverage leads to issues in conventional enrichment testing,
because the test result is biased towards annotations that are uncommon in the database. When
multiple types of analytes are input into ORA analyses, the p-values resulting from analysis of each
analyte independently can be combined using Fisher’s method [208] or Stouffer’s method [209], which
do not penalize an analyte type that has fewer annotations given a particular pathway. This approach is
readily available in various software [2,210,211], and an evaluation of both methods is provided in [212].
Other issues of ORA include the erroneous assumption that pathways are independent from one
another, and the reliance on an arbitrary statistical cutoff (e.g., p-value) to identify enriched pathways.

Another set of pathway-enrichment methods uses Functional Set Enrichment Analysis (FSEA),
which is based on the Kolmogorov–Smirnov (KS) test. FSEA methods were developed to address
two drawbacks of ORA: statistical cutoffs and sensitivity to background distribution. Rather than
using a list of altered analytes as inputs, FSEA takes the entire panel of analytes as input, usually
as a ranked list of fold changes, and scores each pathway by an empirically determined weighted
Kolmogorov–Smirnov-like statistic. FSEA, however, is more computationally intensive than ORA,
and the statistical hypothesis being assessed is less straightforward to interpret. While there are
no publicly available implementations of FSEA that simultaneously test multiple omic modalities,
the method could theoretically be extended to this application. Examples of FSEA available in single
omic modalities include Gene Set Enrichment Analysis (GSEA) [213], Metabolite Set Enrichment
Analysis (MSEA) [214], and the Lipid Ontology web-based interface (LION/Web) [215].

Topological scoring techniques that use the structure of networks to infer pathway associations
for altered analytes can also be applied. Enriched pathways can be found by mapping differentially
expressed analytes onto individual metabolic pathway networks derived from biological pathway
databases to determine the global perturbation of the pathway. In these metabolic pathway networks,
nodes represent analytes, and edges represent physical or chemical interactions between analytes
(e.g., catalyzation, inhibition) as part of a pathway. Each pathway is its own subnetwork. Global
perturbation is measured using a combination of standard pathway enrichment and the topology of
the network, such as the length of the path between altered analytes and other analytes in the network,
betweenness centrality of analytes, and the degree of an analyte. Methods that fall into this category
include Signaling Pathway Impact Analysis [216], Pathway Regulation Score [217], Centrality-Based
Pathway Enrichment [218], Topological Analysis of Pathway Phenotype Association [219], Topology
Gene Set Analysis [220], Clipper [221], and DEGraph [222], which are often used in pathway analysis
of gene sets but can also be applied to other analytes. Ihnatova et al. found that the results of these
methods differ in sensitivity and specificity when simulated data vary by topological motif size and
size of the overexpressed gene set [223]. We note that MetaboAnalyst also incorporates a form of
topological analysis called the Pathway Impact Score, which is based on betweenness centrality of
differentially expressed analytes in a pathway [2].
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Another type of topological scoring method represents pathways as nodes and relationships
between pathways as edges in a network. In these networks, differentially expressed analytes are
mapped onto pathway nodes. Then, the topology of the network is evaluated to find sets of related
enriched pathways. An example of this type of analysis was performed in Zachariou et al. [198]. Lastly,
topological scoring can be applied to networks where both analytes and pathways are represented as
nodes, and analyte membership in a pathway is represented by edges. Then, analytes of interest are
mapped onto this network, and related pathways are found using known membership. This approach
is used by FELLA [224], where the authors demonstrate that biologically relevant pathways not found
using other pathway analysis approaches can be highlighted using this approach in epithelial cells,
ovarian cancer cells, and blood samples of malaria patients [224].

6.2. Visualization of Biological Pathways and Networks

Many pathway visualization tools are embedded into biological pathway databases and are
designed to visualize one specific pathway at a time. Users can map their analytes of interest,
along with analyte abundances or other characteristics, onto these pathways for further investigation.
Examples of these types of visualization include OmicsViewer [225], Visualization and Analysis
of Networks Containing Experimental Data (VANTED) [226], and PaintOmics [227]. PathMe [228]
provides additional flexibility as it incorporates multiple sources related to biological pathways and
evaluates crosstalks between these sources. Other tools provide additional flexibility in that they
provide a framework for visualizing pathways and/or networks. For example, Cytoscape [229],
GraphViz [230], and igraph [231] are very flexible and allow users to upload custom analytes or
pathways along with their relationships. PathVisio provides a user-friendly way to draw pathways
and to visualize experimental data on these pathways [232].

