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Untargeted metabolomics aims at measuring the entire set of metabolites in a

wide range of biological samples. However, due to the high chemical diversity

of metabolites that range from small to large and more complex molecules

(i.e., amino acids/carbohydrates vs. phospholipids/gangliosides), the

identification and characterization of the metabolome remain a major

bottleneck. The first step of this process consists of searching the

experimental monoisotopic mass against databases, thus resulting in a highly

redundant/complex list of candidates. Despite the progress in this area,

researchers are still forced to manually explore the resulting table in order

to prioritize themost likely identifications for further biological interpretation or

confirmation with standards. Here, we present TurboPutative (https://

proteomics.cnic.es/TurboPutative/), a flexible and user-friendly web-based

platform composed of four modules (Tagger, REname, RowMerger, and

TPMetrics) that streamlines data handling, classification, and interpretability

of untargeted LC-MS-based metabolomics data. Tagger classifies the

different compounds and provides preliminary insights into the biological

system studied. REname improves putative annotation handling and

visualization, allowing the recognition of isomers and equivalent compounds

and redundant data removal. RowMerger reduces the dataset size, facilitating

the manual comparison among annotations. Finally, TPMetrics combines

different datasets with feature intensity and relevant information for the

researcher and calculates a score based on adduct probability and feature

correlations, facilitating further identification, assessment, and interpretation of

the results. The TurboPutative web application allows researchers in the

metabolomics field that are dealing with massive datasets containing

multiple putative annotations to reduce the number of these entries by

80%–90%, thus facilitating the extrapolation of biological knowledge and

improving metabolite prioritization for subsequent pathway analysis.

TurboPutative comprises a rapid, automated, and customizable workflow

that can also be included in programmed bioinformatics pipelines through

its RESTful API services. Users can explore the performance of each module

through demo datasets supplied on the website. The platform will help the
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metabolomics community to speed up the arduous task of manual data

curation that is required in the first steps of metabolite identification,

improving the generation of biological knowledge.
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1 Introduction

Untargeted metabolomics aims at measuring the entire set of

metabolites in a wide range of biological specimens, in a certain

time and under particular conditions (Nicholson et al., 1999;

Fiehn, 2001). However, unlike genes, transcripts, or proteins,

metabolites are not encoded in the genome but are the result of

chemical transformations by enzymes acting on diverse

substrates (i.e., diet, drugs, pollutants, other metabolites, and

the environment, among others), resulting in a group of

molecules with high chemical diversity. Hence, the

identification and characterization of each one of the elements

of the metabolome remain the major bottleneck of this discipline

(Bowen and Northen, 2010; Creek et al., 2014). Moreover, since

different sample preparation and analytical methods are used to

increase metabolome coverage (Theodoridis et al., 2018),

researchers generally deal with massive and complex datasets

where not all of the entities are biologically relevant or, evenmore

challenging, identifiable (Baker, 2011). Indeed, it has been

reported that only 25% of the observed compounds can be

putatively annotated/identified (Baker, 2011). Furthermore,

peak tables, which are generated from liquid chromatography

coupled with mass spectrometry (LC-MS) analyses [i.e., the most

commonly used platform for untargeted metabolomics

experiments (Hu et al., 2020)], are composed of redundant

entities due to commonly occurring adducts, neutral losses,

isotopes, and in-source fragments that eventually correspond

to the same metabolite and, thus, largely depend on the analytical

method employed rather than on the system studied (Alseekh

et al., 2021). This results in an arduous and highly time-

consuming data processing step in untargeted metabolomics-

based experiments that can lead to wasteful use of resources as

well as unintended biases when publishing results.

Over the past years, several computational tools have been

proposed to process these complex datasets (O’Shea and Misra,

2020; Misra, 2021). Among them, XCMS, MZmine, MSDial, and

OpenMS focus on the data preprocessing step by grouping

features arising from the same chemical entity (i.e., adducts,

isotopes, and in-source fragments) and allowing peak-picking,

data alignment, and noise and background signal elimination

(Smith et al., 2006; Forsberg et al., 2018). HERMES uses raw

MS1 data to optimize MS2 acquisition, improving the annotation

by a molecular-formula-oriented and peak-detection-free

method (Giné et al., 2021). Finally, others focus on the

identification of metabolites by predicting, through pathway

activation, the most probable metabolite identification starting

from a list of MS peaks (Pang et al., 2021). However, even though

these tools allow reducing data matrix complexity and facilitate

compound identification, this latter task remains highly

dependent on manual data curation by the researcher,

especially in the case of low-intensity peaks and with low

MS2 resolution.

