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Laser‑induced melting 
of two‑dimensional dusty plasma 
system in RF discharge
E. V. Vasilieva1,2*, O. F. Petrov1,2 & M. M. Vasiliev1,2

We present a detailed analysis of experimental study, which shows clear evidence of a two-stage 
melting process of a quasi-two-dimensional dusty plasma system in a high-frequency gas discharge. 
We accurately calculated global parameters of the orientational and translational order, as well as 
their susceptibilities to determine two critical points, related to “solid-to-hexatic” and “hexatic-
to-liquid” phase transitions. The nature of the emerging defects and changes in their mutual 
concentration, in addition to the estimate of core energy of free dislocations also counts in favor of the 
formation of an intermediate hexatic phase. These results are fully consistent with the Berezinsky–
Kosterlitz–Thouless theory.

Two-dimensional (2D-) melting is still one of the unresolved entirely problems in condensed and soft mat-
ter physics1–4, and over the decades two main competing theories, attempting to describe 2D melting, have 
emphasized main role of topological defects and grain boundaries. The first approach is Berezinsky–Koster-
litz–Thouless (BKT-) theory5–8, developed later by B. Halperin, D.R. Nelson and A.P. Young9,10 and transformed 
eventually to Berezinsky–Kosterlitz–Thouless–Halperin–Nelson–Young (BKTHNY-) theory11, which predicts 
two-step melting, from the crystal to liquid phase with formation of intermediate hexatic phase. It has short 
range translational and quasi-long-range orientational order, and phase transitions are caused by the creation 
and dissociation, binding and unbinding of topological defects, such as disclinations and dislocations. Alterna-
tive theories consider a conventional first-order phase transition from solid to liquid without the formation of 
any intermediate phase12,13, assuming that the condensation of geometrical defects into grain boundaries and 
related aggregates is responsible for two-dimensional melting.

Researchers have been looking for the evidence of hexatic phase among a wide range of two-dimensional 
systems14–45, including monolayers of electrons on the surface of liquid helium14, polymer colloids15–17, magnetic 
bubbles in thin films18–20, liquid crystals21–23, superconductors24, as well as in dusty plasmas25–45. Some experi-
mental and numerical works have shown a good agreement with KTHNY theory25–28, but others haven’t. The 
reason of that might be in out-of-plane fluctuations29,30, finite-size effects31,32 or different types of inhomogenei-
ties, commonly observed in experiments during melting process. But the most crucial problem is concerned with 
the interaction range and stationarity of the system state. It is more complicated to get clear evidence of hexatic 
phase in systems with short-range interactions (for instance, in dusty plasma systems with grains, interacting via 
Yukawa potential: φ(r) = eZ exp(− r/λ)/r, where λ is a screening length, and eZ is a charge of the particles) than 
with long-range potentials33–35. In work36 the authors showed that the formation of an intermediate hexatic phase 
had been strongly dependent on the thermodynamic equilibration of the observed two-dimensional system. 
More specifically, long-range or collective relaxation had taken much more time in comparison with that one, 
related to single-particle local properties of the system.

First experimental studies of phase transitions in 2D dusty plasmas have been carried out by changing 
parameters of gas discharge37,38, namely gas pressure or discharge power. That in turn led to a change of plasma 
parameters and confinement and therefore the interaction potential of dust particles in these structures. Further 
studies39,40 showed that in that case system exhibited non-equilibrium melting due to occurring of mode-coupling 
instability. Other experimental studies41–45 presented different methods, none of which provided reliable degree of 
uniformity of heating of dusty plasma system as a whole. As the result, the authors concluded that the GBI-theory 
was best suited to a description of melting of two-dimensional dust structures, observed in their experiments. 
And finally, in our work28 we presented convincing evidence of formation of hexatic phase during 2D melting 
of dusty plasma system, which was experimentally observed for the first time.
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Conventional analysis of any system near the phase transition points is much more complicated due to the 
growth of various fluctuations arising in this system. Standard approach, such as analysis of order parameter cor-
relation functions, makes it possible to distinguish different phase states, but suffer ambiguities connected with 
finite size of the system and/or finite time of observation. Conversely, order parameter susceptibility method, 
presented in46 and applied in colloids17 showed to be robust to various uncertainties and enabled to clearly resolve 
phase transition points.

