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A quantitative, hierarchical 
approach for detecting drift dives 
and tracking buoyancy changes in 
southern elephant seals
Fernando Arce   1,2, Sophie Bestley   1,2,4, Mark A. Hindell   1,4, Clive R. McMahon   1,3  
& Simon Wotherspoon1,2

Foraging behaviour of marine predators inferred from the analysis of horizontal or vertical movements 
commonly lack quantitative information about foraging success. Several marine mammal species 
are known to perform dives where they passively drift in the water column, termed “drift” dives. The 
drift rate is determined by the animal’s buoyancy, which can be used to make inference regarding 
body condition. Long term dive records retrieved via satellite uplink are often summarized before 
transmission. This loss of resolution hampers identification of drift dives. Here, we develop a 
flexible, hierarchically structured approach to identify drift dives and estimate the drift rate from the 
summarized time-depth profiles that are increasingly available to the global research community. 
Based on high-resolution dive data from southern elephant seals, we classify dives as drift/non-drift and 
apply a summarization algorithm. We then (i) automatically generate dive groups based on inflection 
point ordering using a ‘Reverse’ Broken-Stick Algorithm, (ii) develop a set of threshold criteria to apply 
across groups, ensuring non-drift dives are most efficiently rejected, and (iii) finally implement a custom 
Kalman filter to retain the remaining dives that are within the seals estimated drifting time series. 
Validation with independent data sets shows our method retains approximately 3% of all dives, of 
which 88% are true drift dives. The drift rate estimates are unbiased, with the upper 95% quantile of the 
mean squared error between the daily averaged summarized profiles using our method (SDDR) and the 
observed daily averaged drift rate (ODDR) being only 0.0015. The trend of the drifting time-series match 
expectations for capital breeders, showing the lowest body condition commencing foraging trips and a 
progressive improvement as they remain at sea. Our method offers sufficient resolution to track small 
changes in body condition at a fine temporal scale. This approach overcomes a long-term challenge for 
large existing and ongoing data collections, with potential application across other drift diving species. 
Enabling robust identification of foraging success at sea offers a rare and valuable opportunity for 
monitoring marine ecosystem productivity in space and time by tracking the success of a top predator.

Foraging is a central element of an animal’s life. Being a successfully forager is directly translated into survival, 
reproduction, and ultimately population growth1. Foraging activity (where, when and how individuals acquire 
resources), is therefore a core concern that underpins ecological research. Acquiring this information from ter-
restrial systems is difficult but tractable. However, collecting information on foraging behaviour from marine 
animals is especially challenging because their oceanic environment limits our ability to make direct observations 
of feeding activities.

Broadscale approaches to studying the foraging ecology of marine predators include stomach contents2, 
stable isotopes3, fatty acid signature4,5 and genetic methods6. Animal telemetry approaches, with the on-going 
development and miniaturization of sensors, provides increasingly detailed insight into many aspects of marine 
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organisms’ ecology7. Sensors currently devoted to directly studying foraging ecology of marine megafauna 
include stomach and oesophageal temperature sensors8,9, accelerometers capturing head or jaw movements10–13, 
as well as in situ miniaturised video cameras14. However, these approaches typically provide relatively observa-
tional short time-series on foraging behaviour in marine birds and mammals.

More commonly, telemetry-based studies of marine predators have relied on using behaviour to indirectly 
infer foraging. Generally, movement patterns of individuals are used to infer foraging areas. A broad suite of tech-
niques have been applied to horizontal movements including heuristic methods such as area restricted search15–17 
through to sophisticated process-based methods such as State-Space Models18–20. Research effort has also 
focussed on inferring foraging behaviour from vertical movements using dive-based indicators21,22. Nonetheless, 
direct empirical information on foraging events, and especially evaluating foraging success, remains elusive.

An alternative way to evaluate foraging success is to track changes in the animals body condition. For marine 
mammals, changes in body condition can be evaluated through buoyancy changes associated with an increase 
or decrease in the fat:lean tissue ratio23. Some marine mammals have been found to perform certain types of 
“drift” dives made up of three distinct phases: (i) an initial descent phase, when the animal is actively diving to 
depth, (ii) an inactive “drift” phase, when the animal is not actively swimming, and (iii) an ascent phase, when 
the animal actively returns to the surface. During the inactive phase, the rate of drifting is mostly determined by 
animal’s fat:lean tissue ratio and the surrounding media23. Buoyancy is known to be influenced by the density of 
the surrounding media and, in birds and mammals, by the effect of air in the lungs24–26. Biuw et al.23 investigated 
the effect of these parameters, finding only limited effects of salinity, and residual lung air at depths greater than 
100 m. This type of dive was initially identified in Southern27 and Northern28 elephant seals, known to be deep 
divers29,30, but similar drift behaviours have been reported across a range of marine mammals including New 
Zealand Fur Seals31, sperm whales32, hooded seals33 and Baikal seals34. For the shallow diving species the effect of 
residual air in the lungs may influence the drift rate.