The first step for metabolite identification can be achieved by

tools such as Ceu Mass Mediator and MetaboSearch that allow

searching the experimental monoisotopic mass against databases

within a defined mass error window and considering expected

adducts/neutral losses (Smith et al., 2005; Gil de la Fuente et al.,

2018). However, their typical output is a comprehensive list of

potential identifications that has to be manually inspected by the

researcher in order to remove redundant information. Indeed,

according to the settings included in the search (i.e., error

window and adducts) as well as the number of libraries/

databases used (more than one is generally preferred), the list

of potential metabolites can be extremely large. Specifically, for

the same monoisotopic mass entry, the output data table can

include several synonyms depending on the nomenclature used

in the selected database (i.e., IUPAC vs. common name) as well as

highly informative and specific data that cannot be deduced from

the monoisotopic mass [i.e., the stereoisomeric distribution of

metabolites (Schrimpe-Rutledge et al., 2016) and the double

bond position (Groessl et al., 2015), among others]. This

exponentially increases the number of possible identifications

that are instead attributable to a few less specific metabolic IDs,

hindering an already complex dataset. Moreover, depending on

the database employed and the biological setting investigated,

relevant biological information might be hidden by less likely

putative annotations, entailing additional effort from the

researcher who has to manually classify each entry.

The list of potential metabolites can be further reduced and

the confidence level of the annotation increased by including

retention time and/or spectral similarity with commercial/public

spectral libraries/databases (Kind et al., 2018). However, only the

use of a standard (pure compound), which is analyzed under

identical analytical conditions, allows unambiguous

identification of annotated molecules, as outlined by the

Metabolomics Standards Initiative (Sumner et al., 2007;

Schrimpe-Rutledge et al., 2016). This notwithstanding, only a

few metabolomics studies comply with this identification

confidence level (level 1). On the contrary, majority of the

metabolomics studies only report the most probable ID
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(i.e., metabolites that are putatively annotated according to mass

accuracy and spectral similarity, level 3 and level 2) (Alseekh

et al., 2021). This results in a demanding and highly time-

consuming data curation task for the researcher who has to

manually reduce the data table in order to provide a list of the

most likely identifications that in turn allows biological

interpretation of the data.

Here, we propose TurboPutative (https://proteomics.cnic.es/

TurboPutative/), a flexible and user-friendly web-based platform

composed of four modules (Tagger, REname, RowMerger, and

TPMetrics) that streamline data handling, classification, and

interpretability of untargeted LC-MS-based metabolomics

data. TurboPutative allows researchers dealing with massive

datasets containing multiple putative annotations to reduce

the number of entries while classifying them through an

automated and customizable workflow. To the best of our

knowledge, no other existing web server offers the possibility

to considerably simplify the data table with putative annotations

without overlooking relevant biological data. TurboPutative

facilitates extrapolation of biological knowledge and improves

metabolite prioritization for subsequent ID confirmation or

pathway analysis. Key features of TurboPutative as well as

details about the server and its interface are provided below.

2 Methods

Turboputative is a free web server consisting of four

modules that can be executed sequentially: 1) Tagger, 2) REname,

3) RowMerger, and 4) TPMetrics (Figure 1). Demo datasets are

available for the user to explore the platform, and a working

example is provided to show the results of the data curation by

carrying out the whole pipeline. In addition to uploading the input

file, users can customize the parameters of each module and select

which one to execute.

2.1 Modules

2.1.1 Tagger
Metabolites are defined as small molecules present in a

biological compartment. This definition, however, simplifies

the depiction of a more complex environment in which a

combination of endogenous compounds and xenobiotics is

actually present (Nicholson and Wilson, 2003). Moreover,

since the typical output table, which is generated after the first

step of the metabolite’s identification, is composed of all the

possible annotations that comply with the settings included in

the search against databases, the resulting list might include, for

the same entity, metabolites of different origin, including

xenobiotics (i.e., drugs and their catabolites, contaminants and

toxins), metabolites derived from the co-metabolism between the

host and the gut microbiota, or endogenous metabolites, among

others. In order to reduce this complexity and enhance

subsequent metabolite prioritization, we developed “Tagger,” a

classification module in TurboPutative. Tagger parses several

databases (see below) and classifies the compounds in the dataset

according to their origin as nutrients, drugs, microbiota-

FIGURE 1
TurboPutative workflow. The complete pipeline is composed of four modules: (i) Tagger, (ii) REname, (iii) RowMerger, and (iv) TPMetrics that
can work sequentially or run alone. The table generated by one module includes the simplifications and modifications introduced by the
previous one.
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dependent metabolites (MDM), natural products/plants,

