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Multiple‑trait structured 
antedependence model to study the 
relationship between litter size and birth weight 
in pigs and rabbits
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Abstract 

Background:  Some genetic studies need to take into account correlations between traits that are repeatedly meas-
ured over time. Multiple-trait random regression models are commonly used to analyze repeated traits but suffer from 
several major drawbacks. In the present study, we developed a multiple-trait extension of the structured antedepend-
ence model (SAD) to overcome this issue and validated its usefulness by modeling the association between litter size 
(LS) and average birth weight (ABW) over parities in pigs and rabbits.

Methods:  The single-trait SAD model assumes that a random effect at time tj can be explained by the previous 
values of the random effect (i.e. at previous times). The proposed multiple-trait extension of the SAD model consists 
in adding a cross-antedependence parameter to the single-trait SAD model. This model can be easily fitted using 
ASReml and the OWN Fortran program that we have developed. In comparison with the random regression model, 
we used our multiple-trait SAD model to analyze the LS and ABW of 4345 litters from 1817 Large White sows and 
8706 litters from 2286 L-1777 does over a maximum of five successive parities.

Results:  For both species, the multiple-trait SAD fitted the data better than the random regression model. The dif-
ference between AIC of the two models (AIC_random regression-AIC_SAD) were equal to 7 and 227 for pigs and 
rabbits, respectively. A similar pattern of heritability and correlation estimates was obtained for both species. Herit-
abilities were lower for LS (ranging from 0.09 to 0.29) than for ABW (ranging from 0.23 to 0.39). The general trend was 
a decrease of the genetic correlation for a given trait between more distant parities. Estimates of genetic correlations 
between LS and ABW were negative and ranged from −0.03 to −0.52 across parities. No correlation was observed 
between the permanent environmental effects, except between the permanent environmental effects of LS and ABW 
of the same parity, for which the estimate of the correlation was strongly negative (ranging from −0.57 to −0.67).

Conclusions:  We demonstrated that application of our multiple-trait SAD model is feasible for studying several traits 
with repeated measurements and showed that it provided a better fit to the data than the random regression model.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In genetic studies, many traits of interest are repeatedly 
measured over time, which gives rise to longitudinal data. 
The main issue when modeling such data is to account for 
the covariance structure of the repeated records with a 

limited number of parameters. A good approach to reduce 
the number of parameters that need to be estimated (com-
pared with a multiple-trait model) is to use a repeatability 
model, which is often used because of its simplicity. How-
ever, this model assumes, too narrowly, that repeated 
records are expressions of the same genetic trait and that 
the phenotypic correlation between repeated measures is 
uniform. More flexible approaches have been proposed, 
such as random regression (RR) [1–3], character process 
(CP), and structured antedependence (SAD) models [4, 
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5]. The most commonly used approach is the RR model 
[6], although this approach suffers from various draw-
backs, the main one being the well-known “border effect” 
problem [7]. CP and SAD models have been shown to fit 
the covariance structures better than RR models [4, 5, 8]. 
However, they are less often used in genetic analyses due 
to the lack of user-friendly software for SAD models and 
to the difficulty in accounting for nonstationary longitudi-
nal data without inflation of the number of parameters or 
without appropriate software for CP models.

When the correlation between several longitudinal 
traits needs to be taken into account, modeling the covari-
ance structure of repeated records becomes even more 
complicated. Once again, RR models are more often used 
than CP or SAD models because their extension to multi-
variate situations is straightforward. However, such exten-
sions can require a large number of parameters and the 
drawbacks described for univariate RR models remain [9]. 
Multiple-trait extension of the CP model is more complex 
and was discussed in Jaffrézic et al. [10]. The same authors 
also proposed an extension of the SAD model to accom-
modate multiple-trait situations [9]. Nonetheless, the use 
of these multiple-trait CP and SAD models is still challeng-
ing because of the lack of user-friendly and readily available 
software. The application of the multiple-trait RR, CP and 
SAD approaches is relevant for a wide range of traits that are 
repeatedly measured over time, such as traits related to milk 
production (milk yield, milk composition, and somatic cell 
counts [11]), animal growth (body weight and feed intake) 
or reproduction traits (litter size and birth weight [12]).