Southern elephant seals (Mirounga leonina) are an abundant predator of the Southern Ocean, spending over 
eight months per year at sea27. In between two periods on land, to breed and to moult, the seals travel long dis-
tances to forage35. As capital breeders, southern elephant seals fast during the periods they spend on land, so 
the energy they rely on for self-maintenance, moulting and breeding must be accumulated while the seals are at 
sea feeding; importantly it is these resources that are a key element determining individual fitness36. Southern 
elephant seals store energy in the form of lipids37 resulting in changes in the individual’s buoyancy as fat is accu-
mulated or lost23. Quantifying these changes in buoyancy can provide an extremely useful index for determining 
foraging success, i.e., where and how much forage resource seals are acquiring, whilst at sea23,38–42.

Generally, dive profiles for determining the presence of drift dives come from high-resolution time-depth 
recording archival tags42–45. However, these tags have to be retrieved from the animal in order to access the 
high-resolution dive data. When these time-depth recorders are integrated into satellite-relayed tags, the data 
can be recovered in near real time without having to physically access the tag46,47. The most common way of 
recovering the dive information is through the ARGOS satellite system48. Despite the overall utility of the Argos 
system there are constraints on how much information can be received, so detailed time-depth profiles need to 
be summarized before being transmitted46,47. Mostly, time-depth profiles are summarized using a broken-stick 
algorithm (BSA)49,50. Although summarizing the data in this manner provides a reliable way of transmitting and 
receiving information, the reduced detail on the dive shape makes identifying dive types, including drift dives, 
challenging51.

Southern elephant seals are regularly tagged with satellite-linked time-depth-recorders across their range in 
the Southern Ocean. These tags normally carry oceanographic sensors to simultaneously record behaviour and 
physical hydrography35,41,52,53. As these tags are seldom recovered, most of the dive behaviour is only available 
from the summarized profiles transmitted through the Argos satellite system54. While drift dives can be detected 
from these23,38,39, changing dive profile summarization algorithms have prevented the widely use of methods 
based on summarized dive profiles to extract seal body condition. One recent study has proposed a new filter-
ing process applied uniformly to all subsurface segments of summarized dives performed by the seals41. Here, 
we build on these approaches and develop a, flexible, hierarchically structured approach to identify drift dives 
and estimate the drift rate from summarized time-depth profiles that are increasingly available to the global 
research community (54 and references therein). In developing this new method we (i) automatically generate 
dive groups based on a ‘Reverse’ Broken-Stick Algorithm (RBSA), (ii) apply filters with threshold characteristics 
tuned for each group, ensuring non-drift dives are most efficiently rejected, and (iii) finally implement a custom 
Kalman filter to retain the remaining dives that are within the seal estimated drifting time series. Compared with 
available methods41, our approach is not solely based on a set of fixed criteria applied uniformly to all dive seg-
ments. Rather, we first generate a set of candidate drift dives, automatically grouped, allowing us to create a set of 
thresholds for each group. This makes our approach more flexible in terms of coping with diving heterogeneity. 
We apply these thresholds to specific groups of dives, rather to any diving segment. Our approach contributes to 
overcoming the long-term challenge for large existing and ongoing data collections which contain only summa-
rized dive profiles, enabling robust identification of foraging success at sea with potential application across other 
drift-diving species. This will provide the basis for biological and environmental drivers of spatial and temporal 
patterns in feeding success to be further explored, a unique and rare opportunity in marine systems.

Materials and Methods
Tag data and processing.  In developing our method to identify drift dives and estimate drift rates from 
summarized dive profiles, we first utilised high-resolution dive records. We randomly selected three high-reso-
lution time-depth series from a set of Macquarie Island (50°30′S, 158°57′E) deployments on southern elephant 
seals during 2004. All tags were velocity-time-depth recorders (VTDR, Wildlife Computers MK8, Redmond, 
Washington, USA) sampling depth and velocity at 30 s intervals. Tags were attached to adult females; two during 
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post breeding and one during the post-moult trip (see55–58 for a full description of the general field procedures). 
Seal instrumentation was carried under ethics approval form the Australian Antarctic Animal Ethics Committee 
(AAS 2265 & AAS 2794) of the Australian Antarctic Division.