contaminants (i.e., halogen-containing compounds), or

peptides (Figure 2). This enables narrowing down putative

identifications only based on accurate mass search by allowing

the user to focus on those molecules either expected to be present

in the system or biologically relevant for the study. For instance, if

among the different options corresponding to the same chemical

entity there are drugs that were not supplied to the system

studied, the classification by Tagger allows the user to detect

and remove these candidates from the list, making the dataset

more manageable. On the other hand, if the researcher is

investigating the effect of the gut microbiota on the host

metabolism [a hot topic in research (Nicholson et al., 2012)],

the MDM classification would pinpoint those metabolites by

converting analytical data into biological knowledge as well as

prioritizing their subsequent ID confirmation.

The classification is performed using in-house predefined

lists of metabolites that were generated by parsing different

databases as described in the following:

1) Nutrients (abbreviated as food): the reference list contains

compounds that are extracted from the Human Metabolome

Database (HMDB 4.0) (Wishart et al., 2018b) being classified

as “Food” or as “Food and Nutrition.”

2) Drugs: the reference list is composed of compounds from the

DrugBank (Wishart et al., 2018a) and HMDB metabolites

that are classified as “Drug” or as “Pharmaceutical industry.”

3) Plants: the reference list contains compounds extrapolated

from the PlantCyc (Hawkins et al., 2021) database.

4) Natural products (NPs): the reference list contains

compounds extracted from the LOTUS database (https://

lotus.naturalproducts.net/).

5) Microbiota-dependent metabolites (MDMs): The reference

list contains an in-house curated list of compounds and other

metabolites included in the Metabolomics Data Explorer tool

that is developed by the Sonnenburg Laboratory (Han et al.,

2021).

6) Halogens (x): halogenated compounds are classified by

applying regular expressions to the molecular formula

(if available from the input dataset) or to the

metabolite’s annotation. For example, the compound 6-

(2-Chloroallylthio)purine can be classified as halogen by

applying the regular expression “(F|Cl|Br|I) (?! [a-z])” to

its molecular formula (C8H7ClN4S). Alternatively, the

regular expression " ([Ff]luor (?!ene)|[Cc]hlor (?!ophyl)|

[Bb]rom|[Ii]od)" can be applied to its name (6-(2-

Chloroallylthio)purine).

7) Peptides (Pep): sequence of amino acids reported

following the three-letter symbol abbreviation are

classified as peptides using a regular expression (e.g.,

Arg-Lys-Ile).

Of note, only those metabolites that have an exogenous

origin are included in the reference list accessed by Tagger. On

the contrary, metabolites that are classified as both

“Endogenous” and “Food”/“Food and Nutrition”/“Drug”/

“Pharmaceutical industry” in the HMDB are not included in

the in-house lists. This is the case of metabolites as amino acids

that can be present in nutrients/plants/drugs/natural products

but also be the result of endogenous metabolism and, thus, are

not classified by Tagger. Finally, different nomenclatures are

retrieved from the PubChem database for each compound and

included in the in-house list, making Tagger classification more

inclusive.

FIGURE 2
Example of compounds classification using Tagger. Entities retrieved from databases can be classified as nutrients, drugs, microbiota-
dependent metabolites (MDM), natural products/plants, halogens, or peptides.
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2.1.2 REname
The typical dataset generated after the first step of metabolite

identification includes multiple options for the same entry.

According to the database used, the same metabolite can be

reported following different nomenclatures, producing a large list

of repetitive annotations of limited utility for the researcher who

needs expertise and extensive knowledge to efficiently remove/

unify them. Furthermore, the same experimental monoisotopic

mass can not only belong to compounds that are biologically

different from each other but also to different stereoisomeric

forms of the same chemical entity (i.e., same chemical formula

but different spatial arrangement). However, unless experiments

employing chiral separation, tandem-MSn, or standards are

employed, isomers cannot be unambiguously identified by

mass accuracy alone, and any detail concerning

stereoisomerisms/tautomerism would only hinder an already

complex dataset. This is particularly relevant for lipids that,

independently of their complexity, exist in nature as different

isomers (and with diverse combination of isomers) (Cao et al.,

2020) but also of those metabolites that have chemical

substituents/double bonds.

