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Overcoming the first line of the innate immune system is a general hallmark of pathogenic 
microbes to avoid recognition and to enter the human host. In particular, spirochetes 
belonging to the Borrelia burgdorferi sensu lato complex have developed various means 
to counter the immune response and to successfully survive in diverse host environ-
ments for a prolonged period of time. In regard to complement resistance, Borrelia utilize 
a plethora of immune evasion strategies involves capturing of host-derived complement 
regulators, terminating complement activation as well as shedding of cell-destroying 
complement complexes to manipulate and to expeditiously inhibit human complement. 
Owing to their mode of action, the interacting surface-exposed proteins identified 
among B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, Borrelia spielmanii, and Borrelia 
bavariensis can be classified into at least two major categories, namely, molecules that 
directly interfere with distinct complement components including BBK32, CspA, BGA66, 
BGA71, and a CD59-like protein or molecules, which indirectly counteract complement 
activation by binding various complement regulators such as Factor H, Factor H-like 
protein 1 (FHL-1), Factor H-related proteins FHR-1, FHR-2, or C4Bp. The latter group 
of genetically and structurally unrelated proteins has been collectively referred to as 
“complement regulator-acquiring surface proteins” and consists of CspA, CspZ, ErpA, 
ErpC, ErpP, and the as yet unidentified protein p43. This review focuses on the current 
knowledge of immune evasion mechanisms exhibited by Lyme disease spirochetes and 
highlights the role of complement-interfering, infection-associated molecules playing an 
important part in these processes. Deciphering the immune evasion strategies may pro-
vide novel avenues for improved diagnostic approaches and therapeutic interventions.

Keywords: spirochetes, Borrelia, Lyme disease, complement, immune evasion, complement regulator, innate 
immunity

inTRODUCTiOn

The genus Borrelia (B.) comprises the causative agents of Lyme disease (LD) and relapsing fever 
(1–3). Concerning LD spirochetes, there are distinct species belonging to the Borrelia burgdorferi 
sensu lato complex of which six species including B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, 
Borrelia garinii, Borrelia spielmanii, Borrelia bavariensis (formerly referred to as B. garinii OspA 
serotype 4), as well as candidatus Borrelia mayonii, are associated with human LD (4, 5). While 
Borrelia valaisiana, Borrelia lusitaniae, and Borrelia bissettii have been detected in human biopsies, 
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the pathogenicity of these and the remaining borrelial species 
remains largely unclear (6–8).

To survive and establish a persistent infection in the human 
host, pathogens must evade the first line of host defense by coun-
teracting complement as an essential part of innate immunity. 
This powerful surveillance system comprises a network of precur-
sors, regulatory and inhibitory proteins that can be immediately 
activated upon recognition of invading microorganisms (9, 10). 
Despite the effectiveness and abundance of complement, LD spi-
rochetes are able to overcome its destructive defense mechanisms 
(11–13). While attempting to decipher the molecular mechanisms 
of complement evasion, distinct complement-interfering and 
-inhibiting molecules of B. burgdorferi s.s., B. afzelii, B. spielma-
nii, and B. bavariensis have been identified (14, 15). This review 
focuses on the current knowledge of the molecular principles 
utilized by LD spirochetes to counteract complement at certain 
activation levels and on the borrelial proteins known to take part 
in complement inactivation.

