
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 10 October 2013

doi: 10.3389/fimmu.2013.00310

The influence of mucus microstructure and rheology in
Helicobacter pylori infection
Rama Bansil 1*, Jonathan P. Celli 2, Joseph M. Hardcastle1 and Bradley S.Turner 1,3

1 Department of Physics, Boston University, Boston, MA, USA
2 Department of Physics, University of Massachusetts Boston, Boston, MA, USA
3 Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Edited by:
Thomas Blanchard, University of
Maryland School of Medicine, USA

Reviewed by:
Glen C. Ulett, Griffith University,
Australia
Michael McGuckin, Mater Medical
Research Institute, Australia

*Correspondence:
Rama Bansil , Department of Physics,
Boston University, 590
Commonwealth Avenue, Boston, MA
02215, USA
e-mail: rb@bu.edu

The bacterium Helicobacter pylori (H. pylori ), has evolved to survive in the highly acidic
environment of the stomach and colonize on the epithelial surface of the gastric mucosa.
Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer.
In order to infect the stomach and establish colonies on the mucus epithelial surface, the
bacterium has to move across the gel-like gastric mucus lining of the stomach under acidic
conditions. In this review we address the question of how the bacterium gets past the
protective mucus barrier from a biophysical perspective. We begin by reviewing the mole-
cular structure of gastric mucin and discuss the current state of understanding concerning
mucin polymerization and low pH induced gelation. We then focus on the viscoelasticity of
mucin in view of its relevance to the transport of particles and bacteria across mucus, the
key first step in H. pylori infection. The second part of the review focuses on the motility
of H. pylori in mucin solutions and gels, and how infection with H. pylori in turn impacts
the viscoelastic properties of mucin. We present recent microscopic results tracking the
motion of H. pylori in mucin solutions and gels. We then discuss how the biochemical
strategy of urea hydrolysis required for survival in the acid is also relevant to the mecha-
nism that enables flagella-driven swimming across the mucus gel layer. Other aspects of
the influence of H. pylori infection such as, altering gastric mucin expression, its rate of
production and its composition, and the influence of mucin on factors controlling H. pylori
virulence and proliferation are briefly discussed with references to relevant literature.

Keywords: H. pylori, gastric mucosa, mucins, rheology, motility, atomic force microscopy, particle tracking
microrheology, bacterial infections

INTRODUCTION
As is well known, Helicobacter pylori (H. pylori), the most abun-
dant pathogen in the stomach causes gastritis, peptic ulcers, and
gastric cancer by establishing colonies on the epithelial surface
of the stomach that generate a host-immune response. It has
three major pathogenic effects on its host: gastric inflammation,
disruption of the gastric mucosal barrier, and alteration of gas-
tric physiology (1–4). The virulence factors that are responsible
for the pathogenic effects also enable the bacteria to manipulate
the host-immune response and support its long-term survival in
the stomach (5–9). The question of how the bacterium initially
breaches the protective mucus barrier to reach the epithelial cell
surface and colonize in the extreme acidic environment of the
stomach (10) is particularly intriguing from a physical perspec-
tive. Bacterial motility in aqueous solutions is well understood
(11, 12), and motility through viscous polymeric solutions has
been investigated for many years (13–18). However, much less is
understood about how a bacterium moves through a gel, and how
the motion depends on, and in turn, influences the structure and
dynamic properties of the mucus gel. Recently, some theoretical
advances have been made on the related problem of motility of
sperm [for a recent review see Ref. (19)], and on the swimming of
helical objects in a viscoelastic medium (20). The presence of an

elastic network with fluid filled pores in a gel raises questions such
as: (i) “Can a bacterium move through a gel, and if so, how does it
move?” (ii) “Is it possible for the bacterium flagella motors to exert
sufficient force and torque to deform a gel and enable it to move?”
(iii) How do the speed and torque depend on the rheological para-
meters of the gel? Conversely, does the bacterium alter the physical
and chemical properties of the gel? In this review we describe the
physical characteristics of the gastric mucus lining, and discuss
the structure and gelation of gastric mucin, which is the gel form-
ing component of mucus. We then address the question of the
motility of H. pylori in the acidic environment of the stomach,
and its influence on the structure and mechanical properties of
the mucus gel.