In order to improve data handling and relevant data

visualization, we have developed REname, which is able to

simplify/abbreviate the names of the compounds, ultimately

allowing isomers and equivalent compounds to gain

recognition. In the case of lipids, REname uses a dictionary

FIGURE 3
Metabolite name processing using REname. Isomers and metabolites listed with different nomenclature are combined under a common,
simplified, and established name or abbreviation.

FIGURE 4
Mechanics of metabolite name processing with regular expressions.
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with abbreviations extracted from the Lipid Maps Structure

Database (LMSD) (Sud et al., 2007) and the Goslin package

(Kopczynski et al., 2020, 2022) to process the compound name,

which was obtained in the search against different databases (e.g.,

LipidMaps, SwissLipids, HMDB) by converting its redundant

information into a simpler and abbreviated form. Specifically,

REname will extract and use the abbreviation: 1) the head group

of lipids (e.g., PE or phosphoethanolamine), and for the fatty acyl

chains, 2) total number of carbon atoms, 3) total number of

double bonds, 4) type of linkage (i.e., ether or vinyl ether bonds),

and 5) presence/amount of hydroxyl and methyl groups

(Figure 3). On the other hand, for other metabolites or if no

abbreviation is available in the dictionary, REname will process

the metabolite name by applying a set of regular expressions that

will sequentially process the entry, for example by deleting the

position of functional groups or the spatial configuration

(Figure 4). Finally, REname will group all entities, that after

the processing, have the same abbreviated form and the same

accurate experimental mass, removing redundant data. Of note,

despite the redundant data removal, the simplification performed

by REname does not result in an overall loss of information since

unprocessed data tables can always be retrieved at every step of

the pipeline.

2.1.3 RowMerger
This module allows grouping the possible annotations by

following criteria that are customizable by the user. The user can

select which information from the data table will be compared to

perform the merging (i.e., the same mass error and/or adduct

type, the same Tagger classification, among others) and which

one will not be compared (i.e., the abbreviated name). By default,

RowMerger will combine entries that have the same

experimental mass (both neutral and mass to charge values),

adduct, and mass error without processing the abbreviated name,

which will be instead grouped with other potential annotations

that comply with the criteria selected above and separated by “//”

(Figure 5). This will allow a reduction of the dataset, greatly

facilitating the comparison among annotations and the

visualization/interpretation of the results, as depicted in Figure 5.

2.1.4 TPMetrics
Due to the nature of data generated from LC-MS, metabolites

can be detected in the mass spectrometer only as ions (including

different charge states, e.g., M+2H) that are generated in the ion

source after protonation or deprotonation, neutral losses (M +

H − H2O or M + H − NH3), or in association with metals (e.g.,

Na+, K+, HCOO−, CH3COO−). Moreover, depending on the

nature of the metabolites, more than one adduct is generally

formed in the ion source, with only one being more probable and

abundant than the others. Thus, several signals coming from the

same compound can be present in the final table with putative

identification, increasing the complexity of the data

interpretation. However, from a biological point of view, only

the metabolites present in the biological sample, and not the

FIGURE 5
Annotations grouping by RowMerger. Candidate metabolites associated to the same experimental mass and the same adduct and mass error
window (ppm) are unified under a single entry.
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multiple ion species generated by the MS, are responsible for

certain activities or metabolism and thus of interest to the

researcher.

Even though several open-source (e.g., XCMS and

CAMERA, OpenMS, MZmine, and MSDial) (Li, 2020) or

commercially available software (e.g., Agilent MassProfiler

Professional, and Thermo Compound Discoverer) are able to

cluster together features generated from the same metabolite, not

all of them are correctly assigned (Gil de la Fuente et al., 2018).

Therefore, all possible adducts are usually considered for the

accurate mass search against databases, exponentially increasing

the number of resulting annotations. At this point, the researcher

is usually bound to manually compare the different options that

are assigned to the same entry, in order to prioritize the

subsequent steps of ID confirmation or biological interpretation.