ACTivATiOn AnD ReGULATiOn  
OF THe COMPLeMenT SYSTeM

Complement operates as a cooperative network of inactive pre-
cursor molecules, fluid-phase and membrane-bound regulators, 
and inhibitors (16–20). The initiation of complement takes place 
in a cascade-like manner through three activation routes: the clas-
sical (CP), the lectin (LP), and the alternative pathway (AP), all of 
which converge in the generation of the highly reactive molecule, 
C3b (17, 19, 21, 22). The CP can be activated after binding of 
C1q to immune complexes (IgM and IgG) or charged molecules 
on the bacterial surface (23). In complex with C1q and C1r, C1s 
mediates cleavage of C4 and C2 leading to the formation of the C3 
convertase, C4b2b. Activation of the LP is initiated by binding of 
mannan-binding lectin (MBL), ficolins (H-ficolin, L-ficolin, and 
M-ficolin), or collectins associated with MBL-associated serine 
proteases (MASP), to carbohydrates of microbial origin. After 
activation of MASP-2 by MASP-1, both proteases cleave C2 while 
MASP-2 is able to also cleave C4 to generate the identical C3 con-
vertase. Finally, the AP is initiated by spontaneous hydrolysis of 
C3 followed by binding of C3b (opsonization) to different targets 
on the bacterial surface. Recruitment of Factor B (FB) followed 
by Factor D (FD)-mediated cleavage results in the formation of 
the membrane-bound C3 convertase C3bBb. To extend the half-
life and to trigger the amplification of C3b (feedback loop), the 
C3 convertases of the AP are stabilized by properdin. Of note, 
deposition of large quantities of C3b on microbial surfaces is 
a prerequisite for opsonization and phagocytosis of invading 
pathogens. Upon binding of newly generated C3b molecules, 
the C4b2b and C3Bb complexes serve as precursors for the C5 
convertases C4b2b3b and C3bBb3b. Cleavage of C5 into C5a and 
C5b by the C5 convertases initiates the unidirectional, sequential 
binding of the late components C6, C7, and C8 to C5b. Once 
the C5b–8 complex is formed, polymerization of multiple C9 
molecules ensues, finally generating the pore-forming terminal 
complement complex [C5b–9, TCC, also referred to as membrane 
attack complex (MAC)], which promotes lysis of susceptible cells 

(19, 20). To avoid the detrimental effects of excessive complement 
activation, this surveillance system is tightly controlled by soluble 
and membrane-anchored regulators (21). The soluble regulators 
of the CP and LP include C1 esterase inhibitor (C1-INH) and C4b-
binding protein (C4Bp), while the AP is primarily regulated by 
Factor H (FH) and Factor H-like protein 1 (FHL-1). Vitronectin, 
clusterin, and, in part, FH-related protein 1 (FHR-1) comprise the 
regulatory proteins of the terminal activation sequence (21, 24).

DiveRSiTY in COMPLeMenT 
SUSCePTiBiLiTY

Initial investigations showed that LD spirochetes differ substan-
tially in their susceptibility to human serum and finally led to the 
classification of spirochetes into three main categories, serum-
resistant, intermediately serum-resistant/sensitive or partially 
resistant, and serum-sensitive (25–27). It is worth mentioning 
that categorizing of spirochetes in these particular groups largely 
depends on technical parameters, e.g., serum collection and stor-
age, serum and cell concentrations, incubation period, and the 
method of choice used to determine borrelial survival, making it 
difficult to compare the data published. Changing the experimen-
tal conditions can lead to differences in the phenotypic classifica-
tion, in particular of intermediately serum-resistant/sensitive 
strains. Among LD spirochetes, B. burgdorferi s.s., B. afzelii, 
B.  spielmanii, B. bavariensis, and Borrelia japonica are resistant 
to complement-mediated killing, B. bissettii was classified as 
intermediately serum-resistant and B. garinii, B. valaisiana, and 
B. lusitaniae comprise the group of highly susceptible spirochetes 
(13, 25–35). Furthermore, differences in serum susceptibility 
have been reported among certain B. valaisiana and B. garinii 
isolates (29, 36). Strikingly, the serum susceptibility pattern of 
LD spirochetes almost matches pathogenicity in humans with 
the exception of B.  garinii known to frequently cause LD. The 
underlying molecular principles of how B. garinii circumvent 
complement-mediated killing are largely unknown and are still 
a matter of controversy. It is likely that pathogen-associated 
factors produced solely in the infected host or that interaction 
with host or tick-derived proteins upon the transmission process, 
e.g., plasminogen (37), Tick Salivary Lectin Pathway Inhibitor 
(TSLPI) (38), or Salp20 (39), may protect B. garinii from comple-
ment attack.

