
n recent years, hundreds of genetic association
studies have sought to explore the relationship between
common genetic variation and disease, biological char-
acteristics, or drug response. The basic premise of these
studies is that the diseases (or traits) are not caused by
single gene variants of strong effect, such as, for instance,
sickle-cell anemia or cystic fibrosis, but rather that some
“manageable” number of common variants have an
important influence on the trait under question. Part of
the motivation for this perspective is the “common dis-
ease, common variant” (CDCV) theory.1,2 Once a genetic
variant has been found to be associated, there are a
number of possible uses for the information. If the effect
of the genetic variant is strong enough, perhaps in com-
bination with lifestyle or other environmental factors,
it might be used to predict risk of the disease.
Alternatively, the associated variant(s) may be used to
try to predict response to a particular medication. Finally,
if the effect size of the genetic variant is very small and
thus not useful for either of these purposes, it may still
be of use in identifying a disease-associated gene or
genetic pathway that could illuminate disease patho-
physiology or implicate new therapeutic targets. Here we
review the current status of genome-wide association
studies, with a particular focus on neuropsychiatric dis-
orders.

Genome-wide association studies

Genome-wide association studies (GWAS), are a way of
performing genetic association studies without prior
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Hundreds of genome-wide association studies have been
performed in recent years in order to try to identify com-
mon variants that associate with complex disease. These
have met with varying success. Some of the strongest
effects of common variants have been found in late-
onset diseases and in drug response. The major histo-
compatibility complex has also shown very strong asso-
ciation with a variety of disorders. Although there have
been some notable success stories in neuropsychiatric
genetics, on the whole, common variation has explained
little of the high heritability of these traits. In contrast,
early studies of rare copy number variants have led
rapidly to a number of genes and loci that strongly asso-
ciate with neuropsychiatric disorders. It is likely that the
use of whole-genome sequencing to extend the study of
rare variation in neuropsychiatry will greatly advance our
understanding of neuropsychiatric genetics. 
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hypotheses about which genes are likely to be involved.
To do this, arrays of single-nucleotide polymorphisms
(SNPs) that cover the whole genome are used. Although
there are thought to be approximately 10 million com-
mon SNPs in the genome,3 it is not necessary to geno-
type each one of these individually to get information
about most of them. This is because, due to the way that
human populations have migrated and genetic variants
have arisen, many of the variants are associated with
each other or “linked.” Thus, in European and Asian
populations, if you genotype one variant, you are gain-
ing information about 10 to 20 other variants simulta-
neously. This is called “tagging” (the genotyped variants
“tag” the ungenotyped, linked variants), and was
brought to the genome-wide scale by the HapMap pro-
ject, which has genotyped millions of common SNPs in
four populations to create a detailed map of how com-
mon genetic variants relate to one another.3-5 A signifi-
cant motivation for the HapMap project was the idea
that common variants make up an important part of the
genetic contribution to common diseases (the CDCV
hypothesis). While some theoretical arguments were
marshaled in support of this hypothesis—and indeed,
even before the HapMap project a handful of examples
were known—there was no way to know a priori how
general the CDCV hypothesis might turn out to be. For
this reason, a systematic investigation of common varia-
tion was judged by much of the community (including

these authors) but not all6 to be a sensible beginning to
the study of human disease genetics. The result is that a
true genome-wide study can be performed by actually
genotyping as few as 300 000 to 1 million SNPs.7,8

However, because so many tests are being performed, it
is necessary to obtain a very strongly significant P value
to be sure that the result is really significant. This is
known as “genome-wide significance” and the consen-
sus is that this should be about 10-8 or less.9 Because the
effects sizes of common variants are generally small, it is
usually necessary to include a large number of subjects
in the study in order to have the power to detect a
genome-wide significant P value (Figure 1).