Other visualization tools represent analyte–analyte interactions outside of the pathway context.
For example, OmicsNet [233] combines protein–protein interactions, miRNA–target interactions,
transcription factor–target interactions, and enzyme–metabolite interactions from multiple annotation
databases to generate a composite network given a list of analytes.

We note that standard formats exist for networks in the multi-omics space. One of these
formats is Systems Biology Graphical Notation (SBGN), which includes three languages used
for network representation: Activity Flow, Process Description, and Entity Relationship. Each
SBGN language includes standardized glyphs and types of information that can be represented in
textual annotations [234]. VANTED follows SBGN specifications. Another format is GenMAPP
Pathway Markup Language (GPML), which is an Extensible Markup Language (XML)-based format
with graphical elements used for storing pathways. GPML is used by some knowledge bases
containing graphical information and by PathVisio. Finally, WikiPathways uses the World Wide Web
Consortium’s Resource Description Framework (RDF), which facilitates the integration of structured
and semi-structured data by creating links between resources [235].

6.3. Sources of A Priori Knowledge

For analyses involving pathway enrichment or related analyses, it is important to consider which
biological, biochemical, and disease pathway databases should be used. In fact, the coverage of
analytes and analyte types differ greatly between databases [236], and the choice of the database used
for analysis, such as pathway enrichment analyses, affects results [237]. For this reason, databases
that integrate information from multiple sources and for multiple types of analytes have thus been
developed. These are particularly useful for performing pathway enrichment using multiple types of
analytes as input, as they maximize coverage of pathway annotations [210,211,237–240]. In addition,
the incorporation of biological context (e.g., biospecimen type, species) into pathway analyses has
been shown to yield increased specificity of results when compared to functional analysis without
incorporated context [241].
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6.3.1. Curated and Community Resources

Various efforts are underway to collect, organize, and disseminate information about metabolites
and their association with other analytes or types of information (e.g., diseases, biospecimen location,
chemical information). Most open-source resources are maintained by curators who manually input
and/or review information about analytes and their annotations from the literature. The database
curation process relies on domain experts to ensure the accuracy of the information contained
in the database. Prominent examples of databases integrating metabolite pathway annotations
with other analyte annotations (genes, proteins, microbes, etc.) include the Human Metabolome
Database (HMDB) [242], the Kyoto Encyclopedia of Genes and Genomes (KEGG) [243], the BioCyc
database series including MetaCyc [244], and Metabolic Pathways Database for Microbial Taxonomic
Groups (MACADAM) [245]. Other resources aim to be comprehensive and incorporate information
from many database sources, including MetaCyc [244], Pathway Commons [240], PathBank [246],
Relational database of Metabolomics Pathways (RaMP) [210], and Pharmacogenomics Knowledgebase
(PharmGKB) [247]. We note that the most widely used resources are actively maintained. Therefore,
new and updated versions of the database are deployed at varying frequencies, from every several
months to yearly. Over time, the accuracy of the databases increases, as new and corroborating
knowledge is incorporated.

The integration of multiple sources is challenging, particularly for metabolites, since it is highly
dependent on the coverage of information, the confidence in analyte identity, and the accuracy of
mapping analyte IDs across databases. Coverage of analytes and other knowledge, such as pathway
membership, is important for analyte identification and the retrieval of metadata. However, recent
analysis of metabolic networks revealed that mass spectral libraries only covered 40% of these
networks [236]. In biological pathway databases, coverage of genes and metabolites also varies, where
12% of metabolites and 67% of coding genes are mappable to pathways [210]. Additionally, the
confidence of identity and the level of resolution (e.g., location of double bonds, strain vs. species)
available may also affect mapping to pathways [26,27]. To improve the confidence of annotations,
users should use IDs, rather than names, to retrieve information on analytes, and should evaluate
mapping results for accuracy. In addition, mapping IDs across databases is also a challenge. Different
databases use different IDs, with varying levels of information. For example, metabolites represented
by International Chemical Identifier Keys (InChIKeys) [248] uniquely map to one metabolite while the
commonly used Chemical Entities of Biological Interest (ChEBI) [249] IDs do not [250]. While most
databases include links to commonly used ID types, errors could be introduced when mapping IDs
from one database to another because of this discrepancy [251]. Standardization of IDs is thus a major
challenge that is not completely solved, although it is being addressed by large community-driven
initiatives [26,250,252]. Until nomenclatures are fully converged, the community relies on metabolite
naming translation services [253]. This issue could be further mitigated by the use of text mining
algorithms [254,255].