BORReLiAL PROTeinS inTeRACTinG 
wiTH HUMAn COMPLeMenT 
ReGULATORS

inactivation of the Alternative Pathway by 
Binding Complement Regulators FH  
and FHL-1
In 1997, two independent studies demonstrated that serum-
resistant strains exhibit significantly lower amounts of deposited 
activation products (C3, C6, and TCC) compared to serum-
susceptible strains, leading to the assumption that the comple-
ment cascade is inhibited at the level of C3 and/or C5 activation; 
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FiGURe 1 | Complement evasion strategies of LD spirochetes. (A) Inhibition of the AP and CP by binding of complement regulators FH and FHL-1 to CspA 
and CspZ or C4Bp to p43. Binding of FHRs to ErpP, ErpC, and ErpA does not terminate complement activation. (B) Inhibition of the CP and TP by direct interaction 
of diverse borrelial proteins produced by distinct genospecies with C1r or late complement components. (C) Inactivation of C3b by binding of plasmin(ogen) by 
diverse borrelial proteins and prevention of complement deposition by the production of a mucoid layer. OM, outer membrane; TCC, terminal complement complex; 
FH, Factor H; C4Bp, C4b-binding protein.
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however, no underlying mechanism(s) were elucidated (26, 27). 
Several years later in 2001, OspE of B. burgdorferi s.s. (40) and 
the so-called Complement Regulator-Acquiring Surface Proteins 
(CRASP) of B. burgdorferi s.s. and B. afzelii (41, 42) were identi-
fied as ligands for FH and, in part, for FHL-1. Binding of these 
complement regulators by serum-resistant spirochetes inhibits 
activation at the central step of the complement cascade, C3 
activation and the formation of C3 convertase, and thereby 
terminates the assembly and finally the integration of the TCC 
into the bacterial membrane (28, 42) (Figure  1A). Thereafter, 
several FH-binding proteins were detected in serum-resistant 

B. spielmanii, B. japonica, and B. bissettii isolates (31, 43, 44), 
while serum-sensitive B. garinii, B. lusitaniae, and B. valaisiana 
isolates did not bind functionally active FH (28, 30, 36, 42). The 
importance of disrupting complement activation at the level of 
C3 by surface-bound FH and FHL-1 was confirmed both in initial 
and follow-up studies investigating different borrelial species 
(29, 31–33). With the exception of serum-resistant B. bavariensis 
(45), almost all serum-resistant borrelial species are able to co-opt 
human FH and FHL-1 to protect themselves from complement-
mediated killing, allowing LD spirochetes to survive in humans 
and in diverse, immune competent animal hosts (13).
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TABLe 1 | Characteristics of complement-interacting proteins of LD spirochetes.

