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Cognitive deficits in Parkinson's disease are thought to be related to altered functional brain connectivity. To date,
cognitive-related changes in Parkinson's disease have never been explored with dense-EEG with the aim of es-
tablishing a relationship between the degree of cognitive impairment, on the one hand, and alterations in the
functional connectivity of brain networks, on the other hand.
This study was aimed at identifying altered brain networks associated with cognitive phenotypes in Parkinson's
disease using dense-EEG data recorded during restwith eyes closed. Three groups of Parkinson's disease patients
(N = 124) with different cognitive phenotypes coming from a data-driven cluster analysis, were studied: G1)
cognitively intact patients (63), G2) patients with mild cognitive deficits (46) and G3) patients with severe cog-
nitive deficits (15). Functional brain networks were identified using a dense-EEG source connectivity method.
Pairwise functional connectivity was computed for 68 brain regions in different EEG frequency bands. Network
statistics were assessed at both global (network topology) and local (inter-regional connections) level.
Results revealed progressive disruptions in functional connectivity between the three patient groups, typically in
the alpha band. Differences between G1 and G2 (p b 0.001, corrected using permutation test) were mainly
frontotemporal alterations. A statistically significant correlation (ρ=0.49, p b 0.001) was also obtained between
a proposed network-based index and the patients' cognitive score. Global properties of network topology in pa-
tients were relatively intact.
These findings indicate that functional connectivity decreases with the worsening of cognitive performance and
loss of frontotemporal connectivity may be a promising neuromarker of cognitive impairment in Parkinson's
disease.
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1. Introduction

Pathological perturbations of the brain are rarely limited to a single
region. Local dysfunctions often propagate via axonal paths and affect
other regions, resulting in large-scale network alterations (Fornito et
al., 2015). Over recent years, the identification of alterations in function-
al and structural networks from neuroimaging data became one of the
most promising prospects in brain diseases research. Indeed, neuroim-
aging helps investigation of the pathophysiological mechanisms in
vivo, and results from previous studies have shown that brain network
rance.
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topology tends to shape neural responses to damage (Fornito and
Bullmore, 2015; Fornito et al., 2015). In graph-theory approaches,
brain networks are characterized as sets of nodes (brain regions) con-
nected by edges (Bullmore and Sporns, 2009). Once nodes and edges
have been defined from the neuroimaging data, network topological
properties (organization) can be studied by graph-theory metrics and
functional connectivity by network-based statistics. Using different
neuroimaging techniques (functional magnetic resonance imaging
-fMRI-, magneto/electro-encephalography -M/EEG-), these combined
approaches have been used to characterize functional changes associat-
ed with conditions such as Alzheimer's disease (He et al., 2008; Lo et al.,
2010; Mallio et al., 2015; Stam et al., 2007), Parkinson's disease (Baggio
et al., 2015), Huntington's disease (Harrington et al., 2015), epilepsy
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Liao et al., 2010; Ponten et al., 2007; Zhang et al., 2011), schizophrenia
(Fornito et al., 2011) and autism (Guye et al., 2010; Li et al., 2014).

Parkinson's disease is the second most common neurodegenerative
disease after Alzheimer's disease and affects N1% of the population
over the age of 60 (de Lau and Breteler, 2006). Besides the hallmark
motor symptoms (rest tremor, hypokinesia, rigidity and postural insta-
bility), cognitive deficits are common in Parkinson's disease. They are
however heterogeneous in their clinical presentation and progression
(Halliday and McCann, 2010; Reid et al., 2011; Tröster, 2011). The
early detection and the quantitative assessment of these cognitive defi-
cits is a crucial clinical issue, not only for characterizing the disease but
also its progression. Several studies have previously reported alterations
in brain network organization and functional connectivity associated
with cognitive deficits in Parkinson's disease using fMRI, MEG and stan-
dard EEG (Baggio et al., 2014; Baggio et al., 2015; Bertrand et al., 2016;
Bosboom et al., 2009; Lopes et al., 2017; Olde Dubbelink et al., 2014;
Skidmore et al., 2011). So far, cognitive-related changes in brain connec-
tivity in Parkinson's disease have never been explored with dense-EEG
with the aim of establishing a relationship between i) the degree of cog-
nitive impairment, on the one hand, and ii) spatially-localized alter-
ations in the functional connectivity of brain networks, on the other
hand.

In this study, we recorded dense-EEG during eye-closed, resting
state in Parkinson's disease patients whose cognitive profile has been
identified by a cluster analysis on the results of an extensive battery of
neuropsychological tests (Dujardin et al., 2015). Our main objective
was to detect alterations in functional networks according to the sever-
ity of cognitive impairment; essentially those related to mild cognitive
deficits, which represent a serious challenge nowadays. To do so, func-
tional connectivity was investigated using a ‘EEG source connectivity’
method (Hassan et al., 2015a; Hassan et al., 2014). As compared with
fMRI studies of functional connectivity, a unique advantage of this
method is that networks could be directly identified at the cerebral cor-
tex level from scalp EEG recordings, which consist in direct measure-
ment of neuronal activity, in contrast with blood-oxygen-level-
dependent (BOLD) signals. Our main hypothesis was that EEG connec-
tivity was progressively altered as cognitive impairment worsened.
More specifically, we assumed that brain-network organization param-
eters would differ according to the cognitive status of the patients and
that functional connectivitywould bemore altered in patientswith cog-
nitive deficits compared to cognitively intact patients.
2. Methods