6.3.2. Computationally Predicted Resources

Natural Language Processing (NLP) methods can be applied to automatically extract knowledge
that can be incorporated in multi-omics data analyses and resources. NLP methods mine information
from the literature, where tokens (individual or compound words in a document) are analyzed
individually and within sentence structures to extract relevant information. One point of consideration
in NLP is the dictionary of terms, i.e., the set of possible tokens. The dictionary of terms may be
created manually or from existing knowledgebases or literature, if they are available. For instance, the
NLP R package Onassis for omics data uses Open Biomedical Ontologies to build its dictionary [256].
In contrast, the Indian Medicinal Plants, Phytochemistry and Therapeutics dictionary was built
manually, as there was no electronic resource containing the names of all Indian medicinal plants and
their synonyms [257]. In addition to the dictionary of terms, the sources mined must be appropriate.
Sources may include abstracts or full-text articles from multiple journals or journal repositories,
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in addition to other sources, including curated databases, online encyclopedias, patents [258], drug
reviews [259], and lab protocols [260]. When considering journals, choosing to use abstracts only may
reduce the number of true relationships found [261], but it is often done because of limited accessibility
to full text articles. In addition, both the trustworthiness of the source and the context of the article
(e.g., toxicology or immunology) should be relevant to the type of information the researcher wishes
to extract. Finally, regular expressions must be correctly formatted to define extraction rules for text.
Regular expressions are complex patterns of text that can be matched in a document, and they are used
to define rules for extracting text to build the knowledgebase. These should be specialized for the task
at hand. For instance, Ben Abdessalem Karaa et al. created separate regular expressions to extract
causal, preventative, and associative relationships between types of food, genes, and diseases [262],
Nikfarjam et al. used a list of key phrases to describe patient responses to drugs in social health
networks [263], and Fan and Zhang created several regular expressions to extract patient dietary
supplement use from clinical notes [264].

We note that using NLP in the context of biomedical research offers unique challenges that must
be considered, which are reviewed in [265]. One of these is resolving words that co-reference the same
analyte; Cohen et al. have worked toward solutions specific to biomedical journals [266]. Other work
focuses on the task of associating genes with diseases [267] or finding associations between metabolites,
proteins, genes, and diseases [258]. Another challenge is document triage, such as finding documents
relevant to a context or field of study [268–270]. For a thorough review of NLP techniques, as applied
to the biomedical literature, we invite the reader to reference [271].

Several NLP-based resources relevant to multi-omics data have been developed. The NJS16
database is a literature-derived database which contains information on the import, export, and
macromolecular degradation of metabolites by 570 microbial (bacterial and archaeal) species in three
colonic and liver cells [272]. MACADAM, which also contains functional links between microbial
species and metabolites, incorporates information from the International Journal of Systematic and
Evolutionary Microbiology and Functional Annotation of Prokaryotic Taxa databases, which are
derived from the literature [245]. The Drug-Gene Interaction Database (DGIdb) is an NLP-curated
database that stores information about mutated genes that could be useful to identify targets for
drug development [273]. Another NLP-based resource, which is specifically focused on liver tissue,
is LiverWiki [274], a wiki-based knowledgebase containing liver-related genes, metabolites, proteins,
protein interactions, pathways, post-translational modifications, and diseases.