The gastrointestinal (GI) tract, like other physiological systems
with a cavity open to the environment, is lined with a protective
mucus layer [for reviews see Ref. (21, 22)]. The high molecu-
lar weight glycoprotein, mucin, secreted by cells in the lining of
these organs is responsible for giving mucus the physical charac-
teristics of a viscoelastic fluid and a hydrogel (21). This physical
state presents a unique environment to the more than a trillion
bacteria that live or move in the GI tract. In the stomach, like
the intestine, bacteria are found in the viscous fluid-like outer
mucus layer but not in the dense mucus gel layer that adheres
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to the cell surface (23, 24). Compared to the intestine, relatively
few bacteria inhabit the mucus layer of the stomach, as most are
unable to survive in the acidic environment of the stomach (25).
H. pylori, the most abundant, and the most long-term inhabitant
of gastric mucosa, copes with the acidic environment by secreting
urease to hydrolyze urea and produce ammonia to neutralize the
acid (26, 27). How it gets across the mucosal barrier in the stom-
ach to colonize on the gastric epithelium (10, 28, 29) is a largely
unsolved problem. The commonly held view that it bores its way
through the mucus gel-like a corkscrew (10, 30) is probably not
valid, in light of observations showing that H. pylori are immo-
bile in porcine gastric mucin (PGM) gels under acidic conditions,
although their flagella rotate and they wiggle in-place. Instead, we
show that motility across the gel is achieved due to the same bio-
chemical mechanism that H. pylori uses for surviving in the acid,
namely urea hydrolysis to elevate the pH of its environment. The
elevation of pH to neutral transforms the viscoelastic mucin gel
to a viscous liquid, enabling the bacterium to swim in the viscous
solution (31). Additionally, the helical cell-shape may enable it to
swim faster in the viscous solution, as implied by the theoretical
prediction of (20). The helical cell-shape has also been shown to
be of importance in colonization, as rod- and C-shaped mutants
of H. pylori, although motile in soft agar, are not as effective in
establishing colonies (32, 33).

Helicobacter pylori infection is also known to impair mucin pro-
duction, and alter the composition of mucins in the gastric mucus
(34). Byrd et al. (35) show that MUC 6, normally associated with
gastric gland mucous cells, is expressed in surface mucous cells of
H. pylori infected patients, while the MUC5 component of sur-
face mucous cells decreases. Navabi et al. (36) report that MUC1
turnover and level is decreased upon H. pylori infection in mice.
Chronic infection leads to intestinal metaplasia, with the stom-
ach mucus developing characteristics of intestinal mucus (37).
Newton et al. (38) report an 18% reduction in the amount of
gel forming, high molecular weight mucin, although they noted
that thickness of the mucus layer is uncompromised. On the other
hand Henriksnäs et al. (39), observed a reduction in the thickness
of the adherent mucus layer in mice. Mucins also bind to H. pylori
(24, 40), the binding is pH dependent (41, 42) and the bacterium
is chemotactic toward mucin. Conversely, mucins influence the
proliferation, gene expression, and virulence of H. pylori, imply-
ing a dynamic interplay between the bacterium and its host (43).
These aspects will not be further addressed in this review; the
reader is referred McGuckin et al. (24) for the complex interplay
between mucins and bacterial pathogens. In the remainder of this
review we focus on the physical properties of mucus relevant to the
transport of H. pylori across the mucus barrier, and provide some
insight into the mechanism of H. pylori motility. We also address
the impact of H. pylori infection on mucus structure and rheology.

STRUCTURE OF MUCUS
Of all the organs, it is in the stomach that mucus faces its severest
challenges from secreted HCl, digestive enzymes, alcohol, drugs,
and bacteria such as H. pylori (10, 44). Gastric mucus is a highly
hydrated (swollen to ∼95% water), viscoelastic substance con-
taining 3% of mucin glycoprotein mixed with about 2% low
molecular weight lipids, electrolytes, other small molecules, and

other proteins such as trefoil factors (21, 45). The mucin glyco-
protein is responsible for the remarkable hydration, viscoelastic,
and mucoadhesive properties of the protective mucus layer (21,
46). These properties are primarily related to the ability of mucin
to polymerize to high molecular weight [for reviews of biophysical
properties of mucin see Ref. (47, 48)]. At the typical concentra-
tions found in mucus secretions in mammalian stomachs, mucin
further aggregates, and gels under acidic pH.

The gastric mucosal surface is coated with mucus, about 200–
400 µm in thickness, consisting of an adherent layer of mucus on
the epithelial surface covered with loosely attached, mobile mucus
on the luminal side (49). Atuma et al. (50) reported in vivo mea-
surements of the thickness of the mucus lining from stomach to
colon in anesthetized rats. They observed that the mucus lining
is continuous and consists of two layers, a loosely adherent outer
layer which can be easily removed by suction and a firmly adher-
ent layer attached to the epithelial surface. In the rat stomach the
loose layer varies from 100 to 120 µm and the firmly adherent layer
ranges from 80 to about 150 µm.

