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Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However,
milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal
endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal
endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure
compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle
comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from
nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed
that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes,
Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new
natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and
characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were
tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
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Introduction

Endophytes are fungi or bacteria that inhabit healthy living
plant tissues for all or part of their life cycle without causing
disease (Wilson 1995). Fungal endophytes are ubiquitous
among plants and are phylogenetically and ecologically
diverse (Petrini 1991; Arnold 2001, 2007); they are isolated
often by rigorous surface sterilization of healthy plant parts
followed by subsequent incubation in nutrient media (Carroll
1991). Two major groups of endophytes can be recognized
based on their mode of transmission, the systemic, vertically
transmitted endophytes that have been found in grasses
(Clavicipitaceae, Ascomycota), and the non-systemic, hori-
zontally transmitted endophytes that have been found in all
terrestrial and aquatic plants examined to date (Rodriguez
et al. 2009). Together, these fungal endophytes represent an
abundance of unexplored and novel diversity, both from
mycological (Faeth and Hammon 1997; Saikkonen et al.
1998; Arnold et al. 2000; Arnold 2001, 2007;
Suryanarayanan et al. 2005; Saikkonen 2007; Gazis et al.
2012) and chemical perspectives (Strobel and Daisy 2003;

Suryanarayanan et al. 2009; Kharwar et al. 2011), thus war-
ranting intensive exploration of these hyperdiverse endosym-
bionts for phylogenetic and chemical diversity (Smith et al.
2008).

Over the last decade, there have been numerous stu-
dies on fungal endophytes of medicinal plants (Tan and
Zou 2001; Strobel and Daisy 2003; Kumar and Hyde
2004; Tejesvi et al. 2007, 2011; Huang et al. 2008; Naik
et al. 2008; Xu et al. 2010; Chen et al. 2011; de Siqueira
et al. 2011; Verma et al. 2011; Bascom-Slack et al. 2012;
Miller, Qing, Sze, Neilan, et al. 2012; Miller, Qing, Sze,
Roufogalis, et al. 2012; Langenfeld et al. 2013), which
have begun to address questions about the diversity and
distribution patterns of these endophytes in various parts
of the plant. In addition, endophytes have also been inves-
tigated in search for new secondary metabolites (Schulz
et al. 2002; Chomcheon et al. 2005, 2006; Puri et al. 2005;
Gu et al. 2007; Aly et al. 2008, 2011; Kusari et al. 2009;
Debbab et al. 2009). However, fungal endophytes from
a well-known ethnobotanical plant commonly known as
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milk thistle, Silybum marianum (L.) Gaertn. (Asteraceae),
have not been explored, and thus both the fungal and the
chemical diversity of endophytes in this herb remain
uncharacterized.

Milk thistle consistently ranks among the best-selling
herbs in the USA (Blumenthal et al. 2006). Seeds from
milk thistle have been used since antiquity for their hepa-
toprotective properties (Kroll et al. 2007; Polyak et al.
2013). Through several fruitful collaborations, members
of our team have been investigating this herb for over a
decade including studies for prostate cancer chemopreven-
tion (Davis-Searles et al. 2005; Deep et al. 2007; Deep,
Oberlies, et al. 2008; Deep, Raina, et al. 2008; Deep et al.
2010; Graf et al. 2007), treatment of hepatitis C infection
(Morishima et al. 2010; Polyak et al. 2010; Wagoner et al.
2010, 2011; Blaising et al. 2013), and to evaluate enteric
metabolism (Brantley et al. 2010, 2013, 2014).
Phytochemical studies on milk thistle have led to the
isolation of seven major diastereoisomers (Kim et al.
2003; Lee and Liu 2003). Although much is known
about the phytochemistry of milk thistle, major gaps
remain in our knowledge about the fungal species compo-
sition and mycochemisty of this plant. Despite chemical
investigations of plant-based metabolites of milk thistle
that spans >50 years (Sy-Cordero et al. 2012; Napolitano
et al. 2013), no studies on the endophytes from this
botanical have been reported. In the last year, however,
members of our team showed that silybin A, silybin B,
and isosilybin A, three of the seven flavonolignans that
constitute silymarin, an extract of milk thistle seeds
(achenes) (Kroll et al. 2007), were detected for the first
time from a fungal endophyte, Aspergillus iizukae (G77),
which was isolated from the surface-sterilized leaves of
milk thistle (El-Elimat et al. 2014). We also reported on a
series of polyhydroxyanthraquinones from the guttates of
Penicillium restrictum (G85), which was isolated from the
stems of milk thistle (Figueroa et al. 2014).

To further understand the chemical mycology of fun-
gal endophytes of milk thistle, a culture-based approach
was initiated using molecular data from the nuclear ribo-
somal genes, such as internal transcribed spacer (ITS)
region and the partial region of the large subunit (LSU)
nrRNA gene, to identify the fungal endophytes of this
medicinal herb. The primary goal was to culture fungal
endophytes from leaves, stems, roots, and seeds of milk
thistle to evaluate species composition and phylogenetic
diversity. Additionally, we profiled the chemical diversity
by identifying the secondary metabolites produced by
these fungal endophytes (Strobel and Strobel 2007;
Bascom-Slack et al. 2012). Finally, as part of our efforts
towards screening our in-house library of pure compounds
in available bioassays, selected metabolites that were
obtained in sufficient quantity and purity during the course
of these studies were also evaluated for cytotoxicity
against a prostate cancer cell line (PC-3).

Materials and methods

Sampling of plants

Whole plants and seeds of Silybum marianum (L.) Gaertn.
(Asteraceae) were obtained from Horizon Herbs, LLC
(Williams, OR, USA). A voucher specimen was deposited
at the University of North Carolina Herbarium
(NCU602014). Four different collections of whole plants
and seeds were obtained for the study in 2011 (Lot # 6490;
Lot # 6510), 2012 (Lot # 12348), and 2013 (Lot # 6462).

Isolation of endophytic fungi

Fungal endophytes were isolated from healthy living
milk thistle plants. The stems, leaves, roots, and seeds
of the plant were cut into small pieces (~2–5 mm in
length) and washed with tap water. Subsequently, the
segments were surface sterilized by sequential immersion
in 95% ethanol (10 s), sodium hypochlorite (10–15%
available chlorine, Sigma) (2 min), and 70% ethanol
(2 min) using a modification of the protocol described
previously (Arnold et al. 2001, 2003; Arnold and Lutzoni
2007). The plant segments were transferred using aseptic
conditions onto 2% malt extract agar (MEA, Difco, 20 g
MEA, 1 L sterile distilled water amended with antibiotics
streptomycin sulphate of 250 mg l−1 and penicillin G of
250 mg l−1); antibiotics were used to prevent the growth
of bacterial endophytes. To test the efficacy of the sur-
face-sterilization procedure, individual surface-sterilized
segments were touched and then removed from the sur-
face on separate 2% MEA plates with antibiotics. The
absence of fungal growth on the nutrient media con-
firmed that the sterilization procedure was effective in
eliminating epiphytic fungi (Shultz et al. 1998). A total
of 605 segments of leaf, stem, roots, and seeds were
plated. Plates were sealed with parafilm and incubated
at room temperature (RT) in 12 h of dark/light until the
emergence of fungal colonies was observed. The fungi
were subsequently grown on 2% MEA, Potato Dextrose
Agar (PDA, Difco), and 2% soy peptone, 2% dextrose,
and 1% yeast extract (YESD). The fungal cultures are
maintained at 9°C at the University of North Carolina at
Greensboro, Department of Chemistry and Biochemistry
Fungal Culture Collection.

Characterization of fungal endophytes

Where possible, colony morphospecies identifications
were made using methods outlined earlier (Gazis and
Chaverri 2010). However, as many fungal endophytes do
not sporulate in culture, species identification using mor-
phological characters can be challenging (Arnold and
Lutzoni 2007; Hyde and Soytong 2008). Therefore, mole-
cular sequence data from the nuclear ribosomal ITS along
with the 5.8s region were used since this region has been
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designated as an official barcode for fungi (Schoch et al.
2012). In addition, the first two domains of the nuclear
ribosomal LSU (nrRNA gene) were sequenced to evaluate
phylogenetic diversity and distribution within the
Ascomycota (Liu et al. 2012).

DNA extraction and PCR amplification

For extraction of genomic DNA, mycelium from axenic
cultures was scraped with a sterile scalpel from plastic
Petri plates and ground to a fine powder in liquid nitrogen
using a mortar and pestle. Approximately 400 µl of AP1
buffer from the DNeasy Plant Mini Kit (QIAGEN Inc.,
Valencia, CA, USA) was added to the mycelial powder,
and DNA was extracted following the manufacturer’s
instructions. The DNA was eluted in 50 µl of molecular
biology grade water. Total genomic DNA was observed on
a 1% tris-borate-ethylenediaminetetraacetic acid agarose gel
stained with ethidium bromide. Fragments of complete ITS,
~600–650 bp and partial LSU (hypervariable regions D1/D2
divergent domains; ~600 bp) (Liu et al. 2012) were amplified
as a single fragment using PuReTaq™ Ready-To-Go poly-
merase chain reaction (PCR) beads (GE Biosciences
Healthcare, NJ, USA), using a combination of ITS5/ITS1F/
ITS1/LROR (forward) and ITS4/LR3 (reverse) primers
(Vilgalys and Hester 1990; White et al. 1990; Gardes and
Bruns 1993; Rehner and Samuels 1995), following estab-
lished thermocycler parameters outlined previously
(Promputtha and Miller 2010). The PCR products were
purified to remove excess primers, dNTPs, and non-specific
amplification products with the QIAquick PCR Purification
Kit (QIAGEN Inc.). Purified PCR products were used in
11 µl sequencing reactions with BigDye® Terminators
v3.1 (Applied Biosystems, Foster City, CA, USA) and
sequenced bidirectionally using the above primer combina-
tions. Sequences were generated on an Applied Biosystems
3730XL high-throughput capillary sequencer at the
University of Illinois at Urbana-Champaign Biotech facility.

Sequence alignment

Individual fragments were edited, and contigs for ITS and
LSU were assembled using Sequencher 5.2.3 (Gene Codes
Corp., Ann Arbor, MI, USA). Established guidelines
(Nilsson et al. 2012) were followed for all newly gener-
ated ITS sequences.

Designation of operational taxonomic units (OTUs)

For designation of operational taxonomic units (OTUs), the
ITS sequences were subjected to a BLAST search against
GenBank. A cut-off proxy of 98% was chosen for delinea-
tion of OTUs based on previous studies (Nilsson et al.
2006, 2008; Begerow et al. 2010; Gazis and Chaverri

2010; Koljalg et al. 2013). In addition, and where appro-
priate, knowledge of culture morphology was applied to the
ITS data to make OTU designation more reliable. For
designation of taxonomic names, the results of the ITS
BLAST search using GenBank were interpreted with cau-
tion using modification of outlined criteria (Goncalves et al.
2012). For species identities, for ≥99–100%, genus and
species were accepted; for 97% identity, genus and species
were accepted by using the term (cf. = compares with); for
≤97–95%, only genus was accepted.

Taxon sampling and phylogenetic analyses

The entire ITS region along with the 5.8S gene were
sequenced together with the adjacent D1/D2 region of the
28S rRNA gene. ITS sequences were obtained for 41 repre-
sentative isolates, whereas partial (D1/D2 region) of the 28S
rRNA gene were obtained for 37 representative isolates. The
ITS region was used to discriminate OTUs based on 98%
sequence similarity and construction of species phylogeny,
whereas the partial LSU region was used for phylogenetic
analysis to determine the phylogenetic affinities of isolates
with other closely related members of Ascomycota.

ITS sequences were obtained for 41 representative iso-
lates and aligned using the multiple sequence alignment
programme, MUSCLE® (Edgar 2004), with default para-
meters in operation. MUSCLE® was implemented using the
program Seaview (Gouy et al. 2010). Prior to maximum
likelihood (ML) analysis, ambiguous regions were removed
from the final alignment using G blocks (Castresana 2000;
Talavera and Castresana 2007). The ML analysis was per-
formed using RAxML v. 7.0.4 (Stamatakis et al. 2008) on the
CIPRES Portal (Miller et al. 2010.) v. 2.0 with the default
rapid hill-climbing algorithm and GTR model employing
1000 fast bootstrap searches. Clades with bootstrap
values ≥70% were considered as significant and of strong
support (Hillis and Bull 1993).

Taxon sampling for ML analysis of the LSU dataset
was obtained from previous study on the phylogenetic
relationships of Ascomycota (Schoch et al. 2009). To
visualize the higher taxonomic affiliations of the milk
thistle fungal endophytes, partial LSU data (D1/D2
domains) from 37 representative isolates were incorpo-
rated into a core alignment of 189 taxa sampled from the
Ascomycota (Schoch et al. 2009), which consisted of
1519 nucleotides. The final LSU alignment, after ambig-
uous characters were excluded, consisted of 1264 nucleo-
tides. Representatives of four classes of Ascomycota
(Dothideomycetes, Eurotiomycetes, Leotiomycetes, and
Sordariomycetes) were included in the 226 taxa align-
ment, which included 37 representative isolates from the
D1/D2 region of the LSU from milk thistle endophytes.
Subsequently, ML analysis was conducted as outlined
earlier using RAxML.
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Combined ITS-LSU sequence data generated for this
study were deposited in GenBank under following acces-
sion numbers (KM215615–KM215649), whereas com-
plete ITS sequences were deposited in GenBank under
accession numbers (KM215650–KM215653).

General experimental procedures for chemical analyses

Nuclear magnetic resonance (NMR) experiments were con-
ducted using an Agilent-700, JEOL ECA-500, and/or ECS-
400 spectrometers (700, 500, or 400 MHz for 1H and 175,
125, or 100MHz for 13C; Agilent Technologies, Santa Clara,
CA, USA; JEOL Ltd., Tokyo, Japan). HRESIMS data were
collected using an electrospray ionization source coupled to
a Q-ToF Premier mass spectrometer (Waters Corp., Milford,
MA, USA) or a LTQ Orbitrap XL system (Thermo Fisher
Scientific, San Jose, CA, USA) in both positive and/or
negative ionization modes by either direct injection or via a
liquid chromatography/autosampler system that consisted of
Acquity UPLC system (Waters Corp.). A CombiFlash Rf
system using a RediSep Rf Si-gel Gold column (both from
Teledyne-Isco, Lincoln, NE, USA) was employed for nor-
mal-phase flash column chromatography. High-performance
liquid chromatography (HPLC) separations were performed
using a Varian Prostar HPLC system (Varian Inc., Palo Alto,
CA, USA) equipped with Prostar 210 pumps and a Prostar
335 photodiode array (PDA) detector using Galaxie
Chromatography Workstation software (version 1.9.3.2,
Varian Inc.). YMC ODS-A (Waters Corp.; 5 µm; columns
of dimensions 250 × 20 mm, 250 × 10 mm, and
250 × 4.6 mm) or Kinetex C18 (Phenomenex, Torrance,
CA, USA; 5 µm; columns of dimensions 250 × 21.2 mm
and 250 × 4.6 mm) was used for preparative, semi-prepara-
tive, and analytical HPLC, respectively. For ultra-perfor-
mance liquid chromatography (UPLC) analysis, a BEH C18

(Waters Corp.; 1.7 μm; 50 × 2.1 mm) column was used.
Optical rotation data were acquired on a Rudolph Research
Autopol III polarimeter. Electronic circular dichroism (ECD)
data were collected using an Olis DSM 17CD spectrophot-
ometer (Olis, Bogard, GA, USA). UV data were collected
using a Varian Cary 100 Bio UV–vis spectrophotometer. The
solvents were purchased from Fisher Scientific.

Fungal cultures for solid-state fermentation

For chemical extractions, fungal cultures were grown on rice
(VanderMolen et al. 2013). To make seed cultures for inocu-
lating rice, a piece of fresh culture grown in MEA medium
was excised from the leading edge of the colony and trans-
ferred to a liquid medium containing 2% soy peptone, 2%
dextrose, and 1% yeast extract (YESD). Following incubation
(7 days) at 22°C with agitation, the culture was used to
inoculate 50 ml of rice media prepared using rice and twice
the volume of rice with H2O in a 250 ml Erlenmeyer flask.
This was incubated at 22°C until the cultures showed good

growth (typically 14–21 days) to generate the screener cul-
tures. For large-scale production of fungal cultures, four
250 ml Erlenmeyer flasks were inoculated using one seed
culture for each flask.

Chemical extraction of fungal cultures

To each 250 ml flask containing a fungal culture, 60 ml of 1:1
MeOH/CHCl3 were added. The cultures were chopped with a
spatula and were shaken overnight (~16 h; RT) at ~100 rpm.
The cultures were filtered by vacuum, and the remaining
residues were washed with MeOH. To the filtrate, 90 ml of
CHCl3 and 150 ml of water were added. The mixtures were
stirred for 30 min and then transferred to separatory funnels.
The bottom layers were drawn off into round bottom flasks,
which were evaporated to dryness. These dried organic
extracts were reconstituted with 100 ml of 1:1 MeOH/
MeCN and 100 ml of hexanes and transferred to separatory
funnels, where the biphasic solutions were shaken vigorously.
The MeOH/MeCN layer was drawn off and evaporated to
dryness under vacuum to obtain the organic extract. For
scaled-up fermentation extracts (4 × 250 ml flasks), a protocol
similar to that described above was employed, and the
volumes of various solvents were adjusted accordingly.

Isolation of secondary metabolites

Preliminary analysis of the crude extracts was performed
using UPLC–PDA–high-resolution tandem mass spectro-
metric dereplication protocol, as detailed previously
(El-Elimat et al. 2013). In an isolated case (G111), these
data were sufficient for structural characterization. The fol-
lowing general protocol was used for chemical analyses of
the remaining fungal extracts. Each crude extract was
adsorbed on a minimum amount of Celite 545 (Acros
Organics, Geel, Belgium) and dried before loading on to a
cartridge. This adsorbed mixture was subjected to normal-
phase silica gel flash column chromatography employing a
step gradient with hexanes, CHCl3, and MeOH. Based on
NMR and/or analytical HPLC profiles of the pooled col-
umn fractions, according to the UV and evaporative light
scattering detector data, samples were then selected for
further purification by preparative reversed-phase (RP)
HPLC, resulting in the isolation of pure compounds. In a
few cases (G323, G377, G410, G411, G412, and G413),
the crude extract was directly subjected to preparative RP
HPLC without a prior separation employing normal-phase
column chromatography. Finally, the pure secondary meta-
bolites (>95% purity by UPLC and/or NMR) were charac-
terized using a suite of NMR and MS techniques. In cases
where the complete NMR data for known compounds were
not reported in the literature, they have been presented in
the Supporting Information. In the process of structure
elucidation, if the NMR data for selected compounds
were recorded in deuterated solvents other than those
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reported in the literature, then those data have also been
presented (Figure S1, Supporting Information). Since
HPLC methods used were unique to each extract/fraction
that was pursued for additional separation, the details have
not been discussed here. However, the isolation protocols
for the new compounds are presented below as representa-
tive examples.

Isolation of biscognin A (1), chlamydospordiol (2),
and biscognin B (3)

A defatted organic extract of Biscogniauxia mediter-
ranea (G410; 190 mg) was subjected to RP HPLC [gra-
dient elution using MeCN:H2O (containing 0.1%
HCOOH): 20–80% MeCN for 50 min and 80–100% for
20 min; λ = 210 and 254 nm] using a YMC ODS-A
column (250 × 20 mm) eluting at a flow rate of 12 ml/
min to afford chlamydospordiol (2; 16.38 mg, tR 8.5 min),
biscognin B (3; 2.86 mg, tR 21.0 min), and biscognin A
(1; 1.78 mg, tR 22.5 min) in addition to other metabolites
listed in Table 2.

Morphological characteristics and identification of
Biscogniauxia mediterranea (G410)

Strain G410 was grown on PDA for 3 weeks. On PDA,
the colony morphology resembled the description offered
by Collado et al. (2001). Mycelium brown to reddish
brown, mostly superficial to partly immersed; colony
reverse pale brown to cinnamon. In our strain, the conidia
were not produced abundantly. Based on the data obtained
from ITS sequence, however, G410 was more closely
related to Biscogniauxia mediterranea isolates sequenced
by Sánchez-Ballesteros et al. (2000) than those generated
by (Collado et al. 2001). This is interesting because ITS
sequences from Sánchez’s study were generated from
American collections of B. mediterranea, whereas those
of Collado’s study were generated from European collec-
tions. It has been suggested that there is a high divergence
between populations of B. mediterranea at both side of the
Atlantic Ocean (Collado et al. 2001). The ITS sequences
obtained from our strain G410 from the USA clustered with
ITS sequences obtained from isolates of B. mediterranea in
north, central, and south America (AF390413, AF390414,
GQ377479, KF850388) as well as France (EF026134).

Isolation of monascuskaoliaone B (4) and monascus-
kaoliaone (5)

A defatted organic extract of Microascus nidicola
(G377; 42 mg) was subjected to RP HPLC [gradient
elution using MeCN:H2O (containing 0.1% HCOOH):
40–100% MeCN for 40 min; λ = 210 and 254 nm] using
a YMC ODS-A column (250 × 20 mm) eluting at the
same flow rate to afford monascuskaoliaone B (5;
0.87 mg, tR 9.5 min) and monascuskaoliaone (4;
1.01 mg, tR 25.5 min). A scaled-up fermentation extract
of this isolate did not yield the above compounds, but
instead, entirely different metabolites including epi-
pestalamide A (6) were encountered as delineated in
Table 2.

Morphological characteristics and identification of
Microascus nidicola (G377)

Identification of strain G377 was based on the observation
of cultural morphology as well as on micromorphological
features. Based on its gross morphology, G377 showed a
number of similarities to the genus Microascus Zukal
(Barron et al. 1961) with close resemblance to M. nidicola
Massee & E.S. Salmon (Abbott et al. 2002). These characters
included black, globose to ovoid perithecia; peridial wall
composed of textura angularis in surface view; evanescent
asci; falcate to lunate ascospores (~5 × 2 µm); abundant
perithecia produced on PDA media with orange to copper
coloured ascospores produced in cirri at maturity (Barron et al.
1961; Malloch 1970; Abbott et al. 2002).

Biscognin A (1): white powder; [α]25D ‒45 (c 0.11,
CHCl3); UV/Vis (MeOH) λmax (log ε) 214 (3.2), 286 (3.4)
nm; 1H NMR data (CDCl3; 400 MHz) δ 5.43 (s, 3-H), 4.04
(dq, J = 8.3, 6.2, H-8), 3.80 (s, 4-OMe), 2.85 (dq, J = 8.3, 7.1,
H-7), 1.90 (s, 5-Me), 1.25 (d, J = 7.1, H3-9), 1.17 (d, J = 6.2,
7-Me); 13C NMR (CDCl3; 100 MHz) δ 171.0 (C-4), 164.6
(C-2), 162.1 (C-6), 108.1 (C-5), 87.9 (C-3), 69.8 (C-8), 56.2
(4-OMe), 42.7 (C-7), 21.4 (C-9), 15.0 (7-Me), 9.3 (5-Me);
see Figure S2; heteronuclear multiple bond correlations
(HMBCs) (H-# → C-#): H-3 → C-2 (wk), C-4, and C-5;
H-7→ 7-Me, C-8, and C-9; H-8→ C-6 (wk), C-7 (wk), and
7-Me; 4-OMe→ C-4; 5-Me→ C-4, C-5, and C-6; 7-Me→
C-6, C-7, and C-8; H3-9→ C-7 and C-8; HRESIMS obsdm/
z 213.1126 [M + H]+ (calcd for C11H17O4, 213.1121); pre-
paration and 1H NMR data for Mosher’s esters of 1 are in
Figure S5.

Biscognin B (2): white powder; UV/Vis (MeOH) λmax

(log ε) 222 (3.4), 277 (3.5), 326 (3.5) nm; 1H NMR data
(CDCl3; 400 MHz) δ 5.52 (s, 3-H), 3.96 (s, 4-OMe), 2.33
(s, 7-Me), 2.07 (s, 8-Me); 13C NMR (CDCl3; 100 MHz) δ
(C-#) 169.0 (C-4), 166.9 (C-8a), 162.7 (C-7), 160.6 (C-2
or C-5), 156.9 (C-2 or C-5), 106.1 (C-8), 97.3 (C-4a), 88.0
(C-3), 57.2 (4-OMe), 18.3 (7-Me), 9.8 (8-Me); see Figure
S3; HMBC correlations (H-# → C-#) H-3 → C-2, C-4, C-
4a, and C-5; 4-OMe→ C-4; 7-Me → C-7 and C-8; 8-Me
→ C-7, C-8, and C-8a; HRESIMS obsd m/z 223.0602
[M + H]+ (calcd for C11H11O5, 223.0601).

Monascuskaoliaone B (4): Colourless oil; [α]25D +30
(c 0.067, MeOH); UV/Vis (MeOH) λmax (log ε) 263
(3.4) nm; ECD (223 µM, MeOH) λmax (Δε) 256 (+13)
nm; 1H NMR data (CDCl3; 700 MHz); δ 5.46 (s, 4-H),
3.93 (t, J = 6.2, H2-7), 3.49 (m, H-15), 2.76 (m, H2-6),
1.69 (m, H2-8), 1.49 (m, Hα-16), 1.41 (m, Hβ-16), 1.16‒
1.48 m (m, H2-9 ‒ H2-14), 1.34 (s, 2-Me), 0.92 (t,
J = 7.5, H3-17);

13C NMR (CDCl3; 175 MHz) δ 207.3
(C-3), 189.3 (C-5), 103.7 (C-4), 91.6 (C-2), 73.5
(C-15), 59.5 (C-7), 36.8 (C-8), 34.3 (C-6), 30.4
(C-16), 10.1 (C-17), Carbon NMR chemical shift for
C-9‒C-14, could not be assigned with confidence but
are listed here: δ 37.1, 29.56, 29.58, 29.4, 25.7, 23.1,
22.2; see Figure S4; Key HMBC correlations (H-# →
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C-#) 2- Me → C-2, C-3, and C-8; H-4 → C-2, C-3, and
C-5; H2-6 → C-4, C-5, and C-7; H2-7 → C-5 and C-6;
H3-17 → C-15 and C-16; HRESIMS obsd m/z 299.2213
[M + H]+ (calcd for C17H31O4, 299.2217); Preparation
and 1H NMR data for Mosher’s esters of 4 are in
Figure S5.

Epi-pestalamide A (6): Yellow oil; [α]25D +15 (c 0.10,
MeOH); 1H and 13C NMR data in (CD3)2CO were iden-
tical to those reported in literature (Ding et al. 2008).

Bioassay

The effect of pure compounds on viability of human
prostate carcinoma PC-3 cells was determined by the
MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetra-
zolium bromide] assay, and growth inhibition was
assessed as the percent cell viability wherein vehicle-
treated cells were taken as 100% viable. Human prostate
carcinoma PC-3 cells were purchased from the
American Type Culture Collection and cultured in
RPMI 1640 medium, supplemented with 10% heat-inac-
tivated foetal bovine serum and 100 U/ml penicillin G
and 100 µg/ml streptomycin sulphate at 37°C in a
humidified 5% CO2 incubator. Briefly, PC-3 cells
(2500 cells per well) were seeded in a 96-well plate,
allowed to grow overnight, and then treated with 25 µM
of each test compounds for 48 h. Cells treated with
dimethyl sulphoxide served as vehicle control.
Statistical analysis was carried out with Sigma Stat soft-
ware version 2.03 (Jandel scientific, San Rafael, CA,
USA). One-way ANOVA followed by Tukey’s test was
used for multiple comparisons, and a statistically sig-
nificant difference was considered at p ≤ 0.05.

Results

Mycology

From 605 tissue samples, 41 isolates of endophytic fungi
were recovered in culture. The total isolation frequency
(the percent of tissue samples bearing cultivable endo-
phytes) was 6.7%. The highest percentage of isolates
was recovered from leaf tissue (16.5%) followed by root
(3.6%), stems (1.9%), and seeds (1.4%). All of the fungal
endophytes isolated from milk thistle belonged to the
Ascomycota (Table 1; Figures S7 and S8).

ITS data

Based on 98% sequence similarity, 41 isolates were seg-
regated into 25 OTUs (Figure S7; Table 1). The ITS
alignment from representative isolates of fungal endo-
phytes of milk thistle consisted of 870 nucleotides. The
final ITS alignment, after the ambiguous regions were
excluded, consisted of 436 nucleotides. The genera

Penicillium, and Biscogniauxia were represented by
more than one species.

LSU phylogeny of fungal endophytes from milk thistle
and their phylogenetic affinities with the Ascomycota

The LSU ML tree shows the phylogenetic diversity
of milk thistle fungal endophytes and their affinities
to the members of the Ascomycota (Figure S8).
These endophytes were associated with four
major classes of Ascomycota (Dothideomycetes,
Eurotiomycetes, Leotiomycetes, and Sordariomycetes)
(Figure S8). Within the Dothideomycetes, these endo-
phytes (e.g., Alternaria sp. and Cladosporium sp.) showed
phylogenetic affinities with the orders Pleosporales and
Capnodiales. In the Eurotiomycetes, the milk thistle endo-
phytes were nested within the Eurotiales and were repre-
sented by genera such as Penicillium and Aspergillus. The
majority of the milk thistle endophyte isolates (35%)
showed associations with the Sordariomycetes and were
nested in diverse orders, including Diaporthales,
Hypocreales, Microascales, Sordariales, and Xylariales.
Only one isolate, Trichophaea sp., showed phylogenetic
affinities with the Leotiales (Leotiomycetes) (Figure S8).

Chemistry

Sixty-two secondary metabolites, representing a variety of
structural classes, including polyketides, terpenoids, pep-
tides, and those of mixed biosynthetic origins, were isolated
and characterized from extracts of solid-phase cultures of
endophytic fungi from milk thistle (Table 2 and Figure 1).
Fifty-eight of these compounds were known in the literature
and have been previously encountered from other fungal
species (Figure S1). Many of these metabolites have been
reported to possess diverse biological activities.

The flavonolignans from milk thistle have received
considerable attention in recent years for their role in
prostate cancer chemoprevention (Davis-Searles et al.
2005; Agarwal et al. 2006). In cases where the compounds
from milk thistle fungal endophytes were isolated in suffi-
cient purity (>95% by UPLC and/or NMR), they were
tested in vitro for cytotoxic activity against the human
prostate carcinoma (PC-3) cell line (Figure S9). PC-3
cells were treated with 25 µM of each compound for
48 h and analysed in the MTT assay.

Several compounds were found to exhibit moderate to
strong cytotoxicity. Beauvericin, a cyclic hexadepsipep-
tide, was the most cytotoxic of all the evaluated metabo-
lites (exhibiting 3% cell viability at 25 µM concentration)
and has been reported in the literature to inhibit PC-3M
cell proliferation/survival with an IC50 value of 3.8 µM
(Zhan et al. 2007). Beauvericin has been shown to
possess a variety of additional activities including ento-
mopathogenic, antimicrobial, anticholesterolemic, and
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cytotoxic effects (Tomoda et al. 1992; Wang and Xu
2012). The antibiotic SS 19508D and a sample containing
an inseparable major:minor (~10:1) mixture of euplectin
and coneuplectin also showed significant cytotoxicity
(~5% cell viability) in these assays. The biological activity
of euplectin, originally isolated from Flavoparmelia
euplecta (Ernst-Russell et al. 2000), has been evaluated
against the murine P-815 mastocytoma cell line (IC50

1.67 µg/ml), but neither euplectin nor antibiotic SS
19508D has been tested previously against models of
prostate carcinoma. Other secondary metabolites, such as
bisdechlorogeodin, verrucarin A, and tyroscherin, were
found to be moderately cytotoxic (10–25% cell viability).

In addition to the known compounds, four new
natural products [biscognin A (1), biscognin B (3),

monascuskaoliaone B (4), and epi-pestalamide A (6)]
were also obtained (Figure 2). Biscognin A (1) was
assigned the molecular formula C11H16O4 on the basis of
HRESIMS data, indicating an index of hydrogen defi-
ciency of four. The 1H NMR spectrum showed signals
for an olefinic proton, two methine protons (including an
oxymethine signal), three methyl groups (a singlet and
two doublets), and a methoxy group (Figure S2). All
eleven carbons, including six sp3- and five sp2-hybridized
carbons, were observed in the 13C NMR spectra. These
signals closely resembled the data for a related compound,
chlamydospordiol (2), which was also isolated as one of
the major metabolites during investigation of the same
endophytic fungus (G410). A set of mutually coupled
diastereotopic protons (δ 4.52 and δ 4.29; J = 12.4 Hz),

Figure 1. Structures of selected secondary metabolites identified from fungal endophytes of milk thistle and their biosynthetic classes.
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characteristic of an isolated oxymethylene unit in 2, was
replaced by a methyl singlet at δ 1.90 (5-Me) in compound
1; this accounted for the only key difference in the 1H
NMR spectra of the two compounds. A corresponding
carbon signal (δ 9.3; 5-Me) was also observed in the 13C
NMR spectrum of 1. HMBC correlations from 5-Me to C-
4 (δ 171.0), C-5 (δ 108.1), and C-6 (δ 162.1) confirmed
the position of this methyl group, and the remaining
HMBC correlations were consistent with the structure
shown for 1. The relative configuration at C-7 and C-8
could not be determined due to unsuccessful crystalliza-
tion attempts limited by sample paucity as well as degra-
dation over time. Mosher’s method (Hoye et al. 2007) was
employed to independently assign the absolute configura-
tion at C-8. However, esterification conditions resulted in
the disappearance of the olefinic signal H-3 (δ 5.43) in the
reaction product, suggesting that a modification of the ring
system occurred during the reaction. Even so, the portion of
the compound that contained the side chain appeared to
remain intact, and the downfield chemical shift for H-8
(δ 5.17) in the reaction product compared with the δ 4.04
in 1 supported the formation of the acylated product. The
measurable Δδ values (Figure S5) observed for key signals
of the R- and S-esters were consistent with the assignment
of the R-configuration at C-9.

Biscognin B (3) had the molecular formula C11H10O5

(seven unsaturations), suggesting a structural motif similar
to compounds 1 and 2 but with noticeable differences in the
NMR data. Only four singlets, corresponding to an olefinic
proton, a methoxy group, and two methyl groups, were
observed in the 1H NMR spectrum of 3 (Figure S3). The
13C NMR spectrum showed signals for eleven carbons,
eight of which correlated to sp2-hybridized carbons. The
chemical shifts and HMBC correlations from H-3 to
4-OMe were indicative of a six-membered ring system
identical to compounds 1 and 2. Both methyl doublets (7-
Me and 8-Me) showed HMBC correlations of the olefinic

carbons C-7 (δ 162.7) and C-8 (δ 106.1). An additional
HMBC correlation from 8-Me to C-8a (δ 166.9) confirmed
the positions of the methyl groups on carbons adjacent to
each other (C-7 and C-8) and established the connectivity
of C-8 to C-8a. Only a -CO2 unit and two unsaturations
were unaccounted. A four-bond HMBC correlations from
H-3 to C-5 (δ 160.6 or δ 156.9) and chemical shift for C-4a
(δ 97.3) as well as C-7 (δ 162.7) were consistent with a
lactone linkage to C-4a via the carbonyl.

The molecular formula of monascuskaoliaone B (4)
was determined to be C17H30O4 (three unsaturations) by
HRESIMS. The 1H NMR spectrum exhibited signals for
an olefinic proton, an isolated pair of mutually coupled
methylene units, two methyl groups (singlet and triplet),
and a cluster of aliphatic protons (Figure S4). A similar set
of signals were also observed for a known natural product,
monascuskaoliaone (5; molecular formula C17H30O3) that
was also encountered during the course of our studies
(Cheng et al. 2010). A comparison with the available
literature data for 5 suggested an identical five-membered
furan-derived ring system and a similar side chain at C-5
in the new metabolite 4. HMBC correlations from olefinic
proton H-4 (δ 5.46) to C-2 (δ 91.6), C-3 (δ 207.3), and C-
5 (δ 189.3) as well as from aliphatic H2-6 (δ 2.76) to C-4
(δ 103.7), C-5, and C-7 (δ 59.8) supported the analogous
assignment of this partial structure. HMBC correlations
from the methyl group singlet (δ 1.34) to C-2, C-3, and C-
8 (δ 36.8) established the location of this unit alpha to the
carbonyl group. In comparison to 5, key differences
resided in chemical shifts for methylene protons of the
decyl side chain and presence of an additional oxymethine
signal (δ 3.49; H-15) in the 1H NMR spectrum of 4. An
HMBC correlation from H3-17 (δ 0.92) to carbon C-15 (δ
73.5), as well as the multiplicity of H3-17 (triplet), was
consistent with the placement of a hydroxyl group at C-15.

The absolute configuration at C-15 was assigned as
R- using the Mosher’s method (Hoye et al. 2007). Although

Figure 2. Structures of new secondary metabolites (1, 3, 4, and 6) and selected relevant analogues (2 and 5).

Mycology 19



both the primary and secondary alcohols were acylated on
reaction with Mosher’s reagent, the distant location of the
resulting ester groups was not expected to interfere with the
assignment of absolute configuration at C-15. Due to exten-
sive overlap in the 1H NMR signals for the aliphatic chain
of 4, the only useful ΔδS-R value (+0.12) for H3-17 was
employed for the above assignment (Figure S5).
Monascuskaoliaone (5) was isolated originally from
Monascus kaoliang as a racemic mixture (Cheng et al.
2010). However, optically active samples for 4 and 5
were obtained from the extract of Microascus nidicola
(G377). Since both compounds possessed an α, β-unsatu-
rated ketone chromophore, a comparison of the calculated
and experimental ECD spectra for both enantiomers was
employed to determine the absolute configuration at C-2.
Positive Cotton effects observed for both compounds were
consistent with the assignment of R-configuration at C-2
(Figure S6). These results were also supported by compar-
isons between calculated and experimental-specific rotation
values (Figure S6).

Epi-pestalamide A (6) had the molecular formula
C18H17NO6 (eleven unsaturations). The 1H and 13C NMR
data were identical to those reported for pestalamide A (Ding
et al. 2008). However, comparison of the specific optical
rotation values of 6 (+15) and pestalamide A (–12) suggested
that 6 was an enantiomer of the reported compound.

Discussion

This is the first comprehensive study of fungal endophytes
from Silybum marianum, a plant of the Asteraceae.
However, there have been few previous studies that have
screened endophytes from Asteraceous plants (Romero
et al. 2001; Shipunov et al. 2008; Gallo et al. 2009).
Several genera of endophytes isolated in the present study
(Table 1), such as Aspergillus, Alternaria, Cladosporium,
Diaporthe, Nemania, and Penicillium, were also isolated
from achenes of an invasive spotted knapweed, Centaurea
stoebe (Shipunov et al. 2008). However, the species iden-
tities of the isolated fungi between S. marianum and C.
stoebe were different. The genus Alternaria, isolated in this
study, was also reported as an endophyte of Smallanthus
sonchifolius (Asteraceae), which is a medicinal plant used
for antidiabetic and antiinflammatory properties in Brazil,
Japan, and the New Zealand (Gallo et al. 2009).

The majority of the fungal endophytes isolated in the
present study can be classified as non-clavicipitaceous
(class 3 endophytes) based on their host colonization
patterns, mechanism of transmission, ecological functions,
and in planta biodiversity (Rodriguez et al. 2009). Most of
these class 3 non-clavicipitaceous endophytes belong to
the Ascomycota (Pezizomycotina) (Figures S7 and S8). In
our study, the isolated class 3 endophytes largely belonged
to the Sordariomycetes and Dothideomycetes (Figure S8).
Isolation of endophytes from these lineages of fungi

agrees well with those reported in previous studies on
fungal endophytes (Arnold 2007; Arnold and Lutzoni
2007; Hoffman and Arnold 2008; Gazis and Chaverri
2010; Linnakoski et al. 2012).

Despite screening 140 surface-sterilized milk thistle
seeds, we only recovered 2 OTUs (Alternaria sp. and
Diaporthe sp.) from the seeds. These fungi have been
reported as endophytes previously from foliage of other
plant species (Kurose et al. 2012; Douanla-Meli et al.
2013). Ganley and Newcombe (2006) found that only 2%
of endophytes were recovered from 750 surface-sterilized
seeds of Pinus monticola. Similarly, Arnold et al. (2003)
were unsuccessful in obtaining endophytes from seeds of
Theobroma cacao, while they found diverse endophytes
associated with foliage of the same species. Conversely,
Gallery et al. (2007) were able to recover ascomycetous
endophytes from surface-sterilized seeds of a tropical tree
(Cecropia insignis) using culture-independent methods, but
failed to isolate fungi from seeds using culture-based meth-
ods. Thus, it is likely that seeds harbour a community of
endophytes that may be more recalcitrant to culturing.

Similarly, we isolated only two OTUs (Penicillium sp.
G342 and Chaetomium sp. G45) from surface-sterilized
roots fragments. This may be due to the fact that only 55
root fragments were plated. Members of Chaetomium sp.
are commonly found in the soil (Soytong et al. 2001), and
therefore it was not surprising to find it associated with
roots of milk thistle. Chaetomium spp. have also been
reported as endophytes of many different plants such as
soybean (de Souza Leite et al. 2013), wheat (Syed et al.
2009), and Ginkgo biloba (Qin et al. 2009). Various endo-
phytic Penicillium spp. have been reported in the past to
be associated with roots; for example, in Picea mariana,
about 30 different Penicillium spp. have been isolated
(Stone et al. 2000).

It is well known that endophytes may play a role in the
growth and development of the host plant, in addition to
providing protection against various sources, and are
therefore potential sources of biologically active natural
products (Strobel et al. 2004). Endophytic fungi inhabiting
plants with a well-established ethnobotanical history
represent a unique ecological group, since the medicinal
effects of the plant could also be related to the resident
endophytes (Kusari, Pandey, et al. 2013). In the last 10
years, there has been an upsurge of studies that have
targeted fungal endophytes from medicinal plants for the
isolation and characterization of novel metabolites (Wang
et al. 2002; Tejesvi et al. 2006; Gomes-Figueiredo et al.
2007; Huang et al. 2008; Hyde and Soytong 2008; Naik
et al. 2008; Krishnamurthy et al. 2009; Bills et al. 2012;
Gond et al. 2012; Mishra et al. 2012; Vieira et al. 2012;
Zubek et al. 2012; Miller, Qing, Sze, Neilan, et al. 2012;
Aly et al. 2013; Chen et al. 2013; Ellsworth et al. 2013;
Kusari, Kusari, et al. 2013). In the present study, we have
isolated four new secondary metabolites [biscognin A (1),
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biscognin B (3), monascuskaoliaone B (4), and epi-pesta-
lamide A (6)] from milk thistle endophytes, in addition to
scores of known compounds that are members of a range
of different classes of natural products. A plethora of
biological activities for these compounds have been
reported in the literature.

As part of our screening programme that involves test-
ing the isolated metabolites in the available assays, and in
view of well-documented chemopreventive properties of
plant metabolites of milk thistle, selected pure compounds
from fungal endophytes were also evaluated for cytotoxi-
city against a human prostate carcinoma cell line. The new
compounds (1, 3, and 6) were found to be inactive in this
assay, and compound 4 was not tested due to paucity of
sample. It is likely that the new compounds isolated from B.
mediterranea, in this study, could have a more natural
function such as being an insecticidal agent or an insect
signal molecule (pheromone). For example, a study by
Pažoutová et al. (2013) showed that new compounds from
Daldinia hawksworthii isolated from Salix spp. and a sym-
biont of woodwasp, Xiphydria prolongata exhibited weak
cytotoxic and antimicrobial activities. The authors con-
cluded that the compounds isolated from the Xylariaceous
endophytes might have a more natural ecological function
(Pažoutová et al. 2013). Thus, it would be interesting to test
the bioactivity of biscognin A (1) and biscognin B (3) in the
future as signalling molecules or insecticidal activity, since
members of Xylariaceous endophytes from plants are
linked to insects with respect to their life cycles (Bills
et al. 2012). However, several compounds such as beau-
vericin, antibiotic SS 19508D, euplectin/coneuplectin
(major:minor mixture), bisdechlorogeodin, verrucarin A,
and tyroscherin exhibited moderate to strong cytotoxic
activities (Figure S9). Most of these metabolites had not
been examined previously in the PC-3 cell assay.

Several cytotoxic compounds that could contribute to
the chemopreventive properties of milk thistle extracts
were encountered during this study. However, an assess-
ment of the therapeutic role of endophytes is debatable,
partly due to the sporadic distribution of these microor-
ganisms, both within the plant and based on the geogra-
phical location. Such variations have been reported for
fungal endophytes inhabiting other plants (Collado et al.
1999; Taylor et al. 1999; Göre and Bucak 2007).
Furthermore, extensive studies are required to link the
role of the endophytic metabolites to the biological activ-
ities displayed by plant compounds as well as their role in
plant physiology. Even so, the above results provide an in-
depth analysis of the chemical mycology of the fungal
endophytes from milk thistle. Our study extends beyond
other such surveys, where typically only the crude extracts
were tested for bioactivity (de Siqueira et al. 2011; Zhao
et al. 2011; Carvalho et al. 2012). In the present investiga-
tion, scores of compounds were isolated, characterized,
and tested in the cytotoxicity assay.

Summary and conclusions

This is the first study that concurrently examined the chem-
istry and mycology of fungal endophytes from milk thistle.
Our study, although based on a restricted geographical sam-
pling, has demonstrated that fungal endophytes inhabit milk
thistle leaves, stem, seed, and roots. Leaves harbour the most
phylogenetically diverse fungal endophytes, belonging to
four different classes in the Pezizomycotina, Ascomycota.
Further sampling of milk thistle from other regions will
likely yield more diverse fungal endophytes.

Of the four new and 58 known secondary metabolites
encountered during the course of this study, about 10% of
pure compounds exhibited moderate to strong toxicity
against PC-3 cells. Chemical investigations aimed at struc-
ture elucidation of other new natural products isolated
from milk thistle fungal endophytes in addition to those
discussed here are underway.
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