Other computational applications aim to predict analyte ontologies, synonym resolution, prediction
of molecule interactions/effects, and pathway prediction. For example, ClassyFire [275] provides a
taxonomy where compounds are automatically classified into appropriate taxa using a rule-based
classification, based on the Simplified Molecular-Input Line-Entry System Arbitrary Target Specification
(SMARTS) string and the Markush format. To resolve the many synonyms that can describe
one metabolite and mitigate the duplication of analytes used for downstream statistical analyses,
PubChem [276] uses an automated standardization technique. This technique works by computing the
similarity between two compounds using multiple chemical properties (e.g., atom valence, functional
group, and stereochemistry) and merging metabolites with significantly similar properties.

The prediction of a molecule’s interactions and/or effects (e.g., toxicity) can also be automated
by using chemical or molecular similarity between the compound in question and another, more
well-characterized compound, as is done by Super Natural II [277]. Lastly, to fill the knowledge gap of
unknown biological and chemical pathways in all organisms, pathways for unexplored organisms
can be predicted using PathoLogic [278]. Specifically, pathways are predicted by first inferring the
reactions present based on the identification of enzymes in the organism and then by associating key
reactions with pathways.

In some cases, computational prediction and text mining have been used to enrich experiments
without inclusion in knowledgebases. In one study focused on finding associations across omic
modalities, Fadason et al. found interactions between metabolite-associated single nucleotide
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polymorphisms (SNPs), metabolites, and chromatin loops (i.e., physical contact between enhancers
and promoters) in human blood by combining literature text mining, known drug interactions, Hi-C
chromatin interactions, eQTL, and gene ontologies [279]. Additionally, computational predictions
can be used to infer associations between analytes. For example, a study by Le et al., used an
encoder–decoder neural network to learn novel functional associations between the metabolome and
the microbiome in a cohort of paired Inflammatory Bowel Disease (IBD) patients. Using the weights
learned using the encoder-decoder neural network to indicate the strength of the relationship between
analytes, they uncovered relationships between known IBD biomarkers, such as between Ruminococcus
and ropane alkaloids and steroidal saponins, and between Fusobacterium and bile acids, alcohols,
and derivatives [280]. In addition, Morton et al. developed microbe–metabolite vectors (mmvec),
a variation of the NLP method word2vec [281], to embed co-occurrence patterns between microbes
and metabolites and then infer interactions using the embeddings [282].

We note that as with any computational prediction approaches, there is a margin of error. In this
case, this error is difficult to determine because “we don’t know what we don’t know”. Therefore, it
is advisable to understand whether resources used are computationally driven, rather than curated
through existing and validated experiments. Community-driven resources also bring into question
confidence in the user’s entry, as the user’s expertise is often unknown. We note that many resources
lack confidence metrics. Lastly, the context of the experiment (e.g., biospecimen location, disease type,
etc.) can be utilized to help prioritize analysis results. One example in pathway enrichment analysis
is a tool that uses the literature evidence to prioritize the enriched pathways that are returned [204].
Specifically, the algorithm prioritizes pathways that are supported by multiple articles that are related
to the same experimental context in the study. When little or no relevant information from the literature
exists, then the statistical significance returned from the pathway enrichment analysis method is given
more weight in comparison to the literature evidence.

6.3.3. Metrics Used to Define Confidence in Annotations

Confidence in the correctness of an annotation in a knowledgebase can depend on whether there
are unknown enzymes or reactions in a pathway or whether a curated annotation has been verified by
multiple experts. MACADAM [245] seeks to address the problem of unknown enzymes and reactions
using its Pathway Score, based on the percentage of reactions in a pathway that are annotated with
an enzyme, and the Pathway Frequency Score, the ratio of annotated enzymes to total reactions.
Several other tools include metadata describing the verification of annotations contained therein.
In HumanCyc [283], PathoLogic is used to predict metabolic pathways, and pathways are associated
with tiers indicating whether they have also undergone manual review. ChEBI has a similar system
based on starring: one star means the metabolite entry was automatically curated from a data source,
two stars means the metabolite entry was manually processed by a depositor, and three stars means the
metabolite entry was manually curated by the ChEBI organization [284]. Finally, WikiPathways [238]
has quality tags that can be used to indicate confidence (e.g., ProposedDeletion, WormBase_Approved,
Reactome_Approved, and Hypothetical).