Breeding programs in polytocous species aim at 
increasing the number of young weaned per female. To 
reach this goal, they have primarily focused on litter size 
[13]. However, in some selection programs, response to 
selection using a simple repeatability model has been 
low for two reasons: litter sizes at different parities were 
not considered as different traits [14, 15], and larger lit-
ter sizes were correlated with decreased survival of the 
young [16], probably because of a smaller weight and a 
reduced level of maturity at birth [17].

The objective of our study was to propose a new mul-
tiple-trait SAD model (freely available software) that can 
take correlations among several longitudinal traits into 
account. To illustrate the functionality of our model, we 
used it to analyze litter size and average birth weight in 
two species, pigs and rabbits.

Methods
Multiple‑trait SAD models
Let yi

(

tj
)

 be the observation of animal i at time tj. All lin-
ear mixed models used to study repeated measures of yi 
over time can be decomposed as follows:

where µi(tj) represents the fixed effects at time tj, and 
ui(tj) and pi(tj) the genetic and pseudo-permanent ani-
mal effect random functions, with covariance func-
tions U(tj , tj′) and P(tj , tj′), respectively. Note that this 
model does not include a residual term in order to 
help convergence and avoid identifiability problems 
between structured permanent and classical residual 
covariance matrices [18]. Thus, the residual variance 
was, by definition, included in the (co)variance matrix 
of the pseudo-permanent effects included in the 
model. In the single-trait situation, possible non-null 
covariance between random effects at different times 
[i.e. U(tj , tj′) and P(tj , tj′)] are taken into account in the 
SAD approach by modeling the form of the random-
effects functions. Specifically, it assumes that a ran-
dom effect at time tj can be explained by the previous 
random effects (i.e. at time tk , k < j). For instance, for a 
given random effect p(t), the general form of the SAD 
model of order α is:

where θsj is the sth antedependence parameter for time 
tj , and e(tj) is a random normally distributed effect (error 
term) with mean 0 and innovation variance σ 2

p (tj). To 
reduce the number of parameters in the SAD model, θsj 
and σ 2

p (tj) are assumed to be continuous functions of 
time: θsj =

∑βs
q=0 asqt

q
j  for a function of degree βs and 

σ 2
p

(

tj
)

= exp
(

∑γ
q=0 bqt

q
j

)

 for a function of degree γ . A 
single-trait SAD model is then defined by the order of 
the antedependence (α), the degree of the polynomial 
for each antedependence parameter (β1 to βα), and the 
degree of the polynomial for the innovation variance (γ) 
for each random effect. We will refer to single-trait SAD 
models as SAD αβ1 . . . βαγ [8]. For instance SAD 111 
stands for a SAD model with:

We propose an extension of the single-trait SAD 
model to the multiple-trait situation by assuming that, 
in addition to the within-trait antedependence rela-
tionship, a random effect of one trait can be a func-
tion of the same random effect of the other traits 
considered. For two traits y1 and y2, the general form 
of the multiple-trait SAD model of order α,α′, η, η′ , 
for a given random effect p, can be written as (for 
j > max

(

α,α′, η, η′
)

):

yi
(

tj
)

= µi

(

tj
)

+ ui
(

tj
)

+ pi
(

tj
)

,

p
(

tj
)

=

α
∑

s=1

θsjp
(

tj−s

)

+ e
(

tj
)

,

p
(

tj
)

= θ1jp
(

tj−1

)

+ e
(

tj
)

, θ1j = a1,0 + a1,1tj

and σ 2
p

(

tj
)

= exp
(

b0 + b1tj
)

.
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where θsj and θ ′sj are the sth antedependence param-
eters at time j for traits 1 and 2, respectively, and δsj 
and δ′sj are the (s − c + 1)th or

(

s − c′ + 1
)

th cross-
antedependence parameters at time j for traits 1 and 
2, respectively. Note that, in contrast to the antede-
pendence relationship that starts at time tj−1, the cross 
antedependence relationships show greater flexibility 
and start at time tj−c (tj−c′), with c

(

c′
)

 greater or equal 
to 0. Here, e1

(

tj
)

 and e2
(

tj
)

 are normally distributed 
random effects with mean 0 and innovation variance 
σ 2
p1