From all the dives (n = 18064) recorded by the tags, we only kept those dives reaching a minimum depth 
of 100 m, to avoid potential bias from residual air in the lungs. We also removed those dives with a duration 
lower than 300 sec as they are short, shallow, exploratory dives39,44,59 that resulted in a final set comprising 97.5% 
of the original dives (n = 17622, Table 1). We visually inspected all dives meeting these criteria and classified 
them as potentially drift or non-drift dives according to their shape and the velocity records; potential drift dives 
requiring a passive ascent or descent phase, without directional changes (“wiggles”) (Fig. 1) or abrupt changes in 
the recorded velocity. Drift dives were further allocated as certain or uncertain, and as positive or negative. We 
then summarized each high-resolution VTDR dive using a Broken-stick algorithm (BSA). This reproduces the 
on-board processing of dives that occurs on the SRDLs49,50, resulting in a summarized form with only four sub-
surface inflection points retained together with the start and end points (Fig. 1).

Drift dive selection process.  For the automated drift dive selection process on the summarized dive pro-
files, we introduce two new important steps. First, we pay particular attention to the order in which the inflection 
points are selected by developing a ‘Reverse’ Broken-stick algorithm (hereafter RBSA), similar to a recently imple-
mented approach49 which aids in grouping candidate drift dives. Secondly, we develop a set of threshold criteria 

Seal id Trip Dives

Drift dives

Certain Uncertain Positive Negative

b14304pm pm 10913 703 (6.4%) 180 (1.6%) 178 (1.6%) 525 (4.8%)

c06404pb pb 3879 179 (4.6%) 19 (0.5%) 0 (0%) 179 (4.6%)

c09004pb pb 2830 190 (6.7%) 51 (1.8%) 0 (0%) 190 (6.7%)

Total 17622 1072 (6.1%) 250 (1.4%) 178 (1.0%) 894 (5.1%)

Table 1.  Number of high-resolution time-depth recorder (TDR) dives used for the development of the drift 
dive methodologies. Shown are the numbers of dives visually classified as drift dives; either as certain or 
uncertain. Certain drift dives are indicated as positive (i.e. upward drift segment) or negative (i.e. downward 
drift segment). Trip types are indicated as post-moulting (pm) or post-breeding (pb). Numbers in parentheses 
give percentages.

Figure 1.  Explanation of drift dives. Obtained from summarized high-resolution tag data. Example of an (A) 
negative and (C) positive drift dive, as well as non-drift dives whose summarized forms incorrectly resemble 
(B) negative and (D) positive drift dives. Blue lines represent high-resolution time depth profiles, while black 
represents the summarized profiles from the Broken-Stick algorithm. (E) Diagram of a summarized drift dive 
including the main criteria used to classify summarized profiles as drift dives. For this dive, the ifp (inflection 
point order) is 2.1.3.4. Summarized inflection points are IFP1{T1, D1}, IFP2 {T2, D2}, IFP3 {T3, D3} and IFP4 
{T4, D4}. ps0 represents the proportion of the dive duration spent on the descending phase (T1/MaxTime etc.). 
S1 the proportion spent along the first BSA segment (T2 − T1/E), S2 along the second segment (T3 − T2/E), S3 
for the third segment (T4 − T3/E) and S4 between the last ifp and the end of the dive (e − T4/E). Drift rate (Dr) 
is calculated as the difference in depth divided by the difference in time over the drifting segment (in this case, 
the segment between IFP1 and IFP2).
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with respect to dive profile characteristics to apply across groups, to automatically select those dives whose drift 
rates will be submitted to the final Kalman filtering stage.

Reverse Broken-Stick algorithm (RBSA).  The RBSA generates the order in which the inflection points are selected 
before the satellite transmission. The basis for the RBSA is the same as the original BSA. From the summarized 
profiles the only inflection point whose original position is known is the deepest point, that is, the first selected 
point (as it shows the highest difference between the original high-resolution time-depth profile and the surface). 
A linear profile is constructed between this deepest point and the start and end points of the dive. The second 
point will then be determined by the largest discrepancy between the reconstructed profile and the transmitted 
points. The RBSA recursively reconstructs the profile until the fourth and final point is found49. The RBSA also 
generates the original residuals from the BSA the last of which, i.e. the largest remaining difference between the 
summarized and detailed profile, gives a relative indication of the amount of vertical activity not well captured by 
the summarized profile.

The inflection points are transmitted sorted by time of occurrence along the dive, not by the order in which 
they are selected by the BSA. Thus, an inflection point order of [2.1.3.4] indicates that the first point selected by 
the BSA will be the second timestamp (T2, D2) of the dive profile, the second inflection point selected is the first 
timestamp (T1, D1) and so on. This inflection point order (ifp) is used to organise the dives into groups.