Of note, many databases do not include confidence metrics. In this case, the user could map
analytes or annotations back to databases which do contain confidence metadata. This can be done
using identifiers for analytes or pathways. Alternatively, users can examine the supporting literature
for analytes of interest, which can be a tedious process, particularly when many analytes are being
considered. Finally, users could assume the same level of confidence for all analytes and annotations
in the databases.

7. Discussion

Given the complexity and heterogeneity of multi-omics data and experiments, data analysis
and interpretation are collaborative efforts, involving biostatisticians, bioinformaticians, molecular
biologists, and domain experts (e.g., clinicians, immunologists). Further, given the large number of
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available methods, tools, and workflows, it is sometimes difficult to select which approach to consider.
We recognize that no single method or approach is comprehensive, but rather, approaches and methods
are complementary. Applying multiple methods to the same datasets is thus advisable and may
corroborate findings or identify novel analyte patterns or relationships.

Aspects that should be considered when selecting methods are: 1) the requirements of input data,
including data distributions and types; 2) the biological question being addressed, noting that each tool
typically aims to answer a specific question; 3) the availability and metrics of confidence of external
resources; 4) ease of use (some methods are hard to implement without computational or statistical
expertise); and 5) reproducibility of the results (some methods are stochastic and yield different results
when run on the same dataset). Once a method is selected, it is also important to consider which
parameters can be modified. To help with parameter selection, most tools provide default parameters
to guide the users, although we note that these parameters may not be optimal for all cases. A balance
must then be struck between the ease of use of approaches, and the selection of appropriate parameters
given the input datasets.

Currently, computational solutions are still lagging behind the rapid influx of molecular data being
generated [285]. As computational methods, tools, and workflows emerge, it is important to compare
their utility on benchmarking datasets. At present, well curated, publicly available benchmarking
datasets are uncommon. Further, emerging computational approaches may not test their performance
or complementarity with other tools on the same datasets, making the comparison of multi-omics
approaches challenging. Efforts to create readily available data, including different formats of the
same data (e.g., before and after data preprocessing) for direct input into new developments would
facilitate comparison and an understanding of which approaches to use for which contexts. We also
note that developers of methods should disclose the data and code used, along with their publications,
to mitigate current deficiencies in reproducibility [286].

One area that we do not delve into deeply in this review is uncertainty in the identification of
analytes, which is prevalent for metabolites, but is also relevant for genes and microbes, which rely on
accurate sequence reads and alignments. It is feasible for algorithms to take identification uncertainty
into account. In computer science, systems with uncertainty in the input, output, or parameters are
often called “fuzzy systems”; machine learning methods for fuzzy systems are reviewed in [287].
The representation of uncertainty in visualization tools has also been explored and is reviewed in [288].

The granularity of information that is being received for metabolomics analysis is increasing,
as annotations for analytes, experimentally validated or in silico, is ever-growing. This increasing
granularity in turn enables the development of more context-specific analyses. For example, multi-omics
data-analysis of colon samples can be restricted to analytes that are known to be colonic, thereby
removing potential artifacts and false positives in the data. Similarly, metabolic network models can
be built per organism to better capture the underlying biology.

8. Conclusions

The development of computational approaches that support multi-omics data analysis is still
an active area of research. Given the large number of available approaches to such data analyses,
the identification of appropriate method(s) for a researcher’s needs is challenging. In this review,
we describe concepts and considerations to be made when performing multi-omics analyses, particularly
from the viewpoint of which methods, tools, workflows, and resources are available. We discuss the
statistical and computational approaches to the tasks of unsupervised clustering, identification of
co-regulated groups of analytes, the identification of associations between analytes or groups of analytes
and phenotype, and biological interpretation of the relationships between analytes and phenotype,
highlighting methods with examples from real-world multi-omics applications in various domains.
In addition, we describe a priori sources of knowledge that can be used in biological interpretation
analysis as well as points of consideration regarding these sources. Globally, we anticipate a growth
in multi-omics data analysis approaches to meet the demands of biomedical research. Such analyses
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present a unique opportunity for collaborative work amongst different fields, providing multiple
viewpoints and knowledge on the same biological system.
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