Major discoveries with GWAS

The success of GWAS has been very variable for differ-
ent disease areas. Some diseases have found common
variants with very strong effects, and managed to track
these down to the causal variant. An inspiring example
is an intronic variant in BCL11A that was found in two
GWAS studies to associate with fetal hemoglobin (HbF)
levels in healthy adults,10,11 and also to modify the pre-
sentation of β-thalassemia, and associate with HbF lev-
els in patients with sickle-cell disease.11 This finding was
soon followed up with a functional study that showed
that the variant associated with high HbF12 reduced the
expression of BCL11A,13 and that reduction of BCL11A
expression caused increase in levels of gamma-globin in
adult human red blood progenitor cells, which led to
increased levels of HbF.13 These findings clearly suggest
that BCL11A serves as an inhibitor of HbF production
and that directed repression of BCL11A could be devel-
oped as a clinical tool to ameliorate the presentation of
thalassemias and sickle-cell disease. These findings in
turn have led to further understanding of developmen-
tal and species-specific changes in globin regulation.14

On the less inspirational side, however, other diseases,
like hypertension, have been thoroughly and carefully
investigated using huge numbers of patients and controls
with very little progress.15 Here we outline some of the
highest impact findings of GWAS and where (if any-
where) they have led us. 
As might be expected by the laws of natural selection,
there are not many common genetic variants that con-
fer a strong predisposition to common diseases. Such
variants would be expected to have been selected
against, and thus maintained at low population frequen-
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Figure 1. The power to detect a causal variant that is perfectly tagged
by a genotyped marker (assuming dominant model, minor
allele frequency=0.2, frequency of disease is 1% and equal
numbers of cases and controls). To have a good chance of
detecting a variant with a relative risk of 1.2, about 2000 cases
and controls are needed.
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cies. However, there are some phenotypes that might be
expected to have dodged the purifying effects of selec-
tion. These include common diseases that do not onset
until old age, and response to drugs that the body has
not historically had to interact with. Accordingly, some
of the strongest effects of common variants on disease
have been found in association with ailments with an
onset during the postreproductive years, and with drug
response. 

Genetic variants that affect late-onset diseases

One of the most well-known genetic risk factors is the
E4 variant of the apolipoprotein E gene, ApoE, which
greatly increases the risk of Alzheimer’s disease (AD)
and reduces the age of onset in a dose-dependent man-
ner.16-18 The effect of this variant is so strong that it was,
in fact, discovered before the GWAS era, but it has since
been confirmed as the most important predictor of late-
onset AD in a number of genome-wide analyses,19-22 one
with fewer than 500 cases and controls reporting a P
value of 1 x 10-40.21 However, despite the definitive effects
of this genetic variant on AD and the length of time that
we have known about it, it is still not clear how the vari-
ant mediates its effects,23 and it has not yet led to
improved treatment. 
One of the very earliest novel discoveries of GWAS was
the association of an amino acid substitution in the com-
plement factor H gene, CFH, with age-related macular
degeneration, a very common form of blindness that
affects the elderly. This genetic association was found
with a tiny sample size: 96 cases and 50 controls, and car-
rying two copies of the risk variant increases the risk of
illness up to 7 times.24 The associated variant does itself
seem to be functional, changing the binding properties
of the protein, although it is not yet exactly understood
how the variant contributes to disease,25 nor how this can
be utilized in novel treatments.
A third very strong disease-associated common genetic
variant is in the LOXL1 gene in exfoliation glaucoma,
another very common form of age-related blindness. The
associated variant was discovered in a set of only 75
cases, and individuals homozygous for the risk haplo-
types are thought to be at 700-fold increased risk of
exfoliation glaucoma when compared with homozygotes
of the low-risk haplotype. However, because the risk
haplotype is so common, this translates to just a 2.5-fold
increase risk from the population average.26 The two

variants contributing to the risk haplotype are both pro-
tein-coding changes, and the same variants have now
been associated with disease in multiple populations,27-40

suggesting that these are the causal variants, although
the degree of penetrance, and the risk haplotype, have
been reported to differ in Australia and Japan.28,29,35,37,38,41,42