2.1. Participants

The data used in this analysis were acquired (from March 2013 to
August 2014) in a cross-sectional study of two independent European
movement disorder centers: in Lille, France and inMaastricht, theNeth-
erlands (Dujardin et al., 2015). One hundred fifty-six patients with idi-
opathic Parkinson's disease defined according to the UK Brain Bank
criteria for idiopathic Parkinson's disease (Gibb and Lees, 1988)were in-
cluded. None was suffering from a neurological disorder other than
Parkinson's disease. Patients with moderate and severe dementia (de-
fined as a score N 1 at the Clinical Dementia Rating (Morris, 1993) and
according to the Movement Disorders criteria (Emre et al., 2007)) and
those older than 80 years were excluded. Patients with recent (b2-
month) changes in their medical treatmentwere also excluded. All par-
ticipants gave their informed consent to participation in the study,
which had been approved by the local institutional review boards
(CPP Nord-Ouest IV, 2012-A 01317-36, ClinicalTrials.gov Identifier:
NCT01792843).

Detailed demographic and disease-related variables were recorded.
All the patients' medications were checked and doses of
antiparkinsonian medication were converted to levodopa equivalent
daily dose according to the algorithm by Tomlinson et al. (2010). Sever-
ity of motor symptomswas assessed by the score at theMovement Dis-
orders Society - Unified Parkinson Disease Rating Scale (MDS-UPDRS) -
part III (Goetz et al., 2008) and disease stage by the Hoehn & Yahr score
(Hoehn and Yahr, 2001). The severity of depression, apathy and anxiety
symptoms was quantified with the 17-item Hamilton Depression Rat-
ing Scale (Hamilton, 1960), the Lille Apathy Rating Scale (Sockeel et
al., 2006) and the Parkinson Anxiety Rating Scale (Leentjens et al.,
2014), respectively. The presence and severity of hallucinations were
checked by the score on the item 1.2 of the MDS-UPDRS.

All participants underwent a comprehensive neuropsychological as-
sessment including tests for global cognition and standardized tests
representing five cognitive domains: 1) attention andworkingmemory
(Digit span forward and backward (Wechsler, 1981), Symbol Digit Mo-
dalities Test (Smith, 1982), 2) executive functions (Trail Making Test B/
A ratio (Reitan andWolfson, 1995), the interference index and the num-
ber of errors in the interference condition of a 50-item version of the
Stroop word color test and a 1-minute phonemic word generation
task performed in single and alternating conditions), 3) verbal episodic
memory (Hopkins verbal learning test (Brandt and Benedict, 2001)), 4)
language (the 15-item short form of the Boston naming test (Graves et
al., 2004) and animal names generation task in 1 min) and 5) visuospa-
tial functions (the short version of the judgment of line orientation test
(Benton et al., 1978)). A cluster analysis (based on the k-means meth-
od) performed on the neuropsychological variables identified five phe-
notypes that were used for separating the participants according to
their cognitive status: 1) cognitively intact patients with high level of
performance in all cognitive domains, 2) cognitively intact patients
with only slight mental slowing, 3) patients withmild to moderate def-
icits in executive functions, 4) patients with severe deficits in all cogni-
tive domains, particularly executive functions, 5) patients with severe
deficits in all cognitive domains, particularly working memory and re-
call in verbal episodic memory (for details, see (Dujardin et al., 2015)).

One hundred thirty-three of these patients had a high-density EEG
recording after receiving their usual anti-Parkinson medication and
being in their best “on” state. For the purpose of this exploratory EEG
study,we decided tomerge the two groups of cognitively intact patients
and the two groups of patients with severe cognitive deficits in order to
consider only overall cognitive profiles. For further analyses, patients
will then be separated into three groups: 1) cognitively intact patients
(G1), 2) patients with mild to moderate deficits in executive functions
(G2), 3) patients with severe cognitive impairment (G3). All partici-
pants were assessed after having received their usual anti-parkinsonian
medication and were in their “best on” state during the whole duration
of EEG recording and neuropsychological assessment.

2.2. Data acquisition and preprocessing

Dense-EEG were recorded with a cap (Waveguard®, ANT software
BV, Enschede, the Netherlands) with 128 channels including 122 scalp
electrodes distributed according to the international system 10-05
(Oostenveld and Praamstra, 2001), two electro-cardiogram and four bi-
lateral electro-oculogram electrodes (EOG) for vertical and horizontal
movements. Electrodes impedance was kept below 10 kΩ. The data
were collected in an eye-closed resting-state condition for 10 min
with the software BrainVision Recorder (BrainProducts®). Subjects
were instructed to do nothing and relax. All recordings were performed
between 11:00 and 12:00 a.m. to limit drowsiness. An investigator con-
trolled online the subject and EEG and verbally alerted the subject every
time there were signs of drowsiness on the EEG traces or in behavior.
Signals were sampled at 512 Hz and band-pass filtered between 1 and
45 Hz. Channels and epochs containing artifacts were automatically
and/ormanually discarded. The automatic procedures included EOG ar-
tifact detection and correction using the method developed in (Gratton
et al., 1983), and EEG artifact analysis using a data inspection tracking
system to remove data with an amplitude over 90 μV. The automatic
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selection was confirmed manually and epochs with remained artifacts
(such asmovement artifact)were removed. For each participant, we se-
lected the maximum number of four-second segments artifacts-free to
perform analyses. An atlas-based approachwas used to project EEG sen-
sor signals onto an anatomical framework consisting of 68 cortical re-
gions identified by means of the Desikan-Killiany (Desikan et al.,
2006) atlas using Freesurfer (Fischl, 2012), http://freesurfer.net/. (See
Table S1 in Supplementary materials for more details about the name
of these regions). For this purpose, a template MRI and EEG data were
co-registered through identification of the same anatomical landmarks
(left and right pre-auricular points and nasion). A realistic head model
was built by segmenting theMRI using Freesurfer. The lead field matrix
was then computed for a corticalmeshwith 15,000 vertices using Brain-
storm (Tadel et al., 2011) and OpenMEEG (Gramfort et al., 2010).
Fig. 1. Structure of the investigation. Patientswere categorized by their cognitive performance
with severe cognitive impairment. The demographic and clinical features of the three groups a
groups are also described in Table 2 (see (Dujardin et al., 2015) for more description about th
(eye closed). The MRIs of the subjects were also available. The cortical sources were recon
(wMNE) method. An anatomical parcellation was applied on the MRI template producing 68
then imported for further processing into brainstorm (Tadel et al., 2011). The functional co
Value (PLV) method at six frequency bands: [delta (0.5–4 Hz); theta (4–8 Hz); alpha 1 (8–
matrices were compared between the groups using two level of network analysis i) High-l
strength, the characteristic path length and the global efficiency and ii) edge-wise analysis wh
in the network using the Network Based Statistics (NBS) approach (Zalesky et al., 2010a).
2.3. Power spectrum analysis