Several investigators have used scanning electron microscopy
(SEM) to visualize the stomach mucosal surface [see for
e.g., Ref. (49, 51–53)], and numerous images and beauti-
ful illustrations of the microstructure of the inner surface
of the stomach, with and without bacteria, are readily avail-
able see for e.g., http://katierosejohnston.blogspot.com/2011/09/
research-images.html. These pictures reveal a highly convoluted,
self-similar, or fractal surface with numerous folds of stomach
epithelia forming gastric glands (also called gastric pits) which
open on the luminal surface of the stomach. Mucus secretions
can be seen as wispy, fibrous material on the surface on many of
these images. Forte (52) reported low-resolution images of bull-
frog mucosa where the residual mucus secretion left on the SEM
specimen was visible as bright white, coagulated strands. In this
review, we reproduce an image from Nunn et al. (51) showing
surface mucous cells, covered with sheets of mucus (Figure 1).

The shiny, translucent film of mucus, visible to the naked eye,
can be removed by gentle scraping and further processed to pre-
pare purified mucin (54). To avoid the perturbative effects of SEM
preparation we examined the structure of hydrated mucin and
mucus on the sub-micron length scale in vitro by atomic force
microscopy (AFM) in a liquid cell under appropriate buffers.
A tapping mode AFM measurement of a wet sample of human
mucus taken from the discarded material obtained in the lavage
following a gastric biopsy reveals a swollen network (Figure 2)
formed by the glycoprotein mucin (55). The mucin appears to
form aggregates that are connected as in a “pearl-necklace” and
enclose aqueous pores of about 200–300 nm in diameter.

MOLECULAR COMPOSITION OF GASTRIC MUCIN
For completeness we include a brief description of mucin compo-
sition, although this topic has been reviewed extensively. Gastric
mucin, like other mucins is a very high molecular weight glyco-
protein (2–20 million g/mol) with about 70–80% polysaccharides.
The protein, which is quite unlike normal globular proteins, forms
the linear core of the molecule on which the polysaccharide chains
are radially arrayed similar to the bristles of a bottle-brush, as
shown in Figure 3 [adapted from (48)].
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FIGURE 1 | Scanningelectron microscopy image of rabbit stomach
mucosa showing surface cells and numerous bundles of fiber-like
mucus strands. Scale bar 10 µm. Reproduced from Nunn et al. (51) with
permission from Wiley.

FIGURE 2 | Atomic force microscopy image of endoscopic specimen of
human mucus gel. This 1 µm×1 µm image reveals a network with a
“pearl-necklace” morphology formed by mucin aggregates. Reproduced
from Hong et al. (55) with permission from American Chemical Society.

Of the ∼20 mucin genes that have been identified with a sim-
ilar sequence structure (56, 57), gastric mucus contains only two
secretory mucins MC5AC and MUC6, in addition to the ubiq-
uitous cell surface mucin MUC1 (58). Dekker et al. (59) suggest
that the mucin family be separated into two groups on the basis

of sequence homology, one group representing those similar to
the cell surface mucin MUC 1, and the other group comprising
the secretory mucins similar to MUC2. Both MUC1 and MUC2
mucins contain large domains comprised of tandem repeating
sequences of serine (S), threonine (T), and proline (P), located
in the heavily O-glycosylated portion of the molecule. The S and
T amino acids provide the O-glycosylation sites for the covalent
attachment of the polysaccharide. The length and number of the
STP repeat varies for the different mucins coded by different genes,
and also varies between species. For example, MUC5AC contains
66–124 repeats of 8 amino acids with the consensus sequence
TTSTTSAP (60) and MUC6 contains 15–30 repeats of 169 amino
acids (61). In all MUC2 type secretory mucins, this glycosylated
(g) domain occupies the central region of the apoprotein. It is
flanked by cysteine rich domains and a Cystine Knot domain,
with non-repeating sequences at the C-terminal (see Figure 3),
and by domains similar to the von Willebrand Factor (vWF) C, D
domains involved in blood clotting pathways, at the N-terminal.
These weakly or non-glycosylated (ng) regions resemble typical
secreted globular proteins in their amino acid composition and
contain small amount of isolated N -glycosylated oligosaccharides,
but do not form a bottle-brush.

POLYMERIZATION, AGGREGATION, AND GELATION OF
MUCIN
Early studies of mucin were interpreted in terms of tetrameric
wind-mill like structure (45). However, transmission electron
microscopy (TEM) studies clearly established that gastric, cervi-
cal, and respiratory mucins are all linear polymers (62, 63). AFM
and dynamic light scattering (DLS) studies further show that even
in solution, mucins are highly elongated, rod-like, or worm-like
polymers [for detailed review and references see Ref. (47, 48)].
AFM imaging of individual molecules of PGM in aqueous solution
reveals long, curvilinear filaments ranging from 500 nm to 4 µm
in length (55) and ∼1 nm in height, reflecting the height of the
hydrated brush probably flattened down due to interactions with
the AFM tip. The height and diameter reported by Hong et al. (55)
were made in an aqueous environment, and thus provide a better
estimate of the dimensions of the hydrated, native PGM molecule
than that obtained by TEM measurements (63) or earlier AFM
measurements (64) which were done on dried films. Hong et al.
(55) also examined the pH dependence of PGM, observing in situ
aggregation at pH < 4 with the formation of large, spherical, or
oblong aggregates and a 5- to 10-fold increase in height.