Unfortunately, the very high frequency of the risk hap-
lotype in the general population currently precludes
these markers from being used to predict disease, but it
is hoped that a better understanding of the role of
LOXL1 in optical pathophysiology may lead to
advances in treatment.40

Genetic variants that affect drug response

Genetic variants affecting drug response can have very
strong effects, and often occur in the genes that would
be most expected to be involved.43 Thus, pharmacoge-
netics was one of the more successful areas of genomics
before the GWAS area, and a number of strong genetic
influencers of drug response have been known for some
time.44 GWAS have added at least three pharmacoge-
netic associations of considerable strength and impor-
tance.

Flucloxacillin-induced liver injury

Idiosyncratic drug reactions are the most common cause
of liver failure in the US.45 Flucloxacillin is an antibiotic
drug commonly used to treat Staphylococcus aureus
infections, but it has a relatively high incidence of caus-
ing liver injury (6.1 per 100 000 users) in comparison
with other antibiotics such as penicillin.46 This has previ-
ously led to restrictions on its use.46 A GWAS was per-
formed on 51 patients with flucloxacillin-induced liver
injury and 487 controls, in which a huge signal was seen
for a missense polymorphism in the HCP5 gene (P= 8.7
10-33).47 Through linkage disequilibrium, the association
was traced to the HLA-B*5701 allele, the presence of
which increased the likelihood of flucloxacillin-induced
liver injury by 80 times.47 Since the general frequency of
the associated allele in the European population is only
about 5%, and it was present in 84% of cases, this vari-
ant could potentially be used to screen out people at
high risk of liver injury before flucloxacillin is prescribed.
However, due to the rarity of the hepatoxicity, this would
result in a high false-positive rate. A proposed alterna-
tive is to use the genotyping of this variant as a diagnos-
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tic marker in suspected cases of hepatoxicity so that the
patient can be rapidly switched to alternative antibi-
otics.47

Statin-induced myopathy

Taking statin therapy to reduce the levels of low-density
lipoprotein cholesterol has been shown to reduce the
likelihood of cardiovascular events, such as heart attack
and stroke.48 Occasionally, however, statins, particularly
at high doses, can cause serious myopathy, which may
lead to hospitalization or death.49 In August 2008 a
GWAS that included only 85 cases and 90 controls
revealed a SNP in the SLCO1B1 gene, which accounted
for more than 60% of cases of myopathy.50 Carrying one
C at this locus increases the risk of statin-induced
myopathy by 4.5 times, and CC homozygotes have a 17-
fold greater risk than TT homozygotes. This has been
suggested as a genetic test to identify vulnerable indi-
viduals before offering high-dose simvastatin therapy.51

Hepatitis-C treatment response

One of the most recent, and perhaps the most clinically
significant, of any GWAS to date is the association of a
SNP close to the IL28B gene with response to treat-
ment for hepatitis C.52 In this study, Ge et al focused on
who is cured by treatment, and found that the good
response genotype is associated with a greater than
80% chance of clearance in European-Americans, while
the poor response genotype is associated with only
about a 30% chance. A follow-up study found that the
polymorphism also influences natural clearance of
hepatitis C and shows very sharp geographic differenti-
ation.53 This suggests that the variant may be common
in the population because the “good response” allele
conferred protection against one or more viruses and
hence was positively selected. This variant is a very good
candidate to use as a pharmacogenetic predictor of
treatment response before beginning hepatitis C treat-
ment, since the procedure is long and often associated
with adverse effects.54