We used a standard Fast Fourier Transform (FFT) approach for
power spectrum analysis with Welch technique and Hanning
windowing function (2 s epoch and overlap of 50%). Relative power
spectrum was computed for each frequency band [delta (0.5–4 Hz);
theta (4–8 Hz); alpha 1 (8–10 Hz); alpha 2 (10–13 Hz); beta (13–
30 Hz); gamma (30–45 Hz)], with 0.5 Hz frequency resolution.

2.4. Functional connectivity analysis

Functional connectivity matrices were computed using the ‘EEG
source connectivity’ method (Hassan et al., 2014; Hassan et al.,
2015b). It includes two main steps: i) solving the EEG inverse problem
1) cognitively intact subjects, 2) patients with mild cognitive impairment and 3) patients
re summarized in Table 1. The performance and the neuropsychological test of the three
e database). Data: Dense-EEGs were recorded using 128 electrodes during resting state
structed by solving the inverse problem using the weighted Minimum Norm Estimate
regions of interest (Desikan-Killany atlas) computed using Freesurfer (Fischl, 2012) and
nnectivity was computed between the 68 regional time series using the Phase Locking
10 Hz); alpha 2 (10–13 Hz); beta (13–30 Hz); gamma (30–45 Hz)]. The connectivity
evel topology where we computed four network metrics: the clustering coefficient, the
ere we computed the between-group statistical analysis at the level of each connections
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Table 1
Demographic and clinical features of the three patient subgroups.
MDS_UPDRS3 = Movement Disorders Society sponsored revision of the Unified
Parkinson's Disease Rating Scale-Part III (severity of motor symptoms);
LEDD = Levodopa Equivalent Daily Dose; MMSE = Mini Mental State Examination;
MDRS = Mattis dementia rating scale.

N = 124 G1 G2 G3 p
valueMean (SD) Mean (SD) Mean (SD)

n (%) 63 (50.81) 46 (37.10) 15 (12.10)

Demographic
Sex (% male) 73.02 63.04 80 0.358
Handedness (% right) 84.12 91.3 93.33 0.362
Age (y) 63.53 (7.97) 67.29 (7.73) 70.07 (6.01) 0.003
Formal education (y) 13.32 (3.68) 11.52 (3.56) 9.47 (2.23) b0.001

Clinical
Disease duration(y) 8.05 (6.43) 8.8 (4.97) 10.6 (6.23) 0.317
MDS_UPDRS3 score 27.86 (11.91) 28.87 (11.08) 32 (18.15) 0.514
Hoehn & Yahr stage 2.02 (0.5) 2.24 (0.63) 2.13 (0.74) 0.168

Medication
LEDD (mg/day) 712.5 (548.46) 913.15 (599.75) 820.88 (275.97) 0.167

Neuropsychiatry
Hamilton depression
rating scale

5.44 (4.87) 6.22 (4.04) 5.33 (4.25) 0.637

Lille apathy rating scale −26.71 (6.3) −22.72 (6.93) −19.93 (8.33) b0.001
Hallucinations (%) 4.76 17.39 33.33

Cognition
MMSE (/30) 28.6 (1.44) 27 (2.19) 24.13 (3.42) b0.001
Mattis DRS (/144) 140.37 (3.12) 134.5 (5.41) 124.2 (9.17) b0.001
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to reconstruct the temporal dynamics of the cortical regions and ii)
measuring the functional connectivity between these reconstructed re-
gional time series (Fig. 1). The weighted Minimum Norm Estimate
(wMNE) was used to reconstruct the dynamics of the cortical sources.
The functional connectivity was then computed between the recon-
structed sources using the phase synchronization (PS)method. Tomea-
sure the PS, the phase locking value (PLV) method was used as
described in (Lachaux et al., 1999). This measure (range between 0
and 1) reflects true interactions between two oscillatory signals through
quantification of the phase relationships. The PLVswere estimated at six
frequency bands [delta (0.5–4 Hz); theta (4–8 Hz); alpha1 (8–10 Hz);
alpha2 (10–13 Hz); beta (13–30 Hz); gamma (30–45 Hz)]. The choice
of wMNE/PLV was supported by two comparative analyses performed
in (Hassan et al., 2014; Hassan et al., 2016) that reported the superiority
of wMNE/PLV over other combinations of five inverse algorithms and
five connectivity measures. Briefly, in (Hassan et al., 2016), the network
identified by each of the inverse/connectivity combination used to iden-
tify cortical brain networks from scalp EEGwas compared to a reference
network. The combination that showed the highest similarity between
scalp-EEG-based network and reference network (using a network sim-
ilarity algorithm) was considered as the optimal combination. This was
the case for the wMNE/PLV.