The distribution of known (certain) drift dives from the high-resolution VTDR data was checked across these 
RBSA groupings, and used to make a first pre-selection of candidate drift dives (i.e. those dives that may be drift 
dives). Of the possible 24 groups identified by the inflection point ordering, eight comprised the majority of the 
known drift dives (>90% total). These groups became the only ones considered as potential drift dives (step 1, 
Fig. 2) and retained for the following calculations and selection procedures.

Drift rate estimate.  A combination of different dive proportions and the position of the deepest point are then 
used to determine the drift segment of each potential drift dive (Appendix A and Table 2). Drift rate (m s−1) is 
then calculated as the difference of depth between the start and end point of the drift segment with respect to the 
time spent on the segment, i.e. Dr = ∆(D)/∆(T) (see Fig. 1). The sign of the drift rate allows us to further allocate 
dives into negative/positive subgroups.

Developing threshold criteria.  For each individual dive profile, a number of numerical variables were calculated 
based on dive proportions. Proportional values were used to scale variables irrespective of shorter/longer or shal-
lower/deeper absolute profiles, to minimize the influence of seals diving variability. Figure 1 provides a visual aid 
for these variables, which each give information about the dive shape, and a detailed description of the threshold 
criteria is provided in Appendix A. For each dive group we separately constructed density plots of these variables 
for both certain drift and non-drift dives, allowing different threshold criteria to be developed and automatically 
applied across the different groups (step 2 in Fig. 2).

The criteria selection and its thresholds for each group were developed sequentially as follows:
First, density plots of all the proposed criteria for each seal were constructed, to show the degree of overlap-

ping for drift and non drift dives. The criterion with the lowest degree of overlap was then selected first. This 
selected criterion was inspected in greater detail with an accepting-rejecting plot (see Appendix A) to find an 
optimal threshold; aiming for a reduction of ~50% of the non drift dives at a cost of losing as much as 5–10% of 
the true drift dives. Once the first threshold was identified, it was applied to the dataset, and the previous step was 
iterated for each of the 15 groups until no further optimal threshold could be found.

Kalman filtering drift rates.  The two-step process described above supplies a final set of candidate drift 
rates to a custom Kalman filter. This is implemented to remove those dives with unrealistic drift rates in relation 
with the seal drift time series. Step 3 in Fig. 2 gives a schematic representation of the filtering process. Kalman 
filters are a family of methods used to filter time series and reject/recalculate points using the trajectory of the sig-
nal, for example to filter noisy animal movement paths60. We applied the Kalman filter to the drift rate time series 
of each individual animal. Our Kalman filter assumes that (i) the vertical drift rate of a seal is proportional to the 
squared root of the difference between water density and the seal body density, (ii) water density is constant, and 
(iii) seal density changes through mass accretion (primarily blubber), and takes the general form:

ρ
δ
δ

=
+

+
m
v Vk

k

k

0

0

sign ( 1) 1k k kμ α ρ ρ= − −

where:
ρk = seal density at dive k
m0 = initial mass
δk = mass increment
v0 = initial volume
Vδk = increment of volume associated with the mass increment at dive k
μk = buoyancy of the seal at dive k
α = constant
sign(ρk − 1) = sign of the seal’s density (it is lost on the square root calculation)

ρ − 1k  = squared root of the difference between seal density and water density at dive k
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We then modelled the mass increments δk as a random walk:

δ δ η= +−k k k1

~η τ −δ
−N t t(0, /( ))k k k

( )
1

where:
δk = mass increment at dive k
δk−1 = mass increment atdive k − 1
ηk = variation on the mass increment associated with the dive k
τ(δ) = variance of ηk dependent on the masss
(tk − tk−1) = timeincrement between the current dive and the previous one
and we consider the error on the drift rate observations as normally distributed:

Figure 2.  Diagram representing the drift dive methodology: i. Seal is instrumented and summarized dive 
profiles are transmitted; ii.1. Using the Reverse Broken-Stick Algorithm (RBSA), dives are grouped according 
to inflection point ordering and candidate groups of drift dives identified. At the same time, the putative drift 
segment is assigned (blue); ii.2. A set of threshold criteria are applied to each candidate group to further isolate 
certain drift dives, however visualization of the observed drift rates reveals some noise remains in the drift 
trajectory; iii: The custom Kalman filter is applied to the drift rate observations to obtain the final drift rate 
trajectory over time. Seal picture© Fernando Arce.
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~ μ τr N( , )k k z
r( )

k

where:
rk = observed drift rate for the dive k
μk = buoyancy of the seal at dive k

z
r( )

k
τ  = variance on the observed drift rate conditioned on whether or not dive k belongs to the trajectory
The Kalman filter evaluates whether any drift rate observation associated with the time-varying density change 

process is inside or outside the most likely trajectory of the time series based on the expected variation associated 
with both the process and the observation. Whether any potential drift dive is inside or outside the trajectory of 
the drifting time series is defined as a binomial state variable Zk with two possible outcomes: 1 (dive k is inside the 
trajectory) or 0 (dive k is outside the trajectory):