In order to facilitate these tasks and enhance the accuracy of

the metabolite identification, we have developed TPMetrics that

further simplifies the matrix by suggesting the most probable

annotation among the multiple options. TPMetrics applies a

multi-criteria scoring algorithm that is based on the concept that

signals coming from the same molecular entity and those sharing

the same biochemical class show a common behavior in the MS

and a similar correlation pattern across the samples. Notably,

intensity correlations have already been successfully employed to

improve annotation and reduce the data set complexity prior to

putative identifications as well as to point out lipids that are

biochemically connected (Kuhl et al., 2012; Ovčačíková et al.,

2016; Köhler et al., 2021).

TPMetrics first combines the output of RowMerger with the

MS1 intensity table that is uploaded within this module. At this

stage, the user can also combine additional metadata or other

relevant information deemed useful for the interpretation of the

results (e.g. p-values, fold changes, the metabolite’s mean/median

relative abundance) (Figure 6). Subsequently, the algorithm

assigns a score based on the probability that a certain

metabolite has to form a specific adduct in the MS ionization

source. Since this aspect is strictly related to the analytical

conditions employed in the study (i.e., the mobile phase

composition, the MS polarity mode, among others), the user

needs to define and rank the possible adducts from the most to

the least probable one within every metabolite class. Next, the

algorithm computes a pairwise correlation among those

annotations that have the same monoisotopic mass and fall

within a narrow user-defined timeframe (e.g., metabolites that

FIGURE 6
Example of scoring by TPMetrics. Feature annotations are combinedwith feature intensities and information/metadata useful for the researcher
and then scored according to ionization probability and correlation profiles.

Frontiers in Molecular Biosciences frontiersin.org07

Barrero-Rodríguez et al. 10.3389/fmolb.2022.952149

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.952149


are formed with multiple adducts) and generates a score, taking

into consideration the highest positive correlation coefficient

among the features. Then, it computes an additional score to

account for those annotations referring to the same class (e.g.,

lipid class) by performing a correlation analysis among features’

intensity across samples and within a user-predefined RT

window (this time with a higher time frame, set by default at

2 min). TPMetrics also accounts for the mass accuracy by

penalizing the annotation mass error and eventually computes

the resulting multilevel score. Thus, annotations with higher

scores will be preferred over other possible identifications and

reported in the final output table of this module.

2.2 Input/output

TurboPutative receives an input table containing the putative

annotations (e.g., generally the output of the CMM or

MetaboSearch) that requires few essential information to be

processed, including the mass of the compounds (column

name: Experimental mass) and the name of the assigned

metabolite (Name). However, to maximize the use of the

different modules, it is also recommended to include (if

available) other columns encompassing additional information

such as the adducts (Adduct) and the mass error (m/z Error

(ppm)) considered for the metabolite’s annotation as well as the

molecular formula (Formula) of the putative annotations.

TurboPutative accepts tab-separated values (TSV) and excel

(XLS, XLSX) formats up to 100 MB and 100,000 entries,

whereas the format of the output tables (i.e., either TSV or

XLSX formats) can be selected by the user. In the case of

executing TPMetrics, the user needs to upload a second

table that assigns the intensities of each feature to its

corresponding mass (Experimental mass) and RT. This

second table can also contain any other information of

interest/choice (e.g., p value and fold change). Notably, a

sample dataset is downloadable as a template for the user,

whereas a working example is provided to show the results of

the whole pipeline execution.

TuboPutative generates a table for each executed module.

Thus, since they work sequentially, the output table of one

module will be the input table of the following one, and so

on. When running TPMetrics, an additional filtered table is

generated with the most probable annotation for each feature

based on the calculated multi-criteria score. In the case of

running the workflow via the web server, all input and output

tables can either be downloaded or displayed in the browser. In

addition, a summary section is included in the browser to depict

the results of the complete workflow execution as a graphic that

displays the number of rows/metabolites obtained in each output

table after the execution of the corresponding module and a

histogram indicating the number of metabolites labeled by

Tagger.

The platform has been tested with more than 100 input

tables, most of them generated by CMM, and ranging from

500 to 30,000 rows. In these ranges, the running time follows a

nearly linear increase with the number of rows contained in

the input. Of note, there may be fluctuations depending on

whether the compounds contained in the table were not

processed by the server at any time (they are not cached)

or if the table contains compounds that require more complex

processing. Considering these variations, a table with

500 entries is processed in approximately 10 s, while a table

with 30,000 entries is processed in 250 s. In addition, when

comparing the output of TPMetrics with the identification

achieved by tandem-MS (MSI level 2), the module is able to

assign the highest score to the most probable features with a

likelihood of 80%.