The inverse solutions were computed using Brainstorm (Tadel et al.,
2011). The network measures and network visualization were per-
formed using BCT (Rubinov and Sporns, 2010) and EEGNET (Hassan et
al., 2015b) respectively. See Fig. S1 in the Supplementary materials for
more details about the dense-EEG source connectivity method.

2.5. Network analysis

Networks can be illustrated by graphs,which are sets of nodes (brain
regions) and of edges (connectivity values) between those nodes. We
constructed graphs of 68 nodes (i.e. the 68 previously identified cortical
regions) and used all information from the functional connectivity
(phase locking value) matrix. This gave fully connected, weighted and
undirected networks, in which the connection strength between each
pair of vertices (i.e. the weight) was defined as their connectivity
value. Several metrics can be calculated to characterize weighted net-
works (for a wide-ranging overview, see (Rubinov and Sporns, 2010)).
Here, we examined networks analysis at two levels:

i) Global level reflected the overall network organization where we
computed several measures including path length (PL), clustering
coefficient (Cc), strength (Str) and global efficiency (EG) (more de-
tails are provided in Supplementarymaterials). All abovementioned
network measures depend on the edge weights. By consequence,
they were normalized. They were expressed as a function of mea-
sures computed from random networks. We generated 500 surro-
gate random networks derived from the original ones by randomly
reshuffling the edgeweights. The normalized valueswere computed
by dividing the original value by the average of the values computed
on the randomized graphs as reported in (Olde Dubbelink et al.,
2014).

ii) Edge-wise level reflected functional connectivity through the mea-
sure of each of the correlation values (weights) between the differ-
ent brain regions.

2.6. Statistical analyses

Edge-wise connectivity was characterized using the network-based
statistic (Zalesky et al., 2010a). To compute the network-based statistic,
an ANCOVA analysis was fitted to each of the (N2−N)/2= 2278 edges
(phase synchronization values) in the (68 × 68) functional connectivity
matrix, yielding a p value matrix indicating the probability of rejecting
the null hypothesis at each edge. A component-forming threshold, T,
was applied to each p value, and the size of each connected element in
these thresholded matrices was obtained. The size of the components
was then compared with a null distribution of maximal component
sizes obtained using permutation testing to obtain p values corrected
for multiple comparisons (Zalesky et al., 2010a). The NBS method
finds subnetworks of connections significantly larger thanwould be ex-
pected by chance (see (Zalesky et al. (2010a) for more details). In line
with (Fornito et al., 2011), herewe report results for a threshold that re-
tain only edges with p b 0.005. Results at higher (p b 0.01) and lower
(p b 0.001) threshold values are reported in Figs. S3 and S4 respectively
in Supplementary materials to show sensitivity to parameter sets.

Age and duration of formal education were entered as confounding
factors in the ANCOVA for both spectral and connectivity analyses. The
statistical analyses were performed using the SPSS Statistics 20.0 soft-
ware package (IBM Corporation). A significance level of 0.01 (two-
tailed) was applied. Corrections for multiple testing were applied
using Bonferroni approach.

3. Results

3.1. Demographic and clinical characteristics

After discarding nine EEG recordings due to a lot of artifacts, 124 pa-
tients participated in the study and were categorized in 3 different
groups (G1, G2, G3), based on their performance at the comprehensive
neuropsychological test battery. Their demographical and clinical char-
acteristics are shown in Table 1 and results of neuropsychological as-
sessment are shown in Table 2. Significant between-group differences
were observed for age, duration of formal education, severity of apathy
symptoms and frequency of hallucinations.

3.2. Power-based and network-based topology analyses

The results of the frequency-based analysis are summarized in Fig. 2.
In the alpha 1, alpha 2, beta, and gamma frequency bands, there was a
progressive decrease in the power spectral density as cognitive impair-
ment worsened (from G1 to G3). At the opposite, in the delta and theta
frequency bands, there was an increase in the power spectral as cogni-
tive impairmentworsened (fromG1 to G3). Significant differenceswere



Table 2
Performance (mean and standard deviation) at the neuropsychological tests of the three patients subgroups. WAIS-R= Wechsler for adults intelligence scale revised; SDMT= Symbol
digit modalities test; HVLT= Hopkins verbal learning test.

N = 156 G1 G2 G3 p value Post-hoc test
Mean (SD) Mean (SD) Mean (SD)

Attention and working memory
WAIS-R forward digit (/14) 8.30 (1.96) 6.93 (2.30) 6.33 (2.58) 0.001 1 N2,3
WAIS-R backward digit (/14) 6.38 (1.47) 4.96 (1.69) 3.47 (1.51) b0.0001 1 N 2,3; 2 N 3
SDMT: number in 90 s 48.59 (8.07) 32.98 (7.03) 15.73 (10.11) b0.0001 1 N 2,3; 2 N 3

Executive functions
Trail Making Test (time B/time A) 2.36(0.69) 2.84 (0.81) 2.58 (1.29) 0.013 1 N 2
Stroop: interference index 1.62 (0.26) 2.10 (0.75) 2.57 (1.20) b0.0001 1 N 2,3; 2 N 3
Stroop: errors 0.65 (1.14) 3.91 (4.48) 17.47 (14.46) b0.0001 1 N 2,3; 2 N 3
Phonemic fluency: words in 60 s 15.00 (4.00) 10.80 (3.96) 7.00 (3.29) b0.0001 1 N 2,3; 2 N 3
Alternating fluency: words in 60 s 13.79 (3.70) 8.96 (3.27) 5.87 (3.25) b0.0001 1 N 2,3; 2 N 3