CspA CspZ erpPa erpCa erpAa p43 BBK32 BGA66 BGA71 CD59-like 
protein

Synonyms and other 
designations

CRASP-1 CRASP-2 CRASP-3 CRASP-4 CRASP-5 – – – – –
BbCRASP-1 BbCRASP-2 BbCRASP-3 

BBN38
BbCRASP-4 BbCRASP-5

BBA68 BBH06 ErpI
ZS7.A68 ErpN
FHBP BBP38

BBL39
OspE

Gene name cspA cspZ erpP erpC erpA ND bbk32 bga66 bga71 ND

Origin Bb, Ba, Bs Bb Bb Bb Bb Bb Bb Bba Bba Bb

Confers serum resistance Yes Yes No No No ND Yes Yes Yes ND

Interaction with complement 
regulators/components

FH FH FHR-1 FHR-1 FHR-1 C4Bp C1r C7, C8, 
C9, 
TCC

C7, C8, 
C9, 
TCC

TCC
FHL-1 FHL-1 FHR-2 FHR-2 FHR-2
C7, C8, C9, TCC FHR-5 FHR-5

Interaction with plasmin(ogen) Yes Yes Yes Yes Yes ND ND ND ND ND

Affected complement pathways AP, TP AP – – – CP/LP(?) CP TP TP TP

aBinding of FH has only been confirmed for recombinant proteins.
ND, not determined; CRASP, complement regulator-acquiring surface protein; Erp, OspE/F-like protein; FH, Factor H; FHL, Factor H-like protein, FHR, FH-related protein; TCC, 
terminal complement complex; Bb, B. burgdorferi; Bba, B. bavariensis; Ba, B. afzelii; Bs, B. spielmanii; AP, alternative pathway; CP, classical pathway; LP, lectin pathway; TP, 
terminal pathway.
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Concerning the FH/FHL-1/FHR interacting molecules, up 
to five distinct outer surface lipoproteins, collectively termed 
CRASP, have been identified, comprising three genetically 
unrelated groups with partially overlapping biological functions 
(Table 1) (14, 15, 41). Owing to the genetic composition, different 
combinations of these proteins can be exposed at the surface of a 
particular isolate. For historical reasons, a variety of names have 
been introduced at the time of description and are still found in the 
literature, leading to considerable confusion about their identities 
and biological functions. As a simplification, the synonyms and 
additional designations of the protein and gene names of CRASPs 
along with their specific functional properties are summarized in 
Table 1. With regard to the reference type strain B. burgdorferi 
s.s. B31, the identified FH/FHL-1/FHR-binding proteins consists 
of CspA (CRASP-1, BBA68), CspZ (CRASP-2, BBH06), ErpP 
(CRASP-3, BBN38), ErpC (CRASP-4), and ErpA (CRASP-5, 
BBP38) (14). Due to their different functions, structures, gene 
organization, etc., OspE homologous proteins are collectively 
referred to as OspE-related proteins (Erp) proteins (46).

CspA is the predominant FH and FHL-1 binding protein of 
B. burgdorferi s.s. and belongs to the paralogous protein family 
PFam54, of which 11 paralogs are produced in strain B31. Except 
for CspA, none of the other PFam54 members interact with FH 
and FHL-1, despite the high sequence homology, suggesting that 
these proteins possess other, as yet unknown functions (47). 
Moreover, irrespective of geographical origin, CspA paralogs 
among B. burgdorferi s.s. isolates are highly conserved (48). More 
importantly, structure refinements have disclosed a homodimer 
as the biologically relevant architecture of CspA (Figure 1A) (49). 
Although sequence differences within the C-terminal region may 
account for the inability of CspA paralogs to bind FH and FHL-1, 

further investigations are necessary to satisfactorily clarify this 
issue. Initial studies revealed a strong binding affinity of both 
complement regulators to CspA, accompanied by a powerful 
capacity to inactivate C3b in the presence of Factor I (50, 51) 
(Figure 1A). The importance of CspA in facilitating complement 
resistance of B. burgdorferi s.s. has been clearly demonstrated by 
generating a cspA-deficient mutant and strains complemented 
with the cspA gene (52–54). More recently, CspA has been dem-
onstrated to possess additional functions: this protein directly 
interacts with components of the terminal pathway (C7, C8, and 
C9) as well as plasmin(ogen), thereby terminating TCC assembly 
and upon activation to plasmin also promoting degradation of 
C3b (54,  55) (Figures  1B,C). CspA orthologs, sharing identi-
cal biological functions, were also identified in B. afzelii and B. 
spielmanii. All of these orthologs belong to the PFam54 protein 
family, but the loci of the encoding genes differ from cspA of 
B. burgdorferi s.s. The orthologs display the same inactivating 
properties as CspA, impart resistance to complement-mediated 
killing, and bind complement components FH, FHL-1, C7, C8, 
and C9 as well as plasmin(ogen) (43, 55–57). These findings 
suggest that CspA is an important serum resistance factor of B. 
burgdorferi s.s., B. afzelii, and B. spielmanii. CspA is produced 
during tick feeding, shortly after transmission to the mammalian 
host and during transmission to feeding, naïve ticks but not in the 
midgut of unfed ticks, suggesting that CspA protect spirochetes 
from complement attack during established infection (58, 59).