In this work, we introduce extended analysis of structural properties of 2D dusty plasma system, based on 
structure factor; discuss dynamics of topological defects together with assessment of core energy of free disloca-
tions; and calculate order parameter susceptibility, which enabled us to determine accurately “solid-to-hexatic” 
and “hexatic-to-liquid” phase transition points.

Experiments
The experiments were performed in a RF discharge in argon at pressure P = 4.3 Pa, with discharge power 
W = 7.9 W. As dust component we used spherical monodisperse polystyrene particles, of density ρd = 1.05 g cm-3, 
with diameter 10.16 μm, coated with nickel of 200 nm in thickness. The scheme of the experimental setup is 
presented in Fig. 1. Main part of the experimental setup was vacuum chamber, which was preliminary pumped 
out and then filled by buffer gas up to working pressure. RF discharge was generated between two plane circular 
coaxial electrodes by high-frequency generator of 13.56 MHz with the use of impedance-matching device. The 
distance between the electrodes was 5 cm. In the center of upper electrode there was a circular hole, which ena-
bled us to record video in horizontal plane as well as to inject particles into discharge gap. After injection dust 
particles gained equilibrium negative charges because of ion and electron fluxes going to the particle surface 
until a stationary state is reached. Due to the balance of gravity and electrostatic force, providing a stiff vertical 
confinement, charged particle levitated above a flat horizontal rf electrode forming monolayer structures with 
negligible small vertical motions. To prevent the escape of particles in the horizontal direction metal ring with a 
height of about 2 mm and 100 mm in diameter was mounted on the lower (grounded) electrode; the ring formed 
a potential trap for the cloud of dust particles.

For visualization and external influence on the dusty plasma structure we used argon laser. The laser power 
varied in the range from 20 to 300 mW. In contrast to works40–45, where uncoated particles were used and external 
action caused non-uniform heating, we used metal-coated particles with completely different response. Interact-
ing with the metal-coated surface of particles, the laser light warmed them up, and a part of their surface became 
heated. Colliding with it, the neutrals of a buffer gas induced the photophoretic force47,48. As the grains rotated 
due to the Brownian motion, this force uniformly acted on the whole surface of grains and, therefore, increased 
the energy of their chaotic motion, so that structure melted uniformly28.

To be sure that metal-coated surface of particles didn’t erode during experiment, we examined grains before 
and after discharge exposure by scanning electron microscopy. No any noticeable changes in the composition 
and surface properties were detected. At the same time, the original particles had small defects in the coating, 
which, nevertheless, was not dramatic for the possibility of obtaining a monolayer structure.

The movements of dust particles in the horizontal plane were recorded by a high-speed video camera with 
a frame frequency of 50–200 frames/s. The observed dust cloud consisted of a single dust layer with a number 
of particles up to 104. As the intensity of the laser radiation increased, the kinetic heating of the dust particles 
occurred, and the structure transferred from the crystalline to the liquid state. At this, to monitor the structure 
being a monolayer, we installed an additional CCD-camera to record particle movements in vertical direction 

Figure 1.   The scheme of the experimental setup.
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through the side window of the discharge chamber. The obtained video images were processed using original 
computer programs, as a result of which the coordinates of the particles, their trajectories (see Fig. 2) and the 
speed of movements were determined.

The resulting velocity distribution of dust particles corresponded to the Maxwellian distribution function 
(within the experimental error), thus, for the dust component of the plasma the local equilibrium was observed 
and we could use term temperature to mean kinetic energy of motion (VT

2 = 2 T/M). At this there was a uniform 
redistribution of the velocities between the degrees of freedom (in a horizontal plane). Velocity variation in a 
measuring area was random and the errors didn’t exceed 7%. During the time of observation (10 s) a particle 
kinetic temperature, averaged over all particles in analyzed area, was also within the experimental error (~ 7%). 
Illustration of typical 1 s particle trajectories together with the velocity distribution profiles for different values 
of heating laser power is shown in Fig. 2.