~z Bin p(1, )k

The most probable drift rates of observations that are unlikely to be inside the trajectory of the drifting time 
series may also be estimated. However rather than using the estimated drift values, we accept as drift dives only 
those with a probability of being inside the trajectory close enough to 1 [P(Zk = 1) > 0.95] and retain these 
observed drift rates.

Validation of the method.  Drift rate evaluation.  To obtain the “true” drift rates we computed the rate 
of change in depth for all time-steps inside each drifting segment from the original high-resolution time-depth 
records. To check the robustness of our final drift rates the median of all these values was then subtracted from 
the value extracted from the summarized dive profile as a measurement of bias.

We also generated an observed daily averaged drift rate (ODDR) from the high-resolution drift dives. These 
were compared with a daily averaged drift rate calculated from the summarized profiles using our method 
(SDDR), and the difference between both used as another direct measure of bias.

To quantify the improvement in estimations due to the Kalman filter we calculated the SDDR before and after 
the application of the Kalman filter. We compared the performance by calculating the squared error and its mean 
(msr) between both SDDR’s and the ODDR.

Validation with independent seal data.  To assess our model performance we processed six additional data sets 
from Macquarie Island deployments during 2004 post-breeding trips as well as four from 2005 post-moulting 
trips (n = 10 seals). We visually inspected the high-resolution profiles of those dives accepted by our hierarchical 
procedures, and calculated the proportion that were true drift dives.

Results
From the 17622 high-resolution dive profiles visually classified, 1072 (6.1%) and 250 (1.4%) were classified as 
certain or uncertain drift dives, respectively (Table 1). Seal b14303, undertaking a post-moult trip, was the only 
one with identifiable certain positive drift dives, with a proportion of 4.8% and 1.6% for negative and positive drift 
dives respectively (Table 1). We found an average of 5.1% (range 4.6–6.7%) of certain negative drift dives across 
the three seals (Table 1). These numbers are consistent with previously reported values from this dataset39.

Order

Drifting segment

1 2 3

2.1.3.4 mdepthbias > 0 mdepthbias < 0

2.1.4.3 ps1 > 25 ps1 ≤ 25 & (1.1 × ps2) ≥ ps3 ps1 ≤ 25 & (1.1 × ps2) < ps3

mdepthbias < 0 & ps1 > ps3

2.4.1.3 or mdepthbias > 0 & ps1 ≤ ps2 mdepthbias < 0 & ps1 ≤ ps2

mdepthbias > 0 & ps1 > ps2

3.1.2.4 avratio < 0 avratio > 0

ps1 < 25 & s <0 & t > 0 ps1 < 25 & s > 0 & t < 0

3.1.4.2 ps1 > 25 or or

ps1 < 25 & s < 0 & s < 0 & hp2 > hp3 ps1 < 25 & s < 0 & s < 0 & hp2 < hp3

3.2.1.4 All

3.4.1.2 mdepthbias > 0 & ps1 > ps2 mdepthbias > 0 & ps1 < ps2 mdepthbias < 0

4.2.1.3 mdepthbias >  = 0 mdepthbias < 0

Table 2.  Eight main RBSA groups identified by the inflection point ordering which comprised the majority 
(90.5%) of drift dives. The criteria shown are those used to determine the drifting segment of the candidate drift 
dives within groups. All dives of the 3.2.1.4 group have the same drifting segment (segment 2) so no criteria 
is required to determine it. {f, s, t} are the change of depth with respect to time for the first, second, and third 
segments (excludes the initial/descendant, and last/ascent segments).
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Drift dive selection process.  Upon application of the RBSA, we retained eight major dive groups as 
candidate drift dives with the following inflection point (ifp) orders: [2.1.3.4, 2.1.4.3, 2.4.1.3, 3.1.2.4, 3.1.4.2, 
3.2.1.4, 3.4.1.2 and 4.2.1.3]. This removed 3909 out of the 17622 dives, of which only 121 were considered cer-
tain drift dives i.e., an acceptably low (3.1%) overall false rejection rate (Appendix B). The eight retained groups 
together represented more than 90% of the certain negative drift dives and 86% of the certain positive drift 
dives (Appendix B). The criteria developed to automatically determine the drifting segment for each of the eight 
retained dive groups are shown in Table 2. As an example, for group [2.1.4.3] if the proportional dive time occu-
pied by segment 1 is above 0.25, this comprises the drift segment; otherwise the drift segment comprises the next 
longest segment.