(

tj
)

 and σ 2
p2

(

tj
)

, respectively. Error terms e1 and e2 
are assumed to be independent, except if c > 0 and 
c′ > 0 when a correlation between the two can be con-
sidered at time t1. This constraint on the correlation 
between error terms ensures the identifiability of the 
parameters in the multiple-trait SAD model, as has 
been demonstrated for structural equation models 
(SEM). Indeed, the multiple-trait SAD model can be 
considered to be a specific kind of SEM [19] in which 
the structural parameters are functions of time. Con-
sider, for the sake of simplicity, the simple case of no 
repetition per subject. A SEM with a recursive rela-
tionship between two traits y1 and y2 for animal i is:

Rosa et  al. [20] showed that parameter identifiability 
in Eq.  (2) is possible by assuming independency between 
residuals ε1 and ε2. Varona et al. [12] proposed an extension 
of the SEM that allows for unequal recursive relationships 
between random terms:

Identifiability of the parameters in Eq.  (3) is achieved by 
assuming independency between u1 and u2 and between 
ε1 and ε2 [12]. If we discard antedependency because no 
repetition occurs and focus on the cross-antedependency, 
model (3) [and (2)] is equivalent to a multiple-trait SAD 
model with c > η (recursive but not simultaneous relation-
ship), c′ = 0 and η′ = 0 and a polynomial cross-antede-
pendence function of degree 0 for both the genetic and 
pseudo-permanent environmental effects. Terms u1, u2 and 
ε1, ε2 are equivalent to the error terms for the genetic and 
pseudo-permanent environmental effects of a multiple-trait 

(1)

p1
(

tj
)

=

α
∑

s=1

θsjp1
(

tj−s

)

+

η
∑

s=c

δsjp2
(

tj−s

)

+ e1
(

tj
)

,

p2
(

tj
)

=

α′
∑

s=1

θ ′sjp2
(

tj−s

)

+

η′
∑

s=c′

δ′sjp1
(

tj−s

)

+ e2
(

tj
)

,

(2)
{

y1i = x′1iβ1 + u1i + ε1i

y2i = �y1i + x
′

2iβ2 + u2i + ε2i
⇔

{

y1i = x′1iβ1 + u1i + ε1i

y2i = �x′1iβ1 + x
′

2iβ2 + �u1i + u2i + �ε1i + ε2i

(3)

{

y1i = x′
1iβ1 + u1i + ε1i

y2i = �x′
1iβ1 + x′

2iβ2 + �uu1i + u2i + �pε1i + ε2i

SAD model. Following recommendations for identifiability 
in the SEM, identifiability in the SAD model is achieved by 
assuming independency between the error terms in Eq. (1) 
for both genetic and pseudo-permanent environmental 
effects. In the more general case of repeated measurements 
over time for both traits, if c > η and c′ = 1 (recursive cross-
antedependence) for random effects, the SAD model at time 
t1 is equivalent to a classical multiple-trait model (where 
parameters are identifiable even if random effects are cor-
related between traits). Correlation between the error terms 
of random effects at time t1 is thus permitted in the SAD 
model without adversely affecting parameter identifiability. 
Although the previous considered a simple situation with 
two traits, the same SAD models for each random effect, 
and a recursive relationship, it is straightforward to extend 
the reasoning to more complicated SAD models.

As for the single-trait model, (cross-)antedependence 
parameters and innovation variances were assumed 
to be continuous functions of time. The multiple-trait 
SAD model is then defined for two traits by the order 
of the antedependence for each trait (α,α′), the start-
ing points (c, c′), the order of the cross-antedependence 
(η − c + 1, η′ − c′ + 1), the degree of the polynomial for 
each (cross-)antedependence parameter, and the degree 
of the polynomial for the innovation variance of each 
trait (γ , γ ′), as well as an indicator of the presence of an 
initial correlation between e1(t1), e2(t1). An interest-
ing computational property of this multiple-trait SAD 
model is that, as is the case for the single-trait model, 

the inverse of the covariance matrix P can be easily cal-
culated by the following Cholesky decomposition [21]: 
P−1 = L′D−1L, where D is a diagonal matrix with inno-
vation variances as components, L is a lower triangular 
matrix with 1s on the diagonal and the negatives of the 
(cross-)antedependence parameters and the initial corre-
lation (ρ) between e1, e2 as diagonal entries. For instance, 
for two traits, three time points, all (cross-)antedepend-
ence of order 1, c = c′ = 1 and an initial correlation 
ρ between e1(t1) and e2(t1), the L matrix for the vector 
[py1(1) py2(1) py1(2) py2(2) py1(3) py2(3)] is:

This multiple-trait SAD model can be easily fitted to 
data using ASReml [22], as well as the OWN Fortran 

L =















1
−ρ 1 0
−θ12 −δ12 1
−δ′12 −θ ′12 0 1
0 0 −θ13 −δ13 1
0 0 −δ′13 −θ ′13 0 1















.
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program that we have developed (available online at 
https://zenodo.org/record/192036#.WEAYLdLhBaQ).

The orders of (cross-)antedependence and the degrees 
of the polynomial functions of time for (cross-)antede-
pendence parameters and innovation variances can be 
selected by comparing nested models using the likeli-
hood ratio test and by comparing non-nested models 
using the Bayesian or Akaike information criterion (AIC) 
[23, 24]. To reduce the number of models that need to be 
compared, we suggest selecting the specification (order 
and degree) of the antedependence and innovation vari-
ances by first using a single-trait SAD model and then the 
cross-antedependence specification by using a multiple-
trait SAD model. For the single-trait SAD model step of 
the selection process, we suggest to start with a SAD 100, 
then test an increase of the degree of the function of time 
(γ) for the innovation variance (i.e. SAD 101), and finally 
test an increase of the degree of the function of time for 
the antedependence parameter (β1) (i.e. SAD 111). This 
procedure is repeated until there is no additional signifi-
cant improvement of the model. Then, an increase of the 
order of the dependence (α) can be tested, starting with 
a constant second order antedependence parameter. For 
instance, if the last model of order 1 selected is SAD 121, 
the next model tested is SAD 2201. The increase of the 
polynome of time for the second order antedependence 
parameter can then be tested (i.e. SAD 2211) and so on. 
Using this step-by-step selection procedure, all mod-
els are nested and can be compared using the likelihood 
ratio test.

Data application
The multiple-trait SAD model was applied to data from 
two polytocous species (pigs and rabbits) to study the 
relationship between the number of young born alive per 
litter (litter size, LS) and the average birth weight (ABW) 
per litter, calculated as the sum of the weight at birth of 
all the individuals of a litter divided by LS. The pig dataset 
included 4345 litters from 1817 Large White sows over a 
maximum of five successive farrowings. The mean LS was 
12.1 ± 3.6. Piglets were weighed at birth in all litters, the 
mean ABW was 1514 ± 31 g. The rabbit dataset included 
8706 litters from 2286 L-1777 does [25] over a maximum 
of five successive kindlings. Kittens were weighed at birth 
for 3490 litters. The mean LS and ABW were 9.5 ±  3.1 
and 83 ± 14 g, respectively. The descriptive statistics of 
LS and ABW per parity are in Table 1.

Fixed effects included in the model were initially 
selected separately for each trait using a step-by-step 
descending procedure. To do this, simple models that did 
not take relationships between animals into account were 
applied to the data, nested models were then compared 
using the likelihood ratio test. The same within-species 

fixed effects were included in the genetic multiple-trait 
SAD model for both traits: parity (five classes), propor-
tion of females in the litter (covariate), and the com-
bination of year and month of delivery (121 levels) for 
rabbits; and parity (five classes), season of farrowing (four 
classes), sire breed (seven classes) and sow weight when 
entering the farrowing unit (covariates) for pigs. It should 
be noted that the contemporary group effect (constant 
over parities) was included in the model as a random 
effect for pig data, in addition to the genetic and pseudo-
permanent environmental effects.