From our point of view, there are two main reasons prevented from detection of two-step melting of 2D dusty 
plasma crystals in previous experiments of other authors: substantial inhomogeneity of melting process, causing 
temperature gradients and shear flows40–45; and a little time for long-range relaxations before direct registration 
of the structural parameters of the analyzed dust structures36.

To achieve the uniformity of the kinetic heating of dusty structure we expanded laser beam by cylindrical 
lens and then cut off non-homogeneous parts of laser radiation by a diaphragm so that only the central part of 
widened beam with a uniformity of better than 95% reached dust particles. In addition, metal-coated particles 
moved chaotically rather than uncoated ones as a response to external force. At such conditions we observed 
an increase of particle kinetic energy without any evidence of any collective motions in a preferred direction, so 
that dusty plasma structure melted as a whole.

Before video recording dusty plasma structure has been kept under constant parameters of discharge and 
power of laser radiation during a time, sufficient for establishing not only stationarity and homogeneity of the 

Figure 2.   Illustration of typical 1 s particle trajectories in dust monolayer in RF discharge under laser 
irradiation of power W: (a) 20 mW, (b) 100 mW, (c) 220 mW. (d) Velocity distribution profiles (symbols) with 
Maxwell approximation (solid lines): black is for Γ* ~ 600 (W = 20 mW), blue is for Γ* ~ 140 (W = 100 mW) and 
red is for Γ* ~ 50 (W = 220 mW).
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system (which is commonly of about several seconds), but also for long-range relaxations within structure after 
starting laser exposure36. (In our experiments it equaled ~ 5–10 min).

Another advantage of our method is the ability to vary precisely the power of laser radiation and thereby 
change with a small step dust kinetic temperature without loss of heating uniformity so that we obtained a big set 
of experimental «points» with slightly varied dust parameters and still constant plasma parameters. To sum up, 
long time for establishing stationarity and homogeneity of the system during experiments together with original 
precision method of manipulating the kinetic temperature of dust particles allowed us to fulfill conditions needed 
to «catch» hexatic phase, never observed before in dusty plasmas.

Methods and results
In order to avoid using of individual characterictics, specific to each experiment, and to make it possi-
ble to compare obtained data with numerical results, there is widely used effective coupling parameter 
Γ* = 1.5(eZ)2(1 + κ + κ2/2)exp(−κ)/(Tdrp), where κ ≡ rp/λ is the screening parameter, rp is the interparticle dis-
tance, Td is the kinetic temperature of the particles49. This parameter exhibits dimensionless properties for 
2D—Yukawa systems, describing extended monolayer dusty plasma structures. Numerical calculations for two-
dimensional Yukawa systems show that the physical properties of such systems have two characteristic points of 
phase transitions25,26. The first of these relates to the phase transition "liquid—hexatic phase" and occurs when 
the effective coupling parameter of Γ* = 98 ± 4; the second point (at Γ* = 154 ± 4) corresponds to the transition 
from the hexatic phase to the ideal crystal, where the diffusion coefficient of the particles tends to zero. In our 
experiment we determined the effective coupling parameter Γ* by the first peak of pair correlation function49 
within the accuracy of 5–10% (depending on Γ*).

For the quantitative and qualitative description of the phase state of the system, as a rule, the analysis of 
pair g2(r) and bond-angular g6(r) correlation functions is used, as well as the dynamics of various topological 
defects5–10. For an ideal hexagonal structure the function g6(r) ≡ 1, while it decreases with distance for other 
phase states of the system. The asymptotics of dimensionless pair g2(r/rp) and bond-angular g6(r/rp) correlation 
functions can be used to analyze the phase state of the system27,28. Thus, for two-dimensional non-ideal systems, 
the spatial decay of peaks of pair correlation functions in an ideal crystal is described by the power law g2 ∝ (r/rp)-η 
at η < 1/3, in the hexatic phase and the liquid, by the exponential dependence g2 ∝ exp(-μr/rp) at μ = μh≡ const 
and μ > μh, respectively. The bond-angular correlation functions are characterized by a power asymptotic in the 
hexatic phase and exponential in the liquid phase.