The formation of large glycoproteins with molecular weight
ranging from 2 to 20 million g/mol is generally believed to involve
C-terminal dimer formation of the apoprotein via disulfide (S-
S) linkages of the Cysteine knot domains (57, 65). These dimers
then further polymerize to form large multimers, as illustrated
in Figure 3. There is also the possibility of the C-linked dimers
to form trimers via N-terminal S-S linkages involving the vWF D
domains. This has been observed in MUC2 (66, 67) and in porcine
submaxillary mucin (57) predominantly composed of MUC5B.
This would imply the occurrence of tri-functional branches in
mucin. It is not clear whether vWF D linked trimers are formed
in MUC5AC, although other cleavage sites at the C-terminal
have been noted (68, 69). Since TEM and AFM images show
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FIGURE 3 | Sketch illustrating the domain structure, polymerization, and
gelation of mucin. (Topmost panel) The constituent glycosylated (g) and non-
(or weakly) N-glycosylated (ng) domains of mucin represented by icons as
labeled. (Second panel) The g and ng domains are linked as shown to form the
mucin monomer, with vWF domains at the N terminal and cysteine rich and
cysteine knot domains at the C terminal, interspersed with the O-glycosylated
STP repeats forming the g domain. (Third panel) A dimer formed by two

monomers linked with a disulfide (S–S) bond involving the C-terminal cysteine
knot domains. (Bottom panel) A multimer with alternating g (black with red
brush) and ng (blue) domains. An N-terminal branch is also indicated. (Right
hand panel) A sketch of a mucin gel formed by hydrophobic association of
unfolded ng domains of the multimer. The crosslinking is represented by
changing the color of ng domains from blue to green. New sketch based in
part on Ref. (48) with permission from Elsevier.

predominantly linear polymers, it is possible that trimers, if there,
are present in small quantities, and the weak branching at the
molecular level is not resolvable by TEM and AFM techniques.

The molecular mechanism of crosslinking in PGM gels is not
fully understood. Using fluorescent dye binding (70) suggested
that aggregation/gelation at low pH involves a complex interplay
between electrostatic and hydrophobic interactions (48) with the
formation of non-covalent crosslinks via the hydrophobic associ-
ation of specific regions of ng domains, modulated by pH depen-
dent changes in the electrostatic interactions of charged amino
acids in the N- and C-terminal regions of the apoprotein (48).
This network is schematically illustrated in Figure 3, which shows
the mucin polymer as having long glycosylated (g), hydrophilic
domains, alternating with short, and somewhat hydrophobic ng
domains. The differential affinity for water of the alternating
domains will stabilize non-covalent crosslinks formed by asso-
ciation of hydrophobic amino acids exposed at low pH in the
ng domains in the C- and N-terminal regions, as illustrated in
Figure 3. Exactly which domains are involved in these hydrophobic
interactions, and whether it involves single domains from dimers
or whether it involves the N-terminal tri-functional vWF units has
not been explored. Discrete molecular dynamics simulations show
pH induced changes in the folding of the PGM 2X domains that
are not seen in vWF C domains (71). Further work, both theoret-
ical and experimental, concerning the folding and association of
the ng domains, and the swelling of the gel due to the electrostatic
interactions of the negatively charged polysaccharide brush of the

glycosylated domains, would be valuable in developing a detailed
molecular model of pH induced gelation of mucin.

pH DEPENDENT VISCOELASTIC BEHAVIOR OF MUCIN
The formation of a network in gastric mucin at low pH has a
profound influence on its rheological properties, i.e., its fluid-
like flow behavior and response to mechanical deformation and
shear forces. In view of the key role that these properties play
in the transport of particles and bacteria across mucus, we dis-
cuss the underlying concepts before discussing the results. Like
many other soft biological materials, the mucus layer exhibits a
viscoelastic response to deformation that represents the combined
effect of both its liquid-like and its solid-like features, arising from
the presence of a polymer network filled with liquid. As illustrated
in Figure 4A, a normal viscous solution, like water or glycerin,
flows when subjected to a tangential shear force with a viscosity
η, reflecting the resistance to flow, i.e., the dissipation or loss of
energy. In contrast, an elastic solid stretches (or compresses) like
a spring when subjected to tensile forces, and its shape deforms,
like the spine of a hardcover book, when subjected to shear forces,
but it does not flow in either case. A viscoelastic material exhibits
both liquid-like flow and solid-like elasticity, as summarized in
Figure 4B (72, 73). One of the hallmarks of a viscoelastic material
is that its response to deformation depends on the time for which
the material is deformed, as illustrated by the familiar Silly Putty
which bounces like a ball when dropped quickly (reflecting the
solid-like response on short time scales), but flows like a liquid
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when stretched slowly (reflecting the large time scale liquid-like
flow). The text box lists the basic relations of viscoelasticity.