For each group, up to seven threshold criteria were applied sequentially to give a criteria-threshold combi-
nation that efficiently rejected certain non-drift dives. The specific criteria applied to each dive group and their 
threshold values are reported in Table 3. Positive drift dives occurred throughout all major groups, excluding 
[3.2.1.4] which represented only negative drift dives, and different criteria were applied between positive and 
negative drift dives within groups (Table 3). An example of a widely applied criterion is d1, the ratio between 
the depth of the first inflection point and the maximum depth, which for known drift dives was less than 0.6 to 
0.8 across all groups. The exception was group [3.2.1.4] in which the drift segment is always segment 2 so this 
threshold (0.8) applies instead to the d2 criteria. After the application of the threshold criteria, 615 out of 17622 
(i.e. 3.48%) candidate drift dives were retained for the Kalman filtering step.

Validation.  Application of the Kalman filter rejected 155 (28.2%), 57 (34.1%) and 66 (37.3%) of the final 
candidate drift dives for the three test seals. The comparison of our final post-filter drift rates with the “true” rates 
calculated from high-resolution profiles showed there were no differences in the bias distribution among the three 
seals (F238 = 0.3893, p = 0.6778, Fig. 3). The median bias after pooling the three bias distributions across the three 
seals was -0.0025 (S.D: 0.07, 95% confidence interval (CI): −0.03, 0.02).

Based on the comparison between the observed daily averaged drift rate (ODDR) and that obtained using our 
method for summarized profiles (SDDR) there were also no differences in the bias values across the three seals 
(F238 = 2.61, p = 0.08). Once pooled the median value for the bias did not depart significantly from 0 (median: 0, 
S.D: 0.02, 95% CI: -0.001, 0.002; t238 = 0.58, p = 0.56; Fig. 4A). There was no evidence for any trend in bias magni-
tude associated with an increase in the theoretical daily averaged drift rate (r = 0.02, t238 = 0.33, p = 0.74; Fig. 4B). 

RBSA order 2.1.3.4 2.1.4.3 2.4.1.3 3.1.2.4 3.1.4.2 3.2.1.4 3.4.1.2 4.2.1.3

Dive sign − + − + − + − + − + − − + − +

t1 (0.7, 0.14) <0.14 <0.15 <0.14 <0.14 <0.14 <0.14 <0.12 <0.14 <0.12 <0.9 <0.8

d1 <0.8 <0.7 <0.6 <0.8 <0.6 <0.85 <0.8 <0.8 <0.8

d4 <0.8 <0.6 <0.8 <0.7 <0.8 <0.8 <0.8 <0.8

mrratio <0.15 <0.2 <0.15 <0.3 <0.2 <0.2 <0.2

ps1 >0.4 >0.4 >0.4 >0.4 <0.15 >0.4

t4 >0.9 >0.9 >0.85 >0.85 >0.8

mdepthr (0.6,1.4) (0.8,1.5) (0.8,1.3) (0.8, 2)

sratio <10 <10 (2,7)

ps2 >0.4 >0.2 >0.45

ps3 <0.2

sdd (0.13, 0.4) (0.1, 0.3)

r1 <0 <0

r4 <0

mdepthbias <0

meand <0.8

d2 <0.8

Table 3.  Threshold values for dive-based criterion applied to the eight main RBSA groups. Only the cells of the 
criteria applied contain values. Values in brackets represent the lower (left) and upper (right) open thresholds of 
the threshold acceptance interval. Dive sign indicates criteria applied to negative (−) or positive (+) drift dives 
within groups. For full criteria description see Appendix A. In brief: {d1, d2, d3, d4} = ratio between the depth 
of the first, second, third and fourth inflection points and the maximum depth. {ps1, ps2, ps3} = proportion of 
the dive duration spent on the first, second, and third segments generated by the RBSA. sratio = ratio between 
the vertical rate of the descending phase and the vertical rate of the first segment post-descent. meand = mean 
value of {d1, d2, d3, d4} described above. sdd = standard deviation of {d1, d2, d3, d4}. {r1, r2, r3, r4} = residuals 
obtained by fitting a least square linear regression through the four inflection points {D1, D2, D3, D4}. 
mrratio = ratio between the smallest BSA residual and the maximum depth. mdepthbias = difference between 
the time at maximum depth and half of the total dive duration. mdepthr: ratio between the averaged depth of 
the inflection points {D1, D2, D3, D4} and the maximum depth. {t1, t2, t3, t4} = ratio between the time of each 
inflection point and the dive duration.
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The correlation between the ODDR and SDDR daily averaged drift rates (r = 0.99, p < 0.001; Fig. 4C) indicates 
our method was highly successful for the test seals.