ABW and LS were defined as traits of the sow/doe and 
analyzed using the previously described multiple-trait 
SAD model with successive time points at each farrow-
ing/kindling. Data were also analyzed using a multiple-
trait RR model in order to provide a comparison of the 
SAD multiple-trait model with the most currently used 
method. Selection of the degree of the Legendre poly-
nomials for the permanent and genetic effects was per-
formed for each trait by comparing nested single-trait 
RR models using the log likelihood ratio test. Then, mul-
tiple-trait RR models were applied to the data using the 
selected degree of polynomials for each trait. Goodness-
of-fit of the SAD and RR models to the data were com-
pared using the AIC.

Results
In rabbits, model selection for the antedependence rela-
tionship using single-trait analysis showed that the most 
appropriate SAD models were SAD 111 for the animal 
genetic effect on both traits (LS and ABW), and SAD 100 
and SAD 111 for the pseudo-permanent environmental 
effect on LS and ABW, respectively. These antedepend-
ence characteristics were retained for the multiple-trait 

Table 1  Litter size and  average birth weight by  parity 
in pigs and rabbits

Parity Number 
of litters

LS (s.e.) Number 
of litters

Average 
BW (s.e.)

Pigs

1 1508 11.7 (3.4) 1508 1419 (29)

2 1134 12.0 (3.6) 1134 1565 (31)

3 861 12.6 (3.6) 861 1564 (30)

4 515 12.5 (3.5) 515 1566 (31)

5 327 12.4 (3.3) 327 1566 (31)

Rabbits

1 2013 8.1 (2.7) 115 84 (17)

2 1868 9.5 (3.0) 955 85 (15)

3 1812 10.0 (3.2) 1174 83 (14)

4 1638 10.3 (3.2) 907 82 (13)

5 1375 10.0 (3.0) 339 82 (11)

https://zenodo.org/record/192036%23.WEAYLdLhBaQ


Page 5 of 10David et al. Genet Sel Evol  (2017) 49:11 

model. Using the multiple-trait SAD model, the same 
cross-antedependence characteristics were selected for 
the genetic and permanent environmental effects, that is 
a recursive relationship (i.e. c > η, in other words, LS ran-
dom effects are not functions of ABW random effects), 
c′ = η′ = 0 (i.e. ABW random effects at parity j are 
functions of LS random effects at parity j) and a degree 
2 for the cross-antedependence function of time, which 
resulted in 20 parameters to model U and P. Let LSi

(

j
)

 
and ABWi

(

j
)

 be the LS and ABW of dam i at parity j, the 
selected multiple-trait SAD model then is:

In pigs, the SAD 101 model was retained for the within-
trait antedependency for the genetic and pseudo-perma-
nent environmental effects for LS, and SAD 111 and SAD 
101 for the genetic and pseudo-permanent environmen-
tal effects for ABW, respectively. Recursive cross-antede-
pendence functions of order 1 with c′ = 0, degree 0 and 
1 were selected for the genetic and pseudo-permanent 
environmental effects, respectively. The random contem-
porary group effects of the two traits were independent.

After model selection, the single trait RR models 
selected in pigs included a Legendre polynomial of 
degree 1 for the genetic effects and a constant permanent 
effect over time for both traits. In rabbits, the best single 
trait RR model was of degree 1 for both the genetic and 
permanent environmental effects for both traits. Unfor-
tunately, the multiple-trait extension of these models 
did not converge in rabbits. Thus, the multiple-trait RR 
model considered for rabbits consisted, as for pigs, of a 
polynomial function of degree 1 for genetic effects only.

In pigs, the AIC for the multiple-trait SAD and RR 
models were 66,319 and 66,326, respectively. For rabbits, 
the AIC were 70,684 and 70,911 for the multiple-trait 
SAD and RR models, respectively.