A very simple assay of pH dependence of viscosity of mucin was
reported by Bhaskar et al. (54) by measuring the terminal speed1

of a micron sized steel ball falling under gravity in purified PGM
mucin solutions. The ball falls slower as the pH is reduced, and

1Terminal speed denotes the final speed attained after the initial gravitational
acceleration is damped out by viscous forces.

FIGURE 4 | (A) Key concepts of viscoelasticity. A rectangular object with
a surface area A and height H, fixed at the bottom surface, is subjected to a
shear force F by pushing along the top surface. If the object is a regular
solid then the top surface displaces by an amount D deforming the object.
If the object is a liquid between two plates, with the bottom plate fixed and
the top plate pulled at a speed V, it flows with speed increasing from 0 at
the bottom to V at the top, so the deformation is given by V /H. If it is
viscoelastic, both solid-like and liquid-like deformations occur
simultaneously, albeit on different time scales. The origin of viscoelasticity
lies in the ease with which polymer chains can be deformed, and the fact
that their motion is controlled by transient entanglements and long-lived
crosslinks between chains. (B) Summary of stress – strain relationship.
The basic definitions for an elastic solid, a viscous liquid and a viscoelastic
fluid or gel are summarized here.

does not fall at all in mucin at pH 2, indicting the formation of a
gel network at pH 2 (54).

Further insight into the rheological properties of a gel can
be obtained from techniques such as oscillatory shear rheology
which provides a direct measurement of the frequency dependent
bulk viscoelastic moduli of a material. Oscillatory shear measure-
ments clearly show that viscoelastic properties of gastric mucin are
highly pH dependent, as shown in Figure 5 (74). At elevated pH
(>4) gastric mucin flows like a viscous polymer solution, in which
mucin glycoprotein macromolecules are in solution phase, with
only transient intermolecular entanglement. In these conditions
response to deformation is dominated by viscous flow (and vis-
cous modulus G ′′(ω) > elastic modulus G ′(ω), over a wide range
of values of ω) with a small (but measurable) elasticity. Con-
versely, at pH < 4, associations between mucin domains give rise
to a connected intermolecular network with significant elastic-
ity and minimal flow [elastic modulus G ′(ω) > viscous modulus
G ′′(ω)] (see text box for definitions). Further insight is gained by
examining the scaling relationship in plots of G ′(ω) and G ′′(ω)
versus ω and identifying the frequency at which the moduli cross
over as described previously (74, 75). This behavior is paralleled in
a wide range of biopolymer systems driven by polymer concentra-
tion, solvent interactions, pH, salt concentration. Similar results
on the pH dependence of PGM have been reported by Maleki
et al. (76) using rheo-SALS, a rheometric technique coupled to
small angle light scattering.

Bulk rheology, as described above, provides the average vis-
coelastic response of a material. However, in a swollen gel such
as mucin, the elastic, and viscous response is likely to be length
scale dependent due to the inherently heterogeneous structure of
a gel consisting of fluid filled pores and network strands. The

FIGURE 5 | Comparison of viscoelastic moduli, G ′(ω) and G ′′(ω) for
PGM at pH 2 and pH 6 probed by bulk rheology and particle tracking
microrheology. In the solution state (pH 6 PGM) bulk and microrheology
measurements of both components, G ′(ω) and G ′′(ω) (labeled as indicated
in the Figure) are in agreement over the frequency range accessible. In
contrast, the viscoelastic moduli obtained by bulk and microrheology differ
significantly in the gel phase (pH 2) suggesting the presence of
microstructural heterogeneity and length-scale dependent rheology in the
gel state. Reproduced from Celli (80) with permission of author.
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local, microrheological properties can be probed by tracking the
hindered, Brownian motion of micron sized polystyrene latex par-
ticles in the medium of interest and calculating the complex elastic
modulus G*(ω) from the mean square displacement 〈∆r2

〉 of the
particle (77–79). Using this method, Celli (80) found that both
G ′(ω) and G ′′(ω), the elastic and viscous moduli, at pH 6 have
similar magnitudes to those obtained in bulk rheology, as expected
for particles moving in a viscous solution (80). In contrast, at
pH 2 the moduli obtained by microrheology were significantly
lower than those obtained by bulk rheology (Figure 5), indicat-
ing that, on small length scales, the particles sample a less viscous
environment than the bulk gel. Similar results were obtained in a
microscopic DLS study (81) in which the much smaller, 100 nm
latex particles, appeared to probe two microenvironments; with
some beads moving freely in large pores in the pH 2 gel, and
others displaying the same slow relaxation as the signal from the
dynamics of the gel itself. Lieleg et al. (82) also observed hetero-
geneities in their investigation of particle translocation through
mucin hydrogels.