The major histocompatibility complex

Setting aside the old-age or pharmacogenetic associa-
tions, many of the strongest reported GWAS associa-
tions of common variants with common disease involve

markers in the major histocompatibility complex
(MHC). These associations are too extensive to discuss
in detail in this review, but include autoimmune diseases,
infectious diseases, neuropsychiatric disorders, and vari-
ability in normal traits such as height.55 A number of
hypotheses have been put forward to explain why vari-
ants conferring disease risk at this locus have been main-
tained at high frequency in the population. One sugges-
tion is that the disease-associated variants have been
selected for because they confer resistance to particular
infectious agents, either now or historically. An alterna-
tive hypothesis is that each locus that confers risk for
one common disease is maintained at high frequency
because it confers protection against one or more other
common diseases. For example, the HLA gene
DQB1*0602, which encodes the β chain for the HLA
class II molecule DQ6, is protective against diabetes,56

but a strong risk factor for narcolepsy57 and multiple
sclerosis.58

GWAS in neuropsychiatry

Neuropsychiatric traits have been among the most dis-
appointing GWAS results. Despite many GWAS, most
associated variants have either not withstood signifi-
cance correction for multiple testing, or else have failed
to replicate. In general, where replicable effects have
been found, they have required very large sample sizes
and the effects have been small.
There have been some notable success stories, however.
Two GWAS have revealed strong and replicable genetic
influences on restless legs syndrome (RLS), a condition
characterized by an unpleasant and irresistible urge to
move the legs, particularly while resting and during the
evening and night. Both studies, one on Icelandic indi-
viduals and one on a more mixed European cohort,
implicated BTBD9.59,60 The European study also found
an association with two other loci: MEIS1 and a locus
encompassing MAP2K5/LBXCOR1.60 The associations
with MEIS1 and BTBD9 were quickly replicated in two
subsequent studies,61,62 but the MAP2K5/LBXCOR1
appears to be weaker, showing a borderline significance
in one study only.62 Although the risk associated with
MEIS1 and BTBD9 (ranging from 1.5 to 3.759,60,62,63) is
substantially lower than those described above, they do
appear to be real and highly significant risk factors for
RLS. Nevertheless, the biology underlying the associa-
tions remains unclear. The associated variants do not
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appear to have any obvious function, and a thorough
search for putative functional variants in all coding
exons and across intron-exon boundaries revealed no
obviously causal variant.64

Another positive GWAS finding in neuropsychiatry is
with narcolepsy, a disorder that causes disrupted sleep
patterns, with the patient often feeling excessively tired
during the day, and suffering sudden sleep attacks. Pre-
GWAS studies had connected the disorder to an MHC
class II antigen called HLA-DQB1*0602, and about 85%
of narcoleptics carry this antigen.65 However, there
remained unexplained heritability. Very recently, a
GWAS study was done on 807 cases and 1074 controls,
all positive for HLA-DQB1*0602. A significant associa-
tion of three SNPs in the T cell receptor alpha locus was
found, which was then replicated in the same study in
1057 further cases and 1104 controls.66 Further analysis
showed a single SNP was responsible for the association,
although it is not clear whether this variant is itself
causal or how it may contribute to disease. This associa-
tion is of particular interest because it adds considerable
weight to the view that narcolepsy is an autoimmune dis-
ease, and as such, it would be the first autoimmune dis-
ease to be associated with a T-cell receptor locus. This
finding also opens up the possibility of immunotherapy
as a future treatment for narcolepsy. 
Other neuropsychiatric diseases for which definite, repli-
cated effects of common SNPs have been found include
schizophrenia, associated with MHC markers, NRGN
and TCF4 (12 945 cases and 34 591 controls, ORs=1.24,
1.15,1.23),67,68 bipolar disorder, associated with ANK3 and
CACNA1C (4 387 cases and 6 209 controls, ORs=1.45
and 1.18)69, and autism, associated with SNPs at 5p14.1 (3
101 family members, 204 cases and 6 941 controls,
OR=1.19).70,71 However, all of these were discovered with
very large sample sizes and account for very little of the
very high heritability of these conditions.