Heritability estimates with the SAD model for the two 
traits are in Table 2. Heritability estimates were moder-
ate for all traits at all parities, with the exception of LS 

LSi
(

j
)

= x′ijβLS + ui
(

j
)

+ pLSi
(

j
)

,

ABWi

(

j
)

= x′ijβABW + νi
(

j
)

+ pABWi

(

j
)

, with

ui
(

j
)

= θu,1jui
(

j − 1
)

+ eu,i
(

j
)

,

νi
(

j
)

= θ ′ν,1jνi
(

j − 1
)

+ δ′ν,0jui
(

j
)

+ eν,i
(

j
)

, and

pLS,i
(

j
)

= θp,1jpLS,i
(

j − 1
)

+ epLS,i
(

j
)

,

pABW ,i

(

j
)

= θ ′p,1jpABW ,i

(

j − 1
)

+ δ′p,0jpLS,i
(

j
)

+ epABW ,i(j).

at parity 1 in rabbits, which had a lower heritability esti-
mate, i.e. 0.09. Heritability estimates for ABW were gen-
erally higher than for LS. In pigs, heritability estimates 
were quite stable across parities, ranging from 0.19 
to 0.25 for LS and from 0.29 to 0.35 for ABW. In rab-
bits, heritability estimates tended to increase with par-
ity for both traits, ranging from 0.09 to 0.29 for LS and 
from 0.23 to 0.39 for ABW. In pigs, heritability estimates 
obtained with the RR model tended to be slightly lower 
than those obtained with the SAD model, ranging from 
0.18 to 0.28 for LS and from 0.22 to 0.31 for ABW. In rab-
bits, compared to the SAD model, heritability estimates 
obtained with the RR model were slightly lower for LS 
(ranging from 0.08 to 0.25) and higher for ABW (ranging 
from 0.24 to 0.42).

Genetic correlation matrices estimated with the multi-
ple-trait SAD models are shown in Figs. 1 and 2 for pigs 
and rabbits, respectively. Estimates of the genetic cor-
relation between LS tended to decrease as the distance 
between parities increased, the decrease being slightly 
more pronounced for pigs than for rabbits (0.84 versus 
0.68 between parities 1 and 5). The same general pat-
tern, i.e. a decrease of the estimated genetic correlation 
between more distant parities, was observed for ABW 
in rabbits. In pigs, estimates of the genetic correlations 
between ABW at different parities were high, the mini-
mum being 0.96 between parities 1 and 5. Estimates of 
the genetic correlation between LS and ABW were nega-
tive in both species. In general, we observed an increase 
of the genetic antagonism between the two traits with the 
parity level for ABW regardless of the parity level for LS.

The genetic correlation matrix estimated with the RR 
model for pigs is in Fig.  3. The general pattern of these 
correlation estimates was similar to the one obtained 
with the SAD model for both species but with a more 
pronounced genetic antagonism between the two traits 
in pigs and less pronounced in rabbits (result not shown, 
the lowest correlation between traits in rabbits was equal 
to −0.34).

Correlation matrices for the pseudo-permanent envi-
ronmental effects obtained with the multiple-trait SAD 

Table 2  Heritability estimates obtained with  the SAD 
model in pigs and rabbits

Parity Pigs Rabbits

Litter size Average BW Litter size Average BW

1 0.21 0.29 0.09 0.23

2 0.25 0.33 0.19 0.26

3 0.24 0.35 0.27 0.32

4 0.22 0.33 0.29 0.37

5 0.19 0.30 0.24 0.39
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model are in Figs.  4 and 5 for pigs and rabbits, respec-
tively. Estimates of the correlations between pseudo-
permanent environmental effects at different parities 
within-trait were close to 0. The same across-trait pattern 
of estimates of correlations between pseudo-permanent 
environmental effects was observed for both species: a 
high negative correlation between the pseudo-perma-
nent environmental effects of the two traits for the same 
parity level (ranging from −0.57 to −0.67) and correla-
tions close to 0 otherwise. The same general pattern of 

correlations was obtained with the RR model for pigs 
(Fig. 6) and rabbits (result not shown).

Discussion
We propose in this article a multiple-trait SAD model 
that takes the within-trait and cross-trait correlations 
over time into account. A first multiple-trait extension 
of the SAD model was proposed a few years back by Jaf-
frézic et  al. [9], however our multiple-trait SAD model 

Fig. 1  Genetic correlations estimated with the SAD model in pigs

Fig. 2  Genetic correlations estimated with the SAD model in rabbits

Fig. 3  Genetic correlations estimated with the RR model in pigs

Fig. 4  Pseudo-permanent effect correlations estimated with the SAD 
model in pigs
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differs from theirs regarding the assumption made about 
the innovation covariance matrix. For their extension, 
Jaffrézic et al. [9] assumed that the error terms e1(t) and 
e2(t) are correlated as a function of time. To insure iden-
tifiability of the parameters, our assumption is that these 
error terms are independent, except at time t1, when they 
can be correlated if c > 0 and c′ > 0 in Eq. (1).