As it has been shown in our previous studies25–28, the value of the function g6(r/rp) is completely determined 
by the number of the appearing defects, that is why it is more convenient and reasonable to use normalized 
bond-angular correlation function in the form of g6

*(r/rp) = g6(r/rp)/N6, where N6 is a fraction of particles with 6 
nearest neighbors (see Fig. 3 in our work28). There we presented three sets of clearly resolved curves with differ-
ent slopes, corresponding to crystal, hexatic, and liquid phases as predicted by KTHNY theory: g6

*(r/rp) ~ Const 
for the range of effective coupling parameter Γ* = 160–220, g6

*(r/rp) ~ r -η
6 at η6 = 1/5 for Γ* = 110–140, and g6

*(r/
rp) ~ exp(− r/ξ6rp) for Γ* = 10–55, respectively.

In this paper we present important information about the phase states of the system under study, which can 
be obtained from the analysis of the diffraction pattern correlated with the configuration of the particles in this 
phase. For this purpose, the static structure factor s(kxy) was calculated, defined as50:

where kxy—wave vector, rn and rт—radius-vectors for n-th and m-th particle on xy-plane, correspondingly. 
Brackets < > define ensemble and time averaging. Figure 3 shows two-dimensional static structure factor s(kxy), 
calculated for various values of effective coupling parameters Γ*, illustrating various diffraction patterns, specific 
to the solid (a), hexatic (b) and liquid (c) phases of the non-ideal system. It is clearly seen that in the crystalline 
phase there are clear diffraction maximums corresponding to the hexagonal lattice. With increasing temperature 
the peaks become blurred up to forming hexagons, indicating the formation of an intermediate state, and then 
they form concentric circles, typical of the liquid phase.

Analysis of the asymptotic behavior of the correlation functions and diffraction patterns obtained from the 
calculation of the structural factor allows us to distinguish different phase states of two-dimensional non-ideal 
systems. However, it becomes less informative when considering asymptotics in the area of phase transitions, 
where the error in determining various thermodynamic and structural characteristics increases in close proximity 
to critical point of phase transition. In order to avoid the ambiguity of the analysis associated with fluctuations 
of spatial parameters and edge effects due to the finite size of the structure and averaging time, as well as to 
accurately determine the phase transition points, we used the method described in17. It is based on the analysis 
of fluctuations of the bond-angular and translational order parameters by calculating the susceptibilities of the 
corresponding global order parameters defined by the following formula:

Here L—size of the system under consideration, index α = 6, T defines bond-angular and translational order, 
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(a)	 for bond-angular order ψ6,j =
1
Nj

∑Nj

j=1 exp(6iθj,k) , where the sum on j is over all nearest neighbors Nj of 
the jth particle, and an angle θjk is formed by a bond, connected the kth and the jth particles, and a fixed axis;

(b)	 for translational order ψT ,j = exp(iGrj) , where G—primary vector of the reciprocal lattice, determined by 
the peak of the two-dimensional structure factor s(kxy) for each temperature value.

For the liquid and hexatic phases, it is often difficult to determine magnitude of G. In this case, for the initial 
evaluation we used the value G, obtained for crystal phase, and then maximized the value of ψT by varying the 
vector G in the neighborhood of the initial estimate found from s(kxy). Resulting value G was assumed optimal 
for a specific temperature value and was used in subsequent calculations of the global and local translational 
order parameter and the corresponding susceptibilities.

To calculate accurately the susceptibilities χ, it is necessary to collect sufficient statistics over time (in our 
case, the calculations were averaged over 2000 frames). To eliminate effects associated with the finite size of the 
structure, the calculation of χL was carried out in subboxes of various sizes L, and then was extrapolated in the 
thermodynamic limit to χ∞. Starting from L = 30–40 interparticle distances (i.e. a region with 1500–2000 par-
ticles), the value of the parameter χL didn’t largely change (within 5% error), and tended to χ∞, i.e. χL → χ∞≡χ. 
Figure 4 (bottom) shows a plot of the translational, χT, and orientational susceptibilities χ6, in dependence of the 
effective coupling parameter Γ*.