Rare variants

Although studies of common variation in neuropsychi-
atric disease may be underwhelming, the opposite is true
for rare variation. Although the SNP chips used for
GWAS comprise only polymorphisms that are reason-
ably common (~≥5%), their data can be used to find
other types of non-SNP variants—specifically copy num-
ber variants (CNVs)—with much lower frequency.
CNVs are duplications or deletions of large stretches of

DNA—ranging in size from just a few hundred base
pairs to many megabases. To detect such variants, the
intensity data from the SNP chips is examined to deter-
mine whether particular stretches of SNPs are less
intense than expected (or absent), which would indicate
a deletion, or more intense than expected, which sug-
gests a duplication.72 Because the CNVs are identified
on an individual-by-individual basis, very rare CNVs,
even those present in a single individual, can be found.
This has allowed us for the first time to examine the role
of rare variation in common disease (albeit just a tiny
fraction of the total amount of rare variant in a cohort).
The majority of investigations of copy number variation
to date have been in neuropsychiatric disease and, hap-
pily, they have led immediately to real, replicable and
very strong associations. A summary of CNVs recently
strongly associated with neuropsychiatric disease is
shown in Table I. 
These variants confer considerable risk, but they are
not completely penetrant. Although the specific vari-
ants are very rare in the general population, they are
occasionally seen in controls (Table I), and where fam-
ilies have been examined, the variants are often inher-
ited from unaffected or only mildly affected parents.73-77

Additionally, as can be seen in Table I, many of the
variants have been associated with more than one neuro-
psychiatric condition. This is consistent with the char-
acteristics of neuropsychiatrically-associated rare vari-
ants that were found before the GWAS era, such as
DISC1 in schizophrenia, which associated with a
range of phenotypes from psychiatrically normal to
suicide, recurrent major depression, and schizophre-
nia.78 It seems that these variants, rather than predis-
posing to a specific neuropsychiatric condition, may
strongly confer some sort of “neural vulnerability,” the
ultimate manifestation of which depends on other
interacting genetic and environmental factors.
Because, to date, the only rare variants that we have
been able to associate with neuropsychiatric illness
are very large deletions and duplications, it is not clear
whether this lack of specificity will be a general rule,
or is somehow related to the size of the lesion.
However, there is some evidence from the associa-
tions with common SNPs that this is a characteristic
of the disease rather than the size of the associated
variant. For instance, bipolar-associated common vari-
ants in CACNA1C may also confer risk of depression
and schizophrenia.79
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The future for neuropsychiatric genetics

There are two, not incompatible, possible directions for
neuropsychiatric genetics research. One approach is to
continue searching for common variants of small effect
size using much larger cohorts in the tens or hundreds of
thousands. This has been suggested as a future direction
for schizophrenia genetics.80 Although this will require a
considerable effort, there are already established world-
wide collaborations for schizophrenia,68,80 so very large
collections should be achievable in the relatively near
future. The disadvantages of this approach are that if such
huge sample sizes are needed to discover them, the effect
sizes of the associated variants must be very small (Figure
1), and they will be present at a similar frequency in unaf-
fected controls. This makes further study of the effects of
the variants very difficult or impossible. However, pro-

ponents of this approach correctly suggest that although
the associated variant may have a very small effect, the
gene it is in may have a big impact on disease when tar-
geted by novel pharmaceuticals. 
A second argument in favor of proceeding with GWAS
in very large samples is that neuropsychiatric researchers
have long expressed concern that clinical diagnostic cri-
teria do not reflect the biological underpinnings of the
disease, and that diseases such as schizophrenia may in
fact represent multiple different disorders with different
genetic contributors. Thus, only with very large sample
sizes would one expect to obtain sufficient numbers of
any one genetically homogenous subgroup to obtain a
genome-wide significant association. However, as dis-
cussed above, all genetic variants that have been associ-
ated with neuropsychiatric disease so far seem to be very
nonspecific. Where they are found in multiple patients
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CNV Copy # Seen in Seen in Seen in Seen in Other Reported in Lead candidate

linked to schizophrenia autism epilepsy patients disorders controls*? genes

disease patients? patients? patients? with mental

retardation?