Borrelia burgdorferi s.s. produces an additional FH and FHL-
1-binding protein, CspZ, which independently provides borrelial 
cells with resistance to human complement (60, 61) (Figure 1A; 
Table 1). Once FH or FHL-1 binds to the CspZ-producing spiro-
chetes, termination of the complement cascade takes place at the 
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activation level of C3 as demonstrated by the decay of the C3 con-
vertase, an increase of C3b degradation products, and the lack of 
deposited TCC (60, 61). Although cspZ sequences were identified 
in numerous genospecies associated with LD, including B. afzelii, 
B. garinii, B. spielmanii, B. bavariensis, and B. bissettii, none of 
the other CspZ proteins interact with FH and FHL-1 (62–65). 
Although CspZ is produced during mammalian infection and 
elicits a robust antibody response (66), additional studies revealed 
that this protein does not protect mice from infections and, if at 
all, is only partially required for infection (63, 67, 68). In addition, 
CspZ like CspA has been identified as a plasmin(ogen)-binding 
molecule, enabling B. burgdorferi s.s. to degrade surface-bound 
C3 and C3b (57) (Figure 1C). Of note, the efficacy in degrading 
C3/C3b by plasmin is much less pronounced, compared to the 
C3b inactivation capacity of FH and FHL-1 (55). In the case of 
strong complement activation initiated by the AP, generation 
of high amounts of C3b cannot be sufficiently inactivated by 
surface-bound plasmin; thus, more adequate inhibitors such as 
FH or FHL-1 are required to overcome the feedback loop.

Lyme disease spirochetes produce a number of polymorphic 
proteins belonging to the OspE/F paralogous protein family 
PFam162, of which ErpA (BBP38), ErpC, and ErpP (BBN38) have 
been reported to bind FH as well as FHR-1, FHR-2, and in part 
FHR-5 (40, 50, 69–74) (Figure 1A; Table 1). Despite binding of 
FH to purified Erp proteins, there are several lines of evidence 
indicating that the same molecules, when exposed to the bacte-
rial surface, do not confer protection of LD spirochetes from 
deposition of C3 and TCC (14, 70, 74). Spirochetes producing 
Erp proteins, but lacking CspA and CspZ, display a susceptible 
phenotype and are readily killed by complement (52, 70, 74). 
Owing to the Erp proteins strong affinity for FHRs (50), FH might 
be displaced from the bacterial surface, with a concurrent loss of 
its complement regulatory functions and, as such, is unable to 
protect the cells from the deleterious effects of complement.

Besides binding of complement components, ErpA, ErpC, 
and ErpP, as well as other Erp orthologs, are known to serve 
as potential ligands for plasmin(ogen) (Figure 1C) (75, 76). As 
mentioned previously, the role of activated plasmin in comple-
ment evasion of LD spirochetes requires further investigations. 
Although additional FH-binding Erp orthologs were identified 
in in vitro cultivated B. garinii, Borrelia andersonii, B. japonica, 
Borrelia turdi, and Borrelia tanukii isolates (44, 72, 77), the impact 
of these molecules on complement resistance has never been 
confirmed, in particular Erp proteins of B. garinii. Concerning 
additional FH/FHL-1-binding proteins, no data are currently 
available on other LD Borrelia species.

inactivation of the Classical Pathway by 
Binding Complement Regulator C4Bp
The role of C4Bp, the key regulator of the CP, in immune evasion 
of LD spirochetes is still a matter of controversy. Pietikainen et al. 
have observed binding of C4Bp in serum-resistant B. burgdorferi 
s.s. and B. afzelii as well as in serum-sensitive B. garinii isolates 
(78) (Figure 1A). C4Bp bound to the borrelial surface in concert 
with Factor I maintained its complement regulatory activity 
and inactivated C4b (78). Along with the determination of 
C4Bp binding, a 43-kDa protein, tentatively designated p43 was 

identified in B. burgdorferi strains B31 and N40, and B. garinii 
strains g46 and g50 (78). However, other studies failed to show 
C4Bp binding by B. burgdorferi s.s. LW2, B. garinii G1, B. valai-
siana (n = 3), and B. bavariensis strains (n = 8) (36, 45), possibly 
due to different techniques or antibodies used for the detection 
of C4Bp. In addition, taking into consideration that B. garinii 
cells are killed in serum concentrations >20%, the physiological 
relevance of C4Bp in promoting complement resistance remains 
to be determined.

BORReLiAL PROTeinS DiSPLAYinG 
COMPLeMenT-inHiBiTORY ACTiviTY

More recently, a novel immune evasion mechanism has been 
described by which B. burgdorferi s.s. specifically blocks CP 
activation (79). This study depicts BBK32 as the first protein that 
binds to C1r in a non-covalent manner and thereby preventing 
autocatalysis of this proenzyme and subsequently the cleavage 
of C1s, leaving the C1q complex in an inactive enzymatic state 
(Figure 1B; Table 1). By interfering with C1r, BBK32 acts as a 
potent inhibitor of the CP without affecting the LP and AP.