Episodic memory
HVLT learn1 (/12) 7.22 (1.52) 5.30 (2.10) 3.27 (1.62) b0.0001 1 N 2,3; 2 N 3
HVLT learn total (/36) 27.44 (3.74) 22.76 (4.00) 15.47 (3.3) b0.0001 1 N 2,3; 2 N 3
HVLT delayed recall (/12) 9.78 (1.86) 8.02 (1.91) 3.93 (2.60) b0.0001 1 N 2,3; 2 N 3
HVLT recognition hits (/12) 11.46 (0.86) 11.09 (1.15) 9.53 (1.92) 0.0005 1 N 3; 2 N 3
HVLT number of intrusions 1.21 (0.90) 2.46 (3.20) 3.00 (2.10) 0.008 1 N 2,3

Language
Boston naming test (/15) 13.46 (1.59) 11.33 (2.55) 10.67 (2.89) b0.0001 1 N 2,3
Semantic fluency (animals in 60 s) 22.94 (4.77) 14.74 (3.89) 9.73 (5.45) b0.0001 1 N 2,3; 2 N 3

Visuospatial functions
Judgment of line orientation 12.17 (2.61) 10.74 (3.04) 7.60 (3.02) b0.0001 1 N 2,3; 2 N 3
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observed betweenG1 andG3 and betweenG2 and G3 in the delta, theta
and beta frequency bands (p b 0.01, Bonferroni corrected for each com-
parison).We did not observe any significant difference between G1 and
G2whatever the frequency band. Regarding the network-based topolo-
gy analysis, the four metrics (PL, Cc, Str and EG) tended to decrease as
cognitive impairment worsened (from G1 to G3), at all the frequency
bands, without any significant differences (see Fig. S2 in the Supple-
mentary materials).

3.3. Edge-wise analysis

Fig. 3 shows the results of the edge-wise analysis performed using
the NBS toolbox. The statistical tests (ANCOVA, corrected by permuta-
tion test) were applied to each connection in the networks computed
at all the frequency bands (delta, theta, alpha 1, alpha 2, beta and
gamma). Significant differences were found only between networks
computed at the EEG alpha band (alpha 1 and alpha 2).

Concerning the alpha 2 networks, the difference between G1 and G2
revealed that one connected component comprising49 edges and 36 re-
gions was statistically significant (p = 0.03, corrected using permuta-
tion test, Fig. 3A). For all these edges, the connectivity was
significantly lower in G2 than G1. To better understand the regional dis-
tribution of these connections, we classified each region as belonging to
one of five broad scalp areas: frontal, temporal, parietal, occipital or
Fig. 2. A. Frequency based analysis: mean ± standard deviation values of the power
spectral density for each group of patients at six frequency bands: [delta (0.5–4 Hz);
theta (4–8 Hz); alpha1 (8–10 Hz); alpha2 (10–13 Hz); beta (13–30 Hz); gamma (30–
45 Hz)]. The * denotes a p value b 0.01, Bonferroni corrected.
central. We then categorized each edge in the affected subnetwork on
the basis of the areas they connected (e.g., fronto-temporal, temporo-
parietal, etc.) and counted the proportion of edges falling into each cat-
egory. When comparing G1 and G2, most reduced connections in G2
were fronto-temporal (36%). Similar results were obtained across dif-
ferent values of threshold (see Figs. S3 and S4 in Supplementary
materials).

When comparing G2 and G3, one connected component comprising
125 edges and 57 regions was statistically significant (p b 0.001,
corrected using permutation test, Fig. 2B). For all edges, the functional
connectivity was significantly reduced in G3. Most of these altered con-
nectionswere fronto-central (20%), temporo-frontal (12%), fronto-fron-
tal (12%) and occipito-central (12%). Similar results were obtained
across different values of threshold (see Figs. S3 and S4 in Supplementa-
ry materials).

One connected component, comprising 229 edges and 57 regions
was significant between G1 and G3 (p b 0.001, corrected using permu-
tation test, Fig. 3C). Most of these decreased connections were
parieto-frontal (14%), fronto-central (14%) and temporo-frontal (13%).
Similar results were obtained across different values of threshold (see
Figs. S3 and S4 in Supplementary materials).

Concerning the alpha1 networks, results showed significance differ-
ence between G2 and G3 with a component of 60 nodes and 320 edges
(p b 0.001, Fig. 4A). These alterationsmainly concerned temporo-frontal
(20%), temporo-temporal (15%) and fronto-central (10%) connections.

In addition, one connected component, comprising 123 edges and
47 regions showed significant differences between G1 and G3 (p =
0.004, Fig. 4B). Most of these decreased connections were temporo-
frontal (24%), fronto-central (10%) and temporo-temporal (10%). No
significant difference was observed between G1 and G2 at the alpha1
frequency band.

3.4. Correlations between brain connectivity and performance at the neuro-
psychological tests

To assess the relationships between functional connectivity and
Parkinson's disease patients cognitive performance, we on the subnet-
work showing a significant difference between G1 and G2 (Fig. 3A).
We reasoned that these 49 edges were the most relevant for detecting



Fig. 3. Edge-wise analysis (alpha 2). Subnetworks of functional connections showing a significant difference between the three groups at alpha 2. At each part, the top rowpresents graph-
based representations of these subnetworks, with each region represented as a red sphere plotted according to the stereotactic coordinates of its centroid, and each suprathreshold edge
represented as a dark green line. The size of the node represents the number of significantly different connections from the node itself. For all edges, connectivitywas higher inG1 NG2 (A),
G1 N G3 (B) and G2 N G3 (C). Bottom row presents the proportion (%) of each type of connection in each subnetwork, as categorized according to the lobes each edge interconnects. F:
Frontal, T: Temporal, P: Parietal, C: Central, and O: Occipital.