One can see the jumps of the functions χT and χ6, marked by vertical dashed lines, which clearly indicate 
two points of phase transitions at Г* ~ 100 and Г* ~ 160, respectively. The susceptibilities calculated for regions 
with a smaller number of particles (of about 400–500) also had smaller, but still clearly detectable jumps at the 
same points for value Г*. Thus, this method for analyzing the susceptibility of order parameters showed good 
persistence to edge effects and the possibility of its use not only for extended dusty plasma structures, but also 
for a relatively small number of particles, in contrast to the method based on the calculation and analysis of 
correlation functions and structure factor.

Let’s take a look more closely on the analysis of defects occurring in a two-dimensional nonideal dusty plasma 
structure. For a hexagonal lattice, the most common defects are disclinations—isolated defects with 5 or 7 nearest 
neighbors, dislocations—5–7 pairs of disclinations, and dislocation pairs—5–7–5–7 quadruple disclinations. It 
is convenient to visualize the picture of emerging defects, as well as their evolution over time, using the Voronoi 
diagram. An illustration of the construction of the Voronoi diagram for an experimentally obtained dusty plasma 
structure with Γ* ~ 140 is shown at Fig. 5.

According to BKTHNY—theory, unbinding of dislocation pairs to free dislocation (i.e. isolated 5–7 pairs of 
disclinations) cause “solid-to-hexatic” phase transition, and unbinding of dislocations to free disclinations (i.e. 
isolated 5- or 7-folded particles) cause “hexatic-to-liquid” phase transition. The dislocation acts as an additional 
row of particles, which gives a nonzero Burgers vector3,11 and effectively destroys the translational order in the 
system, while keeping the orientational order (see Fig. 5a–d). Two oppositely oriented dislocations form a pair 
with a zero Burgers vector, which does not violate translational and orientational symmetry. Therefore, disloca-
tion pairs can be formed due to thermal excitation even at low temperatures in the crystal. As for disclinations, 
they strongly violate both translational and orientational symmetry (see Fig. 5e), that’s why they appear at higher 
temperatures and almost absent in crystal.

We experimentally measured the relative fractions of free disclinations and dislocations (i.e. surrounded by 
6-folded particles) occurred in the system, depending on the effective coupling parameter Γ* (see top of Fig. 4). 
The figure shows that in the crystalline phase the concentration of free defects is vanishingly small. With increas-
ing temperature in the system (and therefore decreasing the value of the effective coupling parameter Γ*), one 
can see a gradual increase in the concentration of free dislocations at Γ* ~ 170, and then growth in the number 
of free disclinations at Γ* ~ 110 begins.

Whereas this graph shows qualitatively that the melting process is connected with increase of defects, it 
doesn’t accurately determine the position of critical points. The problem is that the statistics inevitably includes 
dislocations that are not quite “free”, i.e. have a pair on the same line of the lattice, and thus have a zero Burgers 

Figure 3.   Two-dimensional static structure factor s(kxy), calculated for various values of effective coupling 
parameter Γ*: (a) Γ* ~ 600; (b) Γ* ~ 140; (c) Γ* ~ 50.
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Figure 4.   (top) Free dislocations (circles) and free disclinations (diamonds) relative fraction; (bottom) The 
translational, χT, and orientational, χ6, susceptibilities as a function of coupling parameter Γ*. The divergence of 
χT and χ6 clearly indicates two transition points at Γ* ~ 100 and Γ* ~ 160 (vertical dashed lines).