1q21.1 Deletion and Deletion Yes75,94 Yes77,83,95, Yes95,96 Congenital heart Deletion, HYDIN

duplication (0.23-0.29%)82-84 unpublished data disease77,97,98, micro- 0.02% paralog77;

and macrocephaly,75,77 (8/41,199),84 GJA884

neuroblastoma,99 frequency for

other75 dup unclear

15q11 Deletion Yes (0.61%)84,100 Yes101 No Yes102 Deletions of this region Yes, (0.19%) CYFIP184

cause Angelman and (79/41,194)

Prader Willi syndrome  (0.19%)

15q13.1 Duplication Yes81,83,84, 103 NR NR NR NR no data APBA2 

and deletion

15q13.3 Deletion Yes (0.17%- Yes Yes Yes73,106 Various including mild Yes, 0.02% CHRNA783,84

0.27%)83,84 (0.31%)84,86,104 (1-1.3%)73,74,110 developmental delay, (8/39,800)74,84

heart defects73

16p11.2 Deletion and Yes94 Yes (0.6%, Yes110,111 Yes76,108 Various neuropsychiatric Yes, 0.01% del, SEZ6L2110,111

duplication del only,107 and developmental76,108 0,03% dup94

1% dup + del94)

16p13.11 Deletion Yes81 Yes112 Yes (0.6%) Yes NR NR (0/3313),87,96 NDEI81

unpublished data (0.5%)87,111 unpublished data but inherited 

from unaffected parents87

CNTN4 Deletion and NR Yes85,114,115 NR NR NR no data

duplication

NRXN1 Deletion Yes Yes85,116-118 NR Yes122,123 NR Yes, 0.04%

(0.19%)81-83,104,120-122 (17/42054)115

Table I. Copy number variants (CNV) strongly associated with neuropsychiatric disorders.. Frequencies are given only when the CNV was found in a
large case-control study design. *Controls may not have been carefully screened for neuropsychiatric illness. NR, not reported; Dup, dupli-
cation; Del, Deletion
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with a single diagnosis (eg, schizophrenia), they do not
segregate patients into any clear diagnostic categories
either by disease presentation or drug response.
Additionally, they tend to associate with multiple neu-
ropsychiatric conditions (Table I). 
The alternative approach is to further investigate the
role of rare variants in neuropsychiatric disease. To date,
the only type of rare variation that has been identifiable
on a genome-wide scale has been large CNVs, and
already we have found many strong associations.81-87 It is
likely that when we can identify the totality of rare vari-
ation in an individual using whole-genome sequencing,
many more rare variants will be found to be definitely
associated with neuropsychiatric illness. Fortunately, this
is rapidly becoming a reality, and the first sequencing
studies in neuropsychiatric illness are already underway.
For confirmation and follow-up, this approach will defi-
nitely benefit from very large cohorts collected for
GWAS, but the ideal discovery samples will be rather dif-
ferent. With this approach, we hope to find variants with
very large effect sizes and high penetrance. This means
that it will be much more straightforward to understand
how the variants exert their effects and what genetic and
environmental factors influence them. To do this, the pri-
ority will be patients and relatives that can be reap-
proached for further study after potentially causal vari-
ants have been identified. Additionally, since initial
sequencing attempts will be expensive, it is worth, at first
at least, selecting patients who are most likely to carry
highly penetrant genetic variants. These include severely
ill, treatment-resistant patients88 and patients with a
strong family history of mental illness. Thus, this approach
benefits from close collaboration between geneticists and
psychiatrists and a thorough understanding of each
sequenced patient and his or her relatives.
Although it is hoped that whole-genome sequencing will
lead swiftly to a clearer understanding of neuropsychi-

atric disease, there are many challenges ahead. Not least
is a very well-characterized psychiatrically normal con-
trol cohort. And, as with any new technology, there are
considerable technical challenges, such as the use of
whole-genome data to identify copy number variation.
However, software is constantly developing and it is
doubtful that these will be limiting factors for long.89-92