596 M. Hassan et al. / NeuroImage: Clinical 14 (2017) 591–601
a marker of cognitive impairment in Parkinson's disease. For each net-
work, we derived an Edge-Wise Connectivity Index (EWCI) as the
sum of the weights of the significant subnetwork:

EWCI ¼ ∑
N

i
Wi

 !
� 100

where Wi represents the weight of the edge i in the significant subnet-
work and N is the number of edges in the subnetwork (N = 49 in this
case). For the correlation analysis, we used the three most discriminant
neuropsychological tests identified by the discriminant factorial analy-
sis (see, Dujardin et al., 2015). It included the number of correct re-
sponses at the symbol digit modalities test (SDMT), the number of
errors at the Stroop test and animal fluency in 60 s. Z-scores were calcu-
lated for each of these tests and the cognitive score used for the correla-
tion analysis (Spearman ρ) was the sum of these Z-scores. Results are
shown in Fig. 5.When considering all groups, the EWCIwas significantly
correlated with the cognitive score (ρ = 0.49, p b 0.01), Fig. 5A. To en-
sure that the correlation was not only driven by G3 (as it might be per-
ceived in the figure), we computed the correlation between EWCI and
cognitive score for G1 and G2, results show that the association remains
significant (ρ = 0.37, p b 0.01), Fig. 5B.

4. Discussion

Brain disorders are rarely limited to a single region. Local dysfunc-
tions often propagate to affect other regions, resulting in large-scale
brain network alterations (Fornito et al., 2015). This is particularly
true in neurodegenerative diseases. Therefore, the identification of dis-
ruptions in whole-brain functional networks from noninvasive record-
ings and their relationships with cognitive impairment is a very
important and challenging issue. Indeed, discovering functional connec-
tivity abnormalities correlated with unfavorable disease progression
could help prognosis of cognitive decline with the identification of
markers for disease progression, and guide treatment instauration.



Fig. 4. Edge-wise analysis (alpha 1). Subnetworks of functional connections showing a significant difference between the three groups at alpha 1. At each part, the top rowpresents graph-
based representations of these subnetworks, with each region represented as a red sphere plotted according to the stereotactic coordinates of its centroid, and each suprathreshold edge
represented as a dark green line. The size of the node represents the number of significantly different connections from the node itself. For all edges, connectivitywas higher inG2 NG3 (A)
and G1 N G3 (B). Bottom row presents the proportion (%) of each type of connection in each subnetwork, as categorized according to the lobes each edge interconnects. F: Frontal, T:
Temporal, P: Parietal, C: Central, and O: Occipital.
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Here, based on scalp dense-EEG recordings, we detected alterations in
functional networks associated with cognitive deficits in patients with
Parkinson's disease. Using the edge-wise analysis, we highlighted dis-
turbances in functional connectivity in the alpha 2 frequency band
even when cognitive deficits were still mild (by comparison of G1 and
G2).

Although using EEG to detect cognitive decline in PD is not new in
itself, the originality of this work is twofold. On one hand,most previous
studies (using EEG) focused on comparing groups such as healthy con-
trols vs. PD with or without dementia. Here, the data came from a large
group of Parkinson's disease patients who underwent a comprehensive
neuropsychological assessment andwere categorized in different cogni-
tive phenotypes (cognitively intact patients, patients withmild to mod-
erate deficits mainly in executive functions and patients with severe
cognitive deficits in all cognitive domains including memory) by a
data-driven clustering approach (Dujardin et al., 2015). Hence, the dif-
ferences of functional connectivity between groups are linked to differ-
ent cognitive profiles that were not defined a priori. On the other hand,
most previous studies tried detecting differences in the EEG frequency-
bands power and a common finding was the slowing of EEG with PD
progression (Kamei et al., 2010). This approach failed to detect
Fig. 5. Scatterplot of the association between the cognitive score and the ed
differences between the G1 and G2, although such marker of mild cog-
nitive deficits is a real challenge. Here, we focused on the detection of
EEG functional connectivity disruptions between different brain regions
of networks associated to PD patients with different cognitive pheno-
types. Previously, functional connectivity was usually computed at the
scalp (electrodes) level. However, the EEG scalp level connectivity
does not allow interpretation of anatomically interacting brain areas
as they are severely corrupted by the volume conduction effects, see
(Brunner et al., 2016; Schoffelen and Gross, 2009; Van de Steen et al.,
2016) for recent discussion. Here, EEG source connectivity approach
was used to identify functional networks at the cortical level from
scalp dense-EEG recordings. This method was first evaluated for its ca-
pacity to reveal relevant networks in a picture naming task (Hassan et
al., 2014) and was then extended to the tracking of the spatiotemporal
dynamics of reconstructed brain networks (Hassan et al., 2015a;
Hassan and Wendling, 2015). Graph theory metrics were firstly com-
puted reflecting the global topology characteristics of the network.
This approach also failed to detect significant differences between the
three groups. Finally, assessment of the functional connectivity between
cortical regions (called edge-wise analysis) showed a significant differ-
ence between each of the three cognitive phenotypes. These findings
ge-wise connectivity index for the A) G1, G2 and G3 and B) G1 and G2.
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indicate that functional connectivity decreases with the worsening of
cognitive performance and loss of connectivity between the frontal
and temporal regions may be a marker of mild to moderate cognitive
deficits in Parkinson's disease. Results are further discussed hereafter.