We suggest a two-step procedure for selecting the order 
of (cross-)antedependence and degree of the polynomial 

functions: within-trait selection of the antedependence 
parameters using a single-trait SAD model, followed 
by selection of the cross-antedependence parameters 
using the multiple-trait SAD model. This same two-
step approach was performed by Jaffrézic et  al. [9]. In 
the multiple-trait SAD model, selection of the order of 
cross-antedependence may differ according to the goal 
of the analysis. If the goal is to estimate the correlation 
between traits, our experience showed that a recursive 
cross-antedependence with zero as starting point and 
order 1 (i.e. c′ = η′ = 0) is generally sufficient to model 
all forms of correlation across traits. In such cases, only 
the degree of the cross-antedependence function needs 
to be selected by comparing nested models using the like-
lihood ratio test. Conversely, if the goal of the analysis is 
to study causal relationships between traits, it seems nec-
essary to define, a priori, the general pathway between 
traits, as in SEM (resursiveness, simultaneity), to fit the 
order of the cross-antedependence in the multiple-trait 
SAD model to match the pathway. Then, the degree of 
the polynomial function for each cross-antedependence 
parameter is selected by comparing nested models using 
the likelihood ratio test. In such situations, antedepend-
ence parameter values are of interest in addition to the U 
and P covariance matrices.

Similar to a RR model, the number of breeding values 
predicted per animal with a SAD model equals the num-
ber of time points. Eigen decomposition (eigenvalues, 
eigenvectors) of the genetic covariance matrix obtained 
with the SAD model can help to determine which linear 
combination of breeding values can be used for genetic 
selection purposes. Nonetheless, given the way the SAD 
covariance matrix is structured, a decomposition in 
eigenfunctions (continuous function of time) similar to 
that proposed for RR models [26] is certainly not feasible.

We applied the multiple-trait SAD model to study the 
correlation between LS and ABW over parities in two 
species. For this purpose, we used a recursive cross-
antedependence relationship. To study the causal rela-
tionship between these two traits with a SEM, Varona 
et  al. [12] proposed a one-way causal path that estab-
lished an effect of LS on ABW within parity as the most 
likely general pathway between LS and ABW. If our goal 
was to study the causal relationship between traits, sim-
ilar to Varona et  al. [12]. we would have needed to add 
cross-antedependence parameters to the SAD model that 
links the random parameters of ABW at time t to those of 
LS at time t + 1. As in previous studies, we considered LS 
and ABW as traits of the dam [12, 13].

Heritability estimates for LS were higher than the val-
ues of about 0.10 that were reported in previous studies 
[27–31] but were consistent with the total heritability for 
LS reported for the same pig breed by Kaufmann et  al. 

Fig. 5  Pseudo-permanent effect correlations estimated with the SAD 
model in rabbits

Fig. 6  Pseudo-permanent effect correlations estimated with the RR 
model in pigs
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(0.24) [32] and for rabbits by Nagy et al. (0.11–0.31) [33]. 
The higher heritabilities obtained in the current study 
can be explained by the fact that heritabilities estimated 
with a model that assumes different traits over time are 
generally higher than those obtained by using a simple 
repeatability model [34]. An increase of the heritability 
of LS with parity similar to that observed here was previ-
ously reported for both species [28–30], however it was 
not observed in pigs by Lukovic et al. [35] using records 
over 10 parities. Our heritability estimates for ABW 
were consistent with those reported by Hermesch in 
pigs (0.31) [13] but higher than those reported by Varona 
et al. in pigs (0.23) [12] and Bolet et al. [36] (0.04) or Gar-
reau et al. [37] (0.06) in rabbits.