Unlike other serum-resistant LD spirochetes, B. bavariensis 
binds neither FH/FHL-1 nor other complement regulators such 
as C4Bp or C1-Inhibitor (45). Detailed analysis revealed two 
proteins, BGA66 and BGA71 as novel complement inhibitors. 
They belong to the PFam54 protein family and share 51 and 41% 
sequence identities, respectively, to CspA. Both proteins interact 
with components of the terminal pathway, in particular C7, 
C8, and C9, and also with the assembled TCC (45) (Figure 1B; 
Table 1). Binding of the borrelial proteins to various components 
of the terminal pathway affects TCC formation by (i) inhibiting 
C9 auto-polymerization, (ii) terminating TCC assembly, and (iii) 
preventing integration of the functional pore-forming complex. 
Moreover, BGA66 and BGA71 are simultaneously produced in 
all B. bavariensis strains investigated, but each protein by itself 
displays anti-complement activity and renders transformed 
spirochetes resistant to complement-mediated killing. Despite 
the structural similarities to CspA, BGA66 and BGA71 do not 
bind the potent complement regulators FH and FHL-1 (45). One 
might speculate that termination of the final activation steps may 
result in a somewhat weaker complement inactivation capac-
ity. However, this does not appear to be the case as CspA and 
CspZ-producing and FH/FHL-1-binding spirochetes did not 
show a different resistance phenotype compared to BGA66- or 
BGA71-producing cells, indicating that inhibition of the terminal 
pathway is as efficient as blocking complement activation at the 
level of C3.

Borrelia burgdorferi s.s. also produces a CD59-like protein, 
which preferentially bind to C9 and to some extent to the β-subunit 
of C8 (80) (Figure 1B; Table 1). By using anti-CD59 antibodies, 
the functional activity of this protein could be blocked, render-
ing the spirochetes susceptible to complement-mediated killing. 
Although this surface-exposed protein has never been identified, 
the binding properties of the CD59-like protein suggest a role 
in inactivating the terminal pathway of complement. Despite 
the overlapping complement-inhibitory activities, the CD59-like 
protein is not identical with BGA66 and BGA71.
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FURTHeR PROTeinS AnD STRUCTUReS 
invOLveD in COMPLeMenT 
ReSiSTAnCe OF LD SPiROCHeTeS

Besides the already mentioned molecules, which interacting 
with complement in multiple ways, additional proteins have 
been described that also bind human plasmin(ogen), e.g., OspA, 
OspC, and BBA70 (81–83) (Figure 1C). For the latter, degrada-
tion of C3 and, in part, C5 has been demonstrated. Whether the 
interactions of OspC and BBA70, known to be expressed in the 
mammalian host, might support complement inactivation in vivo 
is not known.

Initial studies of the molecular principles of complement 
resistance, focusing on the amounts of deposited complement 
components, revealed an amorphous structure of high density 
that surrounds the entire cell envelope and, apparently, acts as a 
physical barrier, preventing the insertion of the formed TCC into 
the bacterial membrane of serum-resistant cells (Figure 1C) (32). 
Currently, no data are available on the composition and content 
of this so-called “slime layer” and whether this structure is present 
in LD spirochetes other than B. afzelii (32). Thus, further studies 
are required to verify the precise nature of this morphological 
substance.

FUTURe DiReCTiOnS

Over the last decades, numerous molecules have been identified 
that interact with the innate immune system in multiple ways to 
influence or terminate complement at distinct activation levels, 
e.g., initiation of the CP, C3 activation by the AP, and formation 
of the TCC. Knowledge of the proteins involved in the interac-
tion with complement has allowed for a better understanding of 
molecular principles of complement evasion developed by LD 
spirochetes. Future investigations will undoubtedly identify addi-
tional complement-interacting molecules required for evading the 
innate immune response of different animals, including reservoir 
hosts, and provide insight into whether these proteins might func-
tion in a host-specific manner during the infection process.
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