Time-resolved microscopic particle tracking measurements
(80) show that at pH 2 the probe particles move in an
inhomogeneous micro-environment consisting of water filled
pores in a gel and thus encounter reduced viscous damping. This
is illustrated in Figure 6 showing the trajectory of the center
of mass (c.m) of a 1 µm latex bead trapped in a pore in the
pH 2 mucin network, and only moving at most a total distance
of ∼0.1 µm. Rheological studies under non-linear deformations
reveal an apparent yield stress, the stress at which the elasticity
breaks down, that is also highly influenced by pH. The gel begins to
flow just above 10 Pa (74). PGM exhibits a highly non-Newtonian
shear thinning behavior, viscosity decreasing with increasing stress
in steady shear flow tests, as was previously observed in commer-
cially made PGM (83). The lower pH samples are dramatically
shear thinning, decreasing in viscosity by about three orders of
magnitude over four decades increase in shear rate and approach-
ing a constant yield stress at low shear rates. These findings on
purified mucin are consistent with bulk and microrheological
measurements of mucus rheology (84), and provide a molecu-
lar basis for understanding the rheological properties of mucus.
The shear thinning and yield stress may be relevant to mucus shed-
ding during peristalsis, and could provide a physical mechanism
for washing away bacteria that are not adhered to the epithelial
surface. It would be interesting to investigate the rheological prop-
erties of the mucin from the two distinct mucus layers discussed
earlier in this review (50).

We end this section by a cautionary remark concerning the
use of commercial mucin preparations such as those obtained by
Sigma Aldrich. These do not form a pH dependent gel, because the
mucin has been proteolytically digested during purification (85).
Such a reduced mucin does not gel upon lowering pH (54). The
rheological behavior also depends on which mucin is the predom-
inant component of the preparation. For example, the Orthana
MUC6 mucin investigated by Yakubov et al. (86) and Di Cola
et al. (87) has a linear dumbbell structure with a central glycosy-
lated portion flanked by hydrophobic, ng regions, suggesting that
it consists of monomeric apoprotein, and not the polymerized, gel
forming mucin (c.f. Figure 3).

FIGURE 6 | (Top) the motion of the center of mass (c.m) of a 1 µm latex
bead trapped in a pore in the mucin gel at pH 2. The maximal excursion
of the particle’s c.m <0.1 µm, indicating that it is essentially immobile in the
gel network. (Bottom) occasionally, a particle finds a channel in the gel
network indicating that the network structure is heterogeneous. The length
unit in both images is micrometer. Reproduced from Celli (80) with author’s
permission.

MOTILITY OF H. PYLORI
The work described above on particle diffusion in gels shows that
the microstructure of mucin and mucus gels restricts the diffu-
sional motion of micron sized particles in such gels. It is not
a priori clear how the flagella-driven motion of H. pylori would
be impacted by the size restriction due to the movement in a con-
fined geometry. In the next part of this review we address how the
helical shape of H. pylori and it’s unique biochemical adaptation
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to survive in an acidic environment also enables it to go across the
mucus gel.

Like most other bacteria that colonize the GI mucosa, H.
pylori, too have evolved to be adapted to their unique niche of
the stomach mucosa. These Gram-negative, helical-shaped bac-
teria, 2.5–5.0 µm in length and 0.5–1.0 µm wide (88) have four
to six unipolar-sheathed flagella, which are essential for bacter-
ial motility. Each flagellum, ∼3 µm long and 2.5 nm thick, has
a characteristic terminal bulb, which is an extension of the fla-
gellar sheath (88). The motility and the helical shape have both
been shown to be of importance to the survival of these organ-
isms. Eaton et al. (89) showed that flagellar mutants of H. pylori
were unable to colonize the gastric mucosa of gnotobiotic piglets.
More recent work by Ottemann and Lowenthal (90) establishes
that mutants with non-motile but otherwise intact flagella also do
not colonize.

Helicobacter pylori has also evolved to survive in the acidic envi-
ronment of the stomach (91). It is well established that the ability
of H. pylori to hydrolyze urea and elevate the pH of its surround-
ings is important in enabling it to escape the acidity of the gastric
lumen (26, 27, 92, 93), penetrate the thick mucosal gel and reach
the surface epithelium (91). H. pylori, exhibits chemotaxis toward
urea present in the epithelial cell surface and a pH tactic response
toward elevated pH, both of which may also be crucial for survival
in the stomach (94). H. pylori survival in acidic conditions is also
stated conversely, namely that acidic conditions are required for
H. pylori survival in the presence of urea because the subsequent
rise in pH to highly alkaline levels is also toxic to the bacterium. To
help avoid overproduction of ammonia, the urea channel is regu-
lated by protons to open at low pH and close at high pH. H. pylori’s
TlpB receptors enable pH taxis (95, 96). It uses the mucosal pH
gradient which varies from low on the luminal surface to neutral
on the cell surface (28, 97) to move away from the lumen toward
the mucosal surface (98) where it attaches itself with adhesins (10,
99). Mutants lacking either the TlpA or TlpB receptors also show
altered extent of inflammation (100). The growth of H. pylori in
culture is also pH dependent (101).