On the one hand, the decrease in the within-trait 
genetic correlation with distance between measurements 
(parities) is a result frequently reported in the literature 
[38, 39] and the genetic correlation matrix reported 
by Hanenberg et  al. [28] for LS in Dutch Landrace pigs 
is close to the estimates obtained in our study. On the 
other hand, estimates of the genetic correlation for ABW 
reported for Australian pigs tended to be lower than 
obtained in the current study, but their standard errors 
were high [40]. It is generally recommended to consider 
LS and ABW at first parity as different traits from the 
performances at later parities [28, 40]. The same conclu-
sion can be drawn from our results, except for ABW in 
pigs, which can be considered as a repeatable trait, the 
lowest genetic correlation value being 0.95 between par-
ity 1 and 5.

Regarding cross-correlations, our results showed that 
the general trend was an unfavorable genetic correla-
tion between LS and ABW (slightly negative in pigs and 
more strongly negative in rabbits). Several studies have 
reported the same negative genetic correlation between 
these traits in pigs [31, 40, 41]. Even if the trend was less 
clear in pigs, we observed the same cross-correlation 
tendency over parities: ABW tended to be more nega-
tively correlated to LS in late parities than in first parity. 
In other words, if one considered that LS occurs before 
ABW and studies the relationship between successive 
traits (i.e. ABW at time t − 1 has an “effect” on LS at time 
t which has an “effect” on ABW at time t and so on), our 
results show that the antagonism between successive 
traits increases with parity. This could be considered as 
an increasing adaptation of traits to their environmental 
conditions with time, LS at time t being part of the envi-
ronment for ABW at time t, which in turn is the environ-
ment to which the animal has to adapt its LS at time t + 1 
and so on. Hermesch et al. [40] also studied cross-corre-
lations over parities in pigs and did not find any trend, 
but their estimates had large standard errors.

The close to 0 correlations that we found between 
pseudo-permanent effects of the same trait were pre-
viously reported between first and second parities in 
rabbits [30] and pigs [40]. Consistent with our results, 
Hermesch et al. [40] reported a strong negative correla-
tion between the pseudo-permanent effects of the two 
traits at the same parity and no correlation between traits 
at different parities. In our model, the so-called pseudo-
permanent environmental effect combines the dam char-
acteristics that are not under genetic control and persist 
over parities and the environmental factors that are not 
taken into account in the model because not measured/
observable. The correlation between pseudo-permanent 
environmental effects at different parities was extremely 
low. Thus, the pseudo-permanent effects probably mainly 
reflect specific animal parity-related factors that are not 
taken into account in the model or environmental fac-
tors that affect traits differently during the reproductive 
period. Given the high negative correlation between the 
pseudo-permanent environmental effects between traits, 
these unobservable factors have opposite effects on LS 
and ABW.

We compared results obtained with the multiple-trait 
SAD and RR models. The latter is the approach most 
often used for analyzing longitudinal data in genetic stud-
ies. Probably due to the small number of repetitions, the 
best RR model selected in pigs and the multiple-trait RR 
model that converged in rabbits only considered a Leg-
endre polynomial of degree 1 for genetic effects. Thus, 
with the same number of parameters in pigs (16), the RR 
model was less flexible than the multiple-trait SAD model 
to model the variance covariance matrix of environmen-
tal effects. Comparison of AIC values showed that the 
multiple-trait SAD model provided a better fit to the data 
than the RR model in both species. The same conclusion 
has been drawn in previous studies on other traits [8, 9]. 
Results obtained with RR models were essentially con-
sistent with those of the multiple-trait SAD model, which 
enables us to be confident in the estimations obtained 
with the SAD approach.

Conclusions
In this paper, we have outlined a multiple-trait SAD 
model to simultaneously analyze repeated measurements 
of several traits. This flexible approach was developed to 
provide an advantageous approach to model the covari-
ance matrix of random terms with few parameters. When 
used to study relationship between LS and ABW over 
five parities in two species, the multiple-trait SAD model 
showed that a total of 16 or 20 parameters was sufficient 
to model the random term covariance matrices. This is 
much less than the number of parameters required to 
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obtain estimates when unstructured covariance matrices 
are assumed for U and P (up to 110 parameters). Further-
more, we showed that multiple-trait SAD models provide 
a better fit to the data than multiple-trait RR models. We 
offer a freely-available online Fortran program that can 
be used to implement this SAD model in ASReml.
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