After applying the Kalman filter, the SDDR time series efficiently followed the ODDR on all three test seals 
(Fig. 5). The Kalman filter implementation substantially reduced the mean squared error between the SDDR and 
the ODDR by an order of magnitude (95% upper CI before and after being 0.04 and 0.0015, Fig. 6).

The validation of our approach with 10 independent seals showed on average the percentage of retained dives 
being true drift dives was 87.5% (S.D: 9.35, Table 4).

The full filtering process as applied across the test (n = 3) and validation (n = 10) seals is visualised in 
Appendix C. All the filtering procedures have been implemented in R61 and JAGS62 and are freely available in the 
form of an R package (https://github.com/farcego/SlimmingDive).

Discussion
The occurrence of drift dives, where animals passively sink or rise in the water column, enables buoyancy changes 
to be determined in some marine species. Drift rate changes related to fat gain (or loss) provide a rare and valuable 
index of foraging success at sea. Here, we have presented a, reliable method to quantify drift rates from the sum-
marized satellite relayed time-depth-record data widely used for migratory marine species. The process-based 
Kalman Filter is consistent with our understanding of the ecological processes governing the energy budgets of 
elephant seals i.e. a gain in fat during the two at-sea phases of the seals annual cycle, with effective results for both 
post-breeding and post-moult animals. We have not directly considered the effects of residual air as a potential 
source of bias on our estimates because (i) we don’t consider shallow dives (i.e. less than 100 m depth) as poten-
tial drift dives, and (ii) elephant seals exhale before diving. Previous research23 evaluated the potential effect of 
residual air present in elephant seal lungs, finding little effect on deep dives. That may not be the case for other 
shallower, breath-holding marine mammals, where these assumptions may be too strong. Our method overcomes 
a long-term challenge to robustly identify at-sea foraging success, and provides great opportunity for linkages 
between ecology, physiology, behaviour and environmental drivers to be further explored.

The new method provides a time series of drift rates, and the daily averaged values we obtain from the sum-
marized dive profiles show good concordance with those obtained from visually inspected high resolution dive 
profiles. Compared with the existing approach41, which reported 71.4% of retained dives as being true drift dives, 
our approach retained 87.5%. That gives over a 15% increase in the true drift rate retention, reducing the impact 
of false positives on the estimated drift rate time series, and contributing to reduce the error/variance of the 
estimation.

Inclusion of false positive drift dives can result in a higher variance among drift rate estimates and require 
some further processing; often achieved with smoothing/interpolating techniques such as splines23,41,59. Such 
smoothing/interpolating techniques are based on purely statistical approaches, without any biological process 
underpinning them. Using a custom Kalman filter incorporates a biologically relevant mechanistic model. 
Although this filter does not remove every non-drift dive, it greatly reduces their occurrence to approximately 
10% of the final set of retained dives. The filter also reduces the variability of the daily drift rate estimates, by over 

Figure 3.  Drift rate evaluation. Density plot shows the bias calculation for the final drift rates obtained using 
summarized profiles relative to the “true” drift rates obtained from high-resolution data. Curves are shown for 
the three processed seals (n = 735, 191 and 200 drift dive observations), together with the median averaged bias 
(mab = −0.0003).
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Figure 4.  Validation of the method. (A) The density distribution of the calculated bias between the daily 
averaged drift rate from summarized data (SDDR) and the observed daily averaged drift rate (ODDR) for 
the three seals. Grey shadowed area covers the 95% confidence interval, and vertical red line is drawn at the 
median. (B) The calculated bias versus the ODDR, evidencing a lack of any trend (horizontal red line set at 
Y = 0). (C) The positive linear relationship between the ODDR and the SDDR and the 95% confidence interval 
(SDDR = −0.001 + 0.986ODDR, r2 = 0.984).

Figure 5.  Kalman filter application. Comparison shows three daily averaged drift rate trajectories of the seals 
used to develop this method (b88904pb, c16204pb and c31204pb). ODDR refers to the observed daily averaged 
drift rate and SDDR to the daily averaged drift rate from summarized data both before (BK) and after (AK) 
applying the Kalman Filter. Lines between points join consecutive daily estimates.
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an order of magnitude (Fig. 5) because any accepted non-drift dive (false positive) has to be consistent with the 
drifting time series of the seal.