2.3 Web server

TurboPutative is a web server (https://proteomics.cnic.es/

TurboPutative/) based on the web application framework

Express (https://expressjs.com/). TurboPutative Web Server

was tested using several web browsers: Chrome 100.0.4896.88

(64-bit), Firefox 95.0.2 (64-bit), Safari 13.1.2 (64-bit), and Opera

85.0.4341.47 (x86_64).

The modules were developed using the C++ programming

language and integrated into a Python program. When users

submit a job, the Python program will be executed in the back-

end and a waiting page will be sent to the web client. This page

will be refreshed every 10 seconds and, when finished, the

server will send the matrix data to the client, displayed in

different tables in the browser, and a link to download the

results.

TurboPutative is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs 4.0 Unported Licens,

and the source code is available on GitHub repository

(https://github.com/CNIC-Proteomics/TurboPutative-web).

2.4 Web services and command lines

TurboPutative provides web services (https://proteomics.

cnic.es/TurboPutative/webservices) for automatic access to

workflow execution. The TurboPutative Web Services make

use of standard HTTP method calls, often termed RESTful

services, and then the HTTP request methods GET and POST

can be used to send and receive queries and data. These web

services have been developed as asynchronous services; the

user can continue their work without interruption, and will be

notified when the asynchronous response is returned.

Specifically, when a job is submitted, the user gets a job

identifier that allows to check the job status and, if

applicable, download the results.
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FIGURE 7
An application of TurboPutative to identify changes in lipid metabolism by A12 antibodies in the progression of atherosclerosis. After databases
search, raw putative annotations have been processed with TurboPutative and a simplified and easy-to-use list of entities has been generated.
Tagger could classify a total of 420 potential metabolites, whereas the complete workflow has reduced the dataset size by 92%. This has enabled
prioritizing the most probable candidates for tandem MS analysis and to explore the biological changes occurring in mice liver after antibodies
administration. Hierarchical clustering analyses performedwith two list of identifiedmetabolites (confidence identification level 2 and 3 according to
MSI) has highlighted several alterations in lipidmetabolism. These findings corroborate the hypothesis that A12 antibody delays plaque formation and
may reduce the progression of atherosclerosis and improve circulating lipid profiles.
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RESTful services can be accessed using universal Resource

Locators (URLs) or from a command-line (using CURL). A

client script in Python language has been provided to show

how to use TurboPutative Web Services with a language

capable of making standard HTTP requests. In addition, we

developed a friendly interface using Swagger (https://swagger.

io/) that allows interaction with the TurboPutative Web

Services.

3 Results and discussion

To illustrate how Turboputative enhances and facilitates

the visualization of relevant data generated from an

untargeted LC-MS-based metabolomics experiment, we

have selected the study of Lorenzo et al. (2021) that is

aimed to decipher the role of the humoral immune

response mediated by B cells in the development of

atherosclerosis.

Atherosclerosis is a silent chronic inflammatory disease

that develops over the years and eventually results in sudden

and often fatal cardiovascular events, including ischemic heart

disease or stroke (Hansson, 2005). Due to its long

asymptomatic phase, subjects at higher risk of developing

the disease are often underrated, making early diagnosis and

the understanding of the underlying mechanism a compulsory

need. The presence of antibodies in atherosclerotic plaques

has suggested that the immune response is involved in the

pathogenesis of the disease (Reardon et al., 2001; Song et al.,

2001; Hansson and Hermansson, 2011). However, little is

known about the response and influence of the underlying

antigenic triggers during atherosclerosis. In this study,

Lorenzo et al. (2021) found that an atherosclerosis-

generated antibody, A12, induces strong plaque reactivity

in an atherosclerosis mice model (Ldlr−/− HFD), and that

the distribution and expression of its antigen ALDH4A1 is

altered during atherosclerosis. Untargeted lipidomics was

then performed to study the effect on lipid metabolism of

serial intravenous injections of A12 antibody on the liver.

After statistical data analysis, 215 monoisotopic masses were

found to be significantly altered and subsequently annotated

using Ceu Mass Mediator 3.0 (CMM) (Gil de la Fuente et al.,

2018). The CMM output table contained 14,829 potential

metabolite annotations.