4.1. EEG and cognitive impairment

EEG has increasingly been used to describe cognitive impairment in
neurodegenerative disorders (Fonseca et al., 2009; Roh et al., 2011).
Resting-state recordings from Alzheimer's disease patients were char-
acterized by a shift to lower frequencies (Bennys et al., 2001; Czigler
et al., 2008; Penttila et al., 1985). Similar findings were reported in
Parkinson's disease when comparing cognitively intact patients, pa-
tients with mild cognitive impairment and with dementia
(Bousleiman et al., 2014; Caviness et al., 2007). A slowing of EEG was
even found in early-untreated Parkinson's disease patients without de-
mentia, but with deficits in executive functions (Kamei et al., 2010;
Stoffers et al., 2007). The comparison between Alzheimer's disease
and Parkinson's disease patients with dementia with a similar severity
of dementia (based on the score at the MMSE) showed higher EEG
slowing in Parkinson's disease patients with dementia (Babiloni et al.,
2011; Fonseca et al., 2013). A slowing of EEGs (mainly in the theta
power) was also observed in Parkinson's disease and Alzheimer's dis-
ease at early stage of the disease (Benz et al., 2014). Our results agree
with most of the reported studies. We observed a shifting towards
lower frequencies from G1 to G3 and G2 to G3 mainly in delta and
theta frequency bands. We also observed an increase in the beta band.
A possible explanation of these observations is that disruption of alpha
1 (low alpha) and theta rhythms is due to a phenomena of degeneration
of the ascending diffuse projection systems of attention (Klimesch,
1999). Beta oscillations may be altered by intrinsic cortical pathology
(Dubbelink et al., 2013).

4.2. Functional connectivity deficits in Parkinson's disease

Considering the brain as a very complex network, recent studies
have started to focus on modifications in functional connectivity to ex-
tend our understanding of neurodegeneration (see review in (Pievani
et al., 2011)). Our results showed a tendency to decreasing in the global
topological graph features fromG1 toG3 butwithout any significant dif-
ferences between the groups. Previous studies have reported loss in net-
work efficiency and hubs in the EEG alpha frequency bands in patients
with Lewy bodies dementia in comparison with healthy controls and
Alzheimer's disease patients (van Dellen et al., 2015). In a four-year fol-
low-up study of Parkinson's disease patients with MEG recording, re-
duced node clustering for all frequencies and loss of global network
efficiency in alpha frequency bandwere reported to be relatedwith cog-
nitive decline (Olde Dubbelink et al., 2014).

The absence of significant changes at the level of network global fea-
tures (averaged over thewhole brain) between groups can be explained
by the high heterogeneity of the metric values across the brain regions.
Nevertheless, a node-wise analysis (statistical test at each node) using
these features did not show also significant difference between the
groups. It is possible that the normalized features used here (CC, Str, PL
and EG) were not sensitive to detect the reorganization in the brain net-
works of the different groups and therefore other advanced node-level
metrics may possibly detect the global (or local) alterations in the
networks.

Using the edge-wise analysis, we observed significant differences in
alterations in the functional networks at the alpha 1 (8–10 Hz) and
alpha 2 (10–13 Hz) frequency bands. Alterations in the alpha band
were observed by many previous studies such as those reporting a
loss in MEG functional connectivity in demented patients (Bosboom et
al., 2009), a reduction in the global coherence (Andersson et al., 2008;
Franciotti et al., 2006) and a loss in EEG network efficiency and hubs
(van Dellen et al., 2015) in dementia with Lewy bodies and, very
recently, a decrease in local integration at the alpha1 frequency bands
between cognitively intact and demented Parkinson's disease patients
(Utianski et al., 2016). Observing significant alteration between G1
and G2 only in the alpha band was not surprising. The alpha wave is
very dominant during eye close resting state reflecting the attentional
capacity of the subject (alpha 1) and the integration of the sensory
motor and semantic information (alpha 2) via the activation of the
thalamo-cortical and cortico-cortical connections (Klimesch, 1999;
Steriade et al., 1990). However, the other frequency bands are less dom-
inant during rest (eye closed). For instance, beta and gamma are more
associated with cognitive tasks and reflect the local information pro-
cessing (segregation).

The observed differences between the G1 and G2 were mainly
fronto-temporal. A key issue here is that these alterations in connectiv-
ity were observed when cognitive deficits are still moderate. Similar
fronto-temporal alterations were also previously observed in
Alzheimer's disease patients using structural (Zhang et al., 2009) and
functional (de Haan et al., 2009) connectivity. MEG studies showed
also loss of frontotemporal functional connectivity at the alpha band
in Parkinson's disease patients with dementia (Bosboom et al., 2009).
These observations are in line with results of structural MRI studies
showing early atrophy of temporal and frontal lobes in Parkinson's dis-
ease patients withmild cognitive impairment andmore widespread at-
rophy in Parkinson's disease patients with dementia (Beyer et al., 2007;
Song et al., 2011). They also agree with neuropathological observations
that Lewy bodies pathology first invades the neocortex through these
same regions (Braak and Del Tredici, 2009; Braak et al., 2003). We also
observed that the alterations in functional connectivity observed in
the group of patients with severe deficits (G3) involved more spatially
distributed networks, mainly fronto-parietal and fronto-central.

In contrast to our results and those ofmany other studies, a trend to-
wards an increase in cortico-cortical functional connectivitywas report-
ed in Parkinson's disease patients early in the course of the disease
compared with healthy controls in the alpha 1, alpha 2, beta and theta
frequency bands using MEG (Stoffers et al., 2008). The significance of
this increased synchronization between cortical regions remains ambig-
uous. The absence of a healthy control group in our study does not allow
us to verify the existence of such “over-connectivity” at early stages of
Parkinson's disease. It is however likely that the observedmodifications
in the functional network in Parkinson's disease vary depending on the
severity of cognitive decline as discussed in (Berendse and Stam, 2007).
Only a follow-up of our patients could shed light on these issues.

Although the emerging evidence of considering PD and other neuro-
degenerative diseases as network diseases drove our analysis, it is
worth mentioning here that other fMRI–based approaches also exist
for characterizing PD progression without looking at the functional/
structural connectivity between brain regions. These signal-ampli-
tude-oriented approaches were applied to resting state BOLD time se-
ries by computing of the Amplitude of the Low Frequency Fluctuation
(ALFF) of the BOLD signals in order to build a Reliability Mapping of Re-
gional Differences (RMRD) that may help to classify PD from controls
(Skidmore et al., 2013). Adapting those approaches to EEG sources
and comparing with network-based results could be of interest for fur-
ther investigation.

4.3. Limitations

Firstly, patients were initially separated into five ‘clusters’ according
to their cognitive status, for details, see (Dujardin et al., 2015). As ex-
plained in the methods section, patients from clusters 1 and 2 were
combined into one group of cognitively intact patients (G1) since we
wanted to differentiate the groups according to overall efficiency. How-
ever, a further investigation of the differences in functional EEG connec-
tivity between these two clusters could be of interest to test the
hypothesis that mental slowing may contribute to be an early marker
of cognitive impairment in Parkinson's disease. Moreover, due to the
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small number of patients in each cluster after excluding those with un-
usable recording due to artifacts, patients from clusters 4 and 5 were
combined into one group with severe cognitive deficits although their
profile were quite different. Again, further investigations are needed
to determinewhether these profiles are also associatedwith differences
in functional EEG connectivity.

Secondly, although inclusion was prospective, the male/female ratio
was higher than usually in our patient group. This may have influenced
our results although, up to now, there is no evidence of a sex effect on
EEG characteristics of PD patients. Thirdly, our study did not include a
group of healthy control subjects. Therefore, the comparison between
the networks from patient groups with a reference network was not
possible. As our main objective was to discover markers able to detect
early cognitive decline in Parkinson's disease patients, we used the
group of cognitively intact patients (G1) as a reference and analyses
were adjusted on age and education. Moreover, our patient groups did
not differ in disease duration and severity of the motor symptoms
(assessed by the score at the MDS-UPDRS III scale). Despite between-
group differences, apathy and hallucinations were not considered as
nuisance factors in our analyses. Indeed, we considered that lack of ini-
tiative, reduction of interests and loss of insight may be symptoms of
cognitive impairment since both apathy and hallucinations are embed-
ded with cognitive impairment in Parkinson's disease. Adjusting on
these variables, in addition to reduce statistical power, would have re-
moved useful information from our analyses.

Fourthly, regarding the methodological issues, a priori anatomic
template to define the network nodeswas used in our analyses. This ap-
proach is commonly used in the literature (Achard et al., 2006; Fornito
et al., 2011; Lynall et al., 2010). Nevertheless, further work examining
the effects of template selection on reported findings will be important
to determine their generalizability (Zalesky et al., 2010b). Another
problem when computing the connectivity at the source level is the
‘spatial leakage’ as the reconstruction of true dipole sources from the
scalp signals will be spread over numerous voxels.

In this context, few strategies have been proposed to tackle this issue
and they mainly intended to remove the zero-lag correlations before
performing any connectivity analysis (Brookes et al., 2012; Colclough
et al., 2015; Hipp et al., 2012). Others suggested keeping only the
long-range connections (de Pasquale et al., 2012). However, these
methods suppress possible significant correlations that might happen
at zero-lag (Finger et al., 2016). Here, we used the phase locking
value. Our choicewas supported by two comparative studies using sim-
ulated (Hassan et al., 2016) and real data (Hassan et al., 2014). Both
analyses showed that PLV has the highest performance among all the
tested methods. Even though the PLV does not correct for spatial leak-
age, it was recently shown to provide highest performance among
many other connectivity measures (even those correcting for spatial
leakage such as the imaginary part of the coherence) (Finger et al.,
2016). These authors also showed that the zero lag correlations are cru-
cial when analyzing the network structural-functional correlations.
More recently, a comparative study between different connectivity
measures (using the same inverse solution algorithm) did not show a
significant difference between PLV and methods correcting for spatial
leakage such as the orthogonalized, band limited, power envelopmeth-
od, when looking at group-level repeatability, within-subject consisten-
cy and between-subject consistency in resting state data (Colclough et
al., 2016). Nevertheless, we believe that more methodological efforts
are still needed to completely overcome issues such as mixing and spa-
tial leakage. The use of multimodal recordings such as EEG/fMRI could
be also of interest as it can benefit from the excellent spatial resolution
of the fMRI and the excellent time resolution of the EEG and can help to
cross-validate of the results from both techniques.

To sum up, we reported a new analysis using dense-EEG source con-
nectivity in Parkinson's disease patients with different cognitive pheno-
types. We showed that cognitive impairment in Parkinson's disease is
related to functional connectivity alterations. We speculate that this
relatively easy-to-use technique is a promising approach not only to de-
tect and characterize alterations in pathological functional networks but
also may open perspectives towards designing a neuromarker of cogni-
tive impairment in Parkinson's disease (and other neurodegenerative
diseases) from resting-state EEG recordings that could consolidate re-
sults of usual neuropsychological tests.
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