An important improvement from previous approaches is that our method can detect when the seal is posi-
tively buoyant. Positive buoyancy has implications for quantifying the individual foraging behaviour and success 
of individuals, as well as the quality of the foraging grounds. In our study, we have processed five post moulting 
trips, of which three exhibited substantial periods of positive buoyancy up to 150 days, Compiling a realistic 
record of daily body condition changes would have not been possible with previous approaches which is the ulti-
mate goal of our approach. We make our method available to the research community in the form of an R package 
under a General Public License.

The results are also consistent with expectations regarding the energy budgets of seals23,44,59. All the seals 
exhibit their lowest body condition at the start of the foraging trip, after fasting for 1–2 months (Appendix C). 
They show a progressive increase of body condition as they remain at sea, indicating that they are foraging suffi-
ciently well for their physiological needs and to gradually replenish their lipid reserves. In the longer post-moult 
time-series periods of positive buoyancy occur, often followed by a return to negative buoyancy.

Once buoyancy changes at temporal scales of days to months for individual animals can be estimated these 
data can be used to relate patterns of individual foraging success to factors such as such as who lives or dies, or 
who pups successfully, and how this links to where (spatially) and how (functionally) individuals may forage. 
Compiling patterns of foraging success across individuals will facilitate population level studies such as why some 
populations are stable and others declining63–65. Southern elephant seals have been tagged from all Southern 
Ocean breeding populations35, a global effort spanning more than two decades. Many hundreds of individual ani-
mals have been tagged, including both sexes as well as adults and juveniles66. Our automated approach is tractable 
for analysing existing and ongoing large dataset collections for larger overarching studies for example that link 

Figure 6.  Kalman filter performance. Mean squared error (msr) between the summarized daily drift rate 
(SDDR) and the observed daily drift rate (ODDR) across all observations (n = 1126). (A) Before the use of the 
Kalman Filter (mean ± SD = 0.005 ± 0.014, upper 95% CI = 0.04), and (B) after the Kalman Filter’s application 
(mean ± SD = 0.0002 ± 0.0006, upper 95% CI = 0.0015). Note the order of magnitude reduction on the x-axis 
scale in (B).

Seal id Trip N Rd %d RDd % Dd

b88904pb pb 4376 72 1.65 66 93.05

c16204pb pb 6287 87 1.38 86 98.85

c31204pb pb 5848 68 1.16 61 89.7

c69904pb pb 2867 197 6.87 180 91.37

c79004pb pb 4828 80 1.66 68 85

h28504pb pb 3921 64 1.63 60 93.75

c16305pm pm 11159 240 2.23 160 66.66

f99305pm pm 10034 220 2.27 171 77.72

h23305pm pm 12331 732 6.09 717 97.95

h83305pm pm 10011 268 2.74 225 83.95

Total 77179 2246 2.82 1972 87.8

Table 4.  Validation of the drift dive methodology with 10 independent Macquarie Island seals. Seal 
id = reference code for each individual tag/seal. Trip: pb = post-breeding trip, pm = post-moulting trip. 
N = Total number of dives recorded by each tag. Rd = number of retained dives after the application of our 
method. %d = proportion of dives retained from the total number of dives recorded. Rdd = number of retained 
drift dives. %Dd = proportion of the retained dives that were true drift dives, as determined by visual inspection 
of all retained dives using the original high resolution time-depth profiles.
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performance at-sea to key life-history traits such as survival and reproduction. To date this has been has been 
difficult given some of the limitations of the analytical tools available to the community.

Marine predators live in a highly heterogeneous seascape, requiring them to make decisions about where to go 
for their different life activities (e.g. foraging, breeding). Elephant seals are generalist consumers of a wide array 
of mesopelagic fishes, squid and crustaceans4 and the decisions individuals make are likely to be sex-dependent67, 
change ontogenetically68–71 and vary regionally4,35. Estimating daily changes in body condition are useful for 
enquiries at a patch-scale, i.e., decisions such as whether to leave a patch in relation to foraging success22,72. At a 
broader scale (regional or basin-scale) we can now directly examine changes in behaviour and performance due 
to environmental conditions, using covariates recorded either onboard the same tags (i.e. temperature, salinity; 
e.g.73) or synoptic information available from satellite sensors and oceanic models38,52,74. As Southern Ocean 
predators, their foraging success can give an integrated (over time and across space) indication of relative quality 
of the regions in which they forage39. Patterns in body condition can be used to evaluate the spatial distribution 
of prime foraging areas and their change in response to environmental conditions38,39,74. Such a robust metric 
affords the opportunity to directly pursue ecological questions linking animal ecology, behaviour, physiology and 
environment.

Code Availability
Code available at: https://github.com/farcego/slimmingDive.
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