The motility and chemotaxis of H. pylori and the related
Campylobacter has been investigated by using microscopic track-
ing [for a recent review see Ref. (102)]. By detailed comparison of
the motions of straight-rod E. coli and helical bacteria H. pylori
and Campylobacter, in liquid cultures Karim et al. (103) showed
that the helical bacteria swim faster than E. coli, presumably due
to their helical body shape. Their finding is consistent with the
idea of Berg and Turner (16) that a helical shape would result
in additional screw-like propulsion for bacteria moving in viscous
environments such as those faced by H. pylori in its native environ-
ment. However, differences between species cannot be ruled out in
this comparison. Yoshiyama et al. (30, 104) and Worku et al. (105)
investigated the motility and chemotactic response of H. pylori
in viscous synthetic polymer solutions, and found that swimming
speeds decrease with increasing viscosity of the polymer solution,
and the bacteria became immobile at very high viscosities.

MOTILITY OF H. PYLORI IN MUCIN SOLUTIONS AND GELS
We have examined the motility of H. pylori in purified gastric
mucin at different pH’s mucin (31) using phase contrast, digital

video microscopy to image live bacteria. Some typical results from
analysis of the movies published by Celli et al. (31) are shown and
discussed here. We observed that in PGM at neutral pH of 6 or 7
the bacteria swam considerable distances, along almost linear or
curved tracks as shown in Figure 7. They exhibit a large spread
in their speeds, reflecting both the variation in the size/shape and
number of flagella of individual bacteria, as well as the variation
in their speed as flagella motors fire asynchronously, and flagella
bundle and unbundle. The mean speed averaged over all bac-
teria is about 16 µm/s which is qualitatively comparable to the
speeds of about 20–30 µm/s reported by Worku et al. (105) in
methylcellulose.

In contrast to the swimming behavior observed in PGM solu-
tion at pH 6–7, we noted that when bacteria were added to PGM
gels buffered at low pH of 4 or 2 and deprived of urea, they were
immobilized and did not move over any measurable distance.
Rotation of the flagella and wiggling of the bacteria in-place could
be observed at 60–100× magnification, but this did not displace
the c.m of the bacterium. Using theoretical models based on resis-
tive force theory of Magariyama et al. (106–108) we obtained the
motor torque as 3.6× 10−18 Nm (31), which is about three times
the torque of E. coli swimming in an aqueous environment. The
higher torque maybe needed to rotate the flagella in a medium.

We also noticed that, although low pH impairs the flagella
motors (109, 110), the bacteria were alive at low pH over the
duration of the experiment, as confirmed by increasing the pH
back to neutral (see below) and observing the renewed motion

FIGURE 7 | Phase contrast image showing the tracks of a few H. pylori
bacteria in a PGM solution 15 mg/ml at pH 6. Adapted from the movies
included as supplementary material in Celli et al. (31). The tracks have been
colored for ease of visualization. Permission not required for author’s re-use
of their own work in PNAS after January 2009. Similar tracks are also
shown in Celli (80).
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of bacteria that were stuck in the low pH environment. In our
experiments with motility in PGM gels, we observed a dramatic
difference depending on the presence of urea. In the absence of
urea the bacteria remained immobile in the low pH gel. However,
if urea was present and the sample was not buffered, then bacteria
that were immobile in a low pH PGM gel, became mobile within a
few minutes. Using two-photon fluorescence microscopy to image
the bacterial in an initially low pH mucin gel containing urea we
showed that the onset of bacterial movement is directly correlated
with a rise in pH to near neutral values, as indicated by the pH sen-
sitive fluorescent dye, BCECF (31). These observations in purified
PGM gels are consistent with observations in anesthesized gerbils,
which showed that H. pylori became immotile in <1 min at lumen
pH values of 2 and 3, and in 2 min at pH 4, but remained motile
for more than 15 min at pH 6 (111).