Figure 5.   Illustration of (a) the Voronoi diagram for the hexatic phase at Γ* ~ 140. Dots indicate particles’ 
position. The red and blue Voronoi cells are marked for 5- and 7-folded particles, respectively; gray cells 
represent nondefect particles with 6 nearest neighbors. Subplot illustrates Burgers path with zero vector for 
different cases: (b) free dislocations with opposite Burgers vectors located on one lattice row, (c) dislocation 
pair (d) no defects. All three cases are interchangeable in time. (e) 7-folded disclination with non-zero Burgers 
vector.
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vector (see Fig. 5b–d). Such dislocations rapidly evolve in time. In particular they present “hopping”, or collaps-
ing, or forming a dislocation pair, or “running” along one line of the lattice for some distance from each other. 
Another problem is the high sensitivity of the calculation to systematic errors, since defects tend to form large 
clusters that can correspond to different numbers of free dislocations or disclinations. For example, a 6-mer 
5–7-5–7-5–7 can be counted as a single dislocation added to a dislocation pair, or as three dislocations with the 
codirected Burgers vectors. This may explain the fact that the growth of dislocations on the graph occurs a little 
earlier than the melting in the system. It can be assumed that, before melting some seed concentration of clusters 
of nonfree defects needed for the formation of stable free dislocations should be accumulated in the system. The 
same behavior was observed in colloids17, but had never been seen in dusty plasma before. We should note, that 
we didn’t observe the clear process of “unbinding” of free dislocations to separate free disclinations, considered 
in BKTHNY-theory. The most common pattern was developing of dislocations to agglomerations, consisting 
of several 5- and 7-folded particles. We presume that it happens because such formation of bigger defect on the 
base of “seed” dislocation costs less energy compared to creation of free disclination.

Finally, let’s consider the core energy of free dislocations, Ec, which is an essential parameter of the 2D system. 
According to the Grain-Boundary-Induced melting (GBI-) theory, first-order phase transition (by the formation of 
a polycrystalline structure) preempts KTHNY-scenario under the condition Ec < 2.84 kBT. One can observe such 
situation, for example, in43. The value of Ec can be obtained from the Boltzmann distribution of free dislocations:

where η− free dislocation density. However the complex structure of the occurring defects makes the determi-
nation of value η rather problematic, as it was mentioned above. The core energy can be roughly estimated by 
measuring the density of particles with the number of nearest neighbors other than six (1 − N6), i.e. by taking 
into account all defects. Such a method was used earlier in51, but at the same time it does not take into account 
the interaction of defects and leads to an overestimation of the number of dislocations, and hence an underes-
timation of the value of Ec:

The plot of the dependence of the magnitude (1− N6)
/

N6 on the effective coupling parameter Γ*, which in 
this case acts as the equivalent of the inverse temperature 1/T (i.e. Γ* ~ 1/T) is presented in Fig. 6.

As one can see at Fig. 6, the experimental points fit well on a straight line, the angle of which yielded us esti-
mation of the core energy Ec: Ec = 3.1 ± 0.1kBT. The real value of Ec is higher, since the magnitude obtained from 
the plot is the lower-bound estimate. As can be seen from the obtained estimation, the measured value of Ec is 
obviously above the threshold value of 2.84kBT predicted in12, which is yet more proof that the melting process 
of two-dimensional dusty plasma structures follows the BKT—scenario. Presented analysis shows that melting 
scenario is highly sensitive to the way applied to transfer 2D system from one phase state to another.

Conclusions
To summarize, we consider a method of kinetic heating of dusty plasma structures under constant plasma 
parameters of the discharge, based on the influence of enlarged homogeneous laser beam on entire dusty plasma 
system, resulting in melting of 2D dusty plasma crystal. Quantitative and qualitative analysis of static structure 
factor, local and global parameters of translational and bond-angular order parameters, temperature dependence 
of various types of defects, as well as estimating core energy of free dislocations and construction of Voronoi 
diagrams show clear evidence of two-step process of melting from the crystal to the liquid phase with formation 
of intermediate hexatic phase, predicted by BKT-theory. Using translational and orientational susceptibilities we 
accurately identified «solid-to-hexatic» and «hexatic-to-liquid» phase transition points. Long time for establishing 

η

1− η
∝ exp(−Ec

/

kBT),

1− N6

N6
∝ exp(−Ec

/

kBT)

Figure 6.   Log–norm plot of the ratio of the defect fractions to the nondefect fraction, (1 − N6)/N6 as a function 
of effective coupling parameter Γ*.
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stationarity