There are also “genomic” challenges: there are many
regions of the genome on which we tend not to focus,
such as remote enhancer regions, upstream open read-
ing frames, and chromatin binding sites, which are likely
to be functional and affected by rare variation. However,
using Mendelian diseases as a model, it is reasonable to
expect that many of the most important variants will be
in or very close to exons.93 Thus, neuropsychiatric geneti-
cists should be able to gorge themselves on the low-
hanging fruit for some time to come.
In summary, there have been many GWAS success sto-
ries in which common variants have been found to asso-
ciate definitely with complex diseases. In most cases,
however, the mechanism underlying the association is
not well understood, and they have not yet led to strong
predictive tests or to novel treatments. Neuropsychiatric
disease, in particular, has so far benefited little from
large-scale analysis of common variants. Use of GWAS
data to examine rare copy number variants, however,
rapidly led to multiple strong and highly penetrant asso-
ciations with neuropsychiatric illness. However, the asso-
ciated variants are not completely penetrant and tend to
be associated with multiple neuropsychiatric conditions.
Detailed studies of patients and their relatives will be
necessary to understand what factors affect the mani-
festation of the phenotype. Despite this recent success,
we can still only account for a very small amount of the
heritability of neuropsychiatric conditions. Further inves-
tigation of rare variation using whole-genome sequenc-
ing is likely to significantly advance the field. ❏
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Estudios de asociación del genoma completo
en enfermedades complejas:
¿dónde estamos?

En los últimos años se han realizado cientos de estu-
dios de asociación del genoma completo tratando
de identificar variantes comunes que se asocien con
enfermedades complejas, los que han tenido logros
variables. En enfermedades de aparición tardía y en
la respuesta a fármacos se han encontrado algunos
de los efectos más potentes de variantes comunes.
El complejo mayor de histocompatibilidad también
ha mostrado una asociación muy fuerte con una
variedad de trastornos. Aunque han existido algu-
nos casos destacados de éxito en la genética neu-
ropsiquiátrica, en conjunto, la variación común ha
explicado sólo parte de la alta herencia de estos ras-
gos. Por otra parte, los estudios iniciales de varian-
tes raras del número de la copia han conducido
rápidamente a asociaciones potentes entre un
número de genes y loci con trastornos neuropsi-
quiátricos. Es posible que el empleo de la secuen-
ciación de todo el genoma se extienda al estudio de
variaciones raras en neuropsiquiatría y se progrese
enormemente en la comprensión de la genética
neuropsiquiátrica.

Les études d’association sur le génome
entier dans les maladies complexes :
où en sommes-nous ?

Ces dernières années, des centaines d’études d’as-
sociation sur le génome entier ont tenté d’identi-
fier des variants communs associés aux maladies
complexes, ceci avec un succès mitigé. Certains des
effets les plus marqués des variants communs ont
été retrouvés dans les maladies à début tardif et
dans la réponse au médicament. Le complexe
majeur d’histocompatibilité a montré également
une très forte association avec différents troubles.
Malgré quelques succès notables en génétique neu-
ropsychiatrique, dans l’ensemble, la très haute héri-
tabilité de ces caractères a été peu expliquée par les
variants communs. Au contraire,  les premières
études de variations rares du nombre de copies ont
permis rapidement d’affirmer une forte association
de nombreux gènes et loci à des maladies neuro-
psychiatriques. Il est probable que  l’utilisation du
séquençage du génome entier pour améliorer
l’étude des variations rares en neuropsychiatrie va
permettre de faire avancer de manière significative
notre compréhension de la génétique neuropsy-
chiatrique.
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