An alpha version of TurboPutative was used to handle this

big dataset, and the four modules (Tagger, REname,

RowMerger, and TPMetrics) were run sequentially. This

reduced the original dataset up to 92% thereby facilitating

the subsequent analyses and the generation of biological

knowledge from the analytical data (Figure 7). Specifically,

Tagger could classify a total of 420 potential metabolites as

peptides (125), halogen-containing molecules (32),

microbiota-dependent metabolites (2), drugs (59), nutrients

(84), plants (34), and natural products (148). This made it

possible to discard potential annotations referring to drug/

nutrients/halogens that were not supplied to the system as well

as identifications that did include peptides or MDM due to

their limited relevance for this study. Next, REname

conspicuously reduced the size of the table from 14,829 to

2,275 entries (84% reduction), by grouping into unique entries

the isomers that could not be distinguished by accurate mass

alone, as well as the metabolites reported following different

nomenclature in the databases were parsed by CMM. This

made the dataset easier to handle while improving the

visualization of relevant data, especially in the case of

lipids. RowMerger further reduced the dataset size by 92%

(i.e., from 2,275 to 1,059 entries) by combining the entries that

fell within the same mass tolerance window after database

search (i.e., the same mass error and adduct type). Finally,

TPMetrics combined the resulting data table with additional

information of interest for the researcher (e.g., identifiers and

statistical values) and filtered the identification based on the

calculated multi-criteria score, thus facilitating subsequent

data identification and interpretation.

After TuboPutative data curation, an easy-to-handle list of

the most probable annotations was obtained that enabled a

quick prioritization of possible lipids to target in a subsequent

tandem MS analysis, making this step more efficient.

Specifically, 55 lipids were annotated according to their

similarity with spectral databases [confidence identification

level 2 (Sumner et al., 2007)]. Furthermore, the processing

performed by TurboPutative allowed the inclusion of

MS1 data that is usually overlooked or incorrectly reported

in the final table, providing a more global insight into the

biological system studied and allowing the use of majority of

the data for the biological interpretation of the results. In this

regard, 54 lipids were annotated by accurate mass, retention

time, and isotopic pattern distribution (level 3) and

considering the consistencies in the direction of change

among the different lipids belonging to the same

biochemical class (Figure 7).

Notably, although the lipidomics data did not meet the

identification confidence level required for unambiguous

identification, the results obtained by the lipidomics study

clearly showed that A12-treated mice underwent an increase

in glycerophospholipids incorporating to the fatty acid chains’

residual arachidonic acid or dihomo-gamma linolenic acid

moieties (well-known precursors of inflammation mediators)

and a generalized decrease in sphingolipids, bile acids,

lysophospholipids, and triglycerides, suggesting a strong effect

of A12 on inflammation and lipid metabolism in the liver

(Figure 7). These results were consistent with other assays

which showed that A12 delays plaque formation, suggesting a

therapeutic use of anti-ALDH4A1 A12 antibody to reduce the

progression of atherosclerosis and improve circulating lipid

profiles.
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4 Conclusion

Here, we present TurboPutative, a freely available web

server tool that, with four simple and customizable steps,

streamlines data handling, classification, and interpretability

of untargeted LC-MS-based metabolomics data. Despite its

ability to considerably simplify the data table with putative

annotations, TurboPutative has some limitations that stem

from the resources employed in each module. For instance, the

classification performed by Tagger might be flawed by the

incompleteness of metabolite databases, and some specific

annotations (i.e., infrequent common names) that are neither

recognized by Goslin or regular expressions, nor included in

the LipidMaps database, and may not be abbreviated by

REname. To minimize these limitations, the list of

classified metabolites and the abbreviation table that is used

by TurboPutative will be updated periodically. Moreover,

although Turboputative is designed to deal with high-

resolution MS data and has been conceived to handle

untargeted LC-MS-based metabolomics data, it can also be

used to curate data generated from a wide range of mass

resolution instrumentation as well as from other soft

ionization MS-based platforms (i.e., capillary

electrophoresis coupled to MS). This web service tool will

be further expanded in the future by integrating new

metabolite databases to improve the classification of

putative annotations as well as by entailing information on

the metabolic pathway associated with the candidate

metabolites in order to further facilitate the interpretation

of the results.
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