INFECTION WITH H. PYLORI AFFECTS THE RHEOLOGICAL
PROPERTIES OF PURIFIED PGM
The results above show that the motility of H. pylori depends
on the physical state of the mucin gel. To address the converse
question, whether the infection by H. pylori impacts the physical
properties of mucin or mucus, we performed measurements of the
frequency dependent bulk viscoelasticity of purified PGM infected
with the bacteria using oscillatory shear methods (31). In earlier
studies with purified PGM (shown in Figure 5) we had shown that
at pH 4 and 2 purified PGM is a gel with an elastic modulus that
dominates over the viscous response, while at pH 6 it is a solution
(74). A similar experiment on a 15 mg/ml PGM sample initially
at pH 4 incubated with H. pylori for 24 h (Figure 8) clearly shows
that the rheological parameters of the infected sample were close
to those of pure PGM at pH 6–7 and it remained a solution even at
the lowest stress values with a greatly reduced viscosity (31). The
concurrent gel to solution transition with the onset of mobility in
PGM containing urea suggests that H. pylori gets across the mucus

FIGURE 8 | Frequency dependent viscoelastic moduli, for H. pylori
infected PGM and control sample, both at pH 4 initially. The elastic
response G ′ (open black symbols) and viscous response G ′′ (filled red
symbols) data show that the control sample is a gel (G ′ > G ′′) while the
infected sample is a solution (G ′′ > G ′). From Celli et al. (31). Copyright
permission not required per PNAS policy effective January 2009.

gel using urease secretion to neutralize the acid, raising the pH, and
triggering a gel-sol transition. This is illustrated in Figure 9.

Some cautionary remarks about motility and rheology mea-
surements are in order here. Motility measurements in a popula-
tion of bacteria are inherently polydisperse. Thus, characterizing
the behavior by a single average velocity provides limited informa-
tion and could lead to erroneous predictions; either several differ-
ent statistical measures such as median, mean, maximal, and mini-
mal speeds should be reported or better yet, the entire distribution.
It is also important to analyze hundreds or thousands of tracks, as
bacteria move out of the focal plane, and sometimes get stuck in
air bubbles and similar defects. By the same token, measurements
made very close to the surface of the slide are likely to be influenced
by substrate interactions. We also note that bulk rheology provides
the average dynamical response, which may not be the same as
observed in microrheology, particularly in microstructured envi-
ronments. The bacteria can also find channels and swim through
other heterogeneities in the medium. Bulk rheology experiments
require a large sample volume (1–5 ml), while microrheology done
on a microscope slide requires only a few microliters. This is a great
advantage when analyzing purified samples, mutants, or expressed
proteins that are available only in small quantities.

The results discussed above suggest that other factors that can
de-gel the mucin would also enable H. pylori to get across the
mucus barrier. Worku et al. (105), had observed that H. pylori
which were immobile in biopsy samples of mucus, became motile
when saline was added to the mucus gel. On the basis of our exper-
iments showing that mucin does not gel at low pH in high salt
concentrations (54, 70, 74) we suggest that saline restores motil-
ity because it too triggers a gel to solution transition. Whether
these observations have implications for identifying factors such
as high salt diet, that may promote H. pylori infection in certain
populations, remains to be seen.

SUMMARY AND FUTURE OUTLOOK
The review presented here focuses narrowly on the interplay
between mucus structure and rheology and the motility of H.
pylori. Among the many topics that we have not discussed are
motility in a chemotactic environment, possible chemical inter-
actions of the bacterium with mucin or other factors present in
mucus, the binding of mucin to H. pylori, the role of H. pylori in
altering mucin production or proteolytic digestion of mucin, the
effect of the bacterium on mucous producing cells, the mucosal
factors that are involved in the adhesion of the bacterium to the
epithelial surface, and cell signaling in the mucus environment to
form a colony. Some references on these topics have been provided.

The work discussed here however, does show the importance
of physical limitations of the mucus gel microstructure and its
pH dependence on the motility of this important pathogen. It
also shows the usefulness of microscopic bacterial and particle
tracking tools for examining the initial stage of bacterial pene-
tration. We hope that this review encourages further theoretical
investigations of the fundamental problem of addressing how a
helical-shaped bacterium with helical flagella might propel itself in
a viscoelastic medium. Further experimental investigations using
microfluidics for investigating stomach mucus barrier (112) and
single molecule imaging methods, combined with advances in
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FIGURE 9 |This cartoon illustrates a possible mechanism by which H.
pylori gets across the mucus gel. According to Celli et al. (31), gastric mucin
forms a gel at low pH < 4. The bacterium cannot move in mucin gels. It
secretes urease that metabolizes urea, producing ammonia and elevating the

pH. This de-gels the mucin, and enables the bacterium to swim in the
resulting polymer solution. The picture, not copyrighted, is reproduced from
an NSF press release 09-149. http://www.nsf.gov/news/news_summ.jsp?
cntn_id=115409&org=NSF&from=news

molecular biology, genetics, immunology, and the availability of
mutants with specific molecular and functional alterations, will
enable deeper understanding of this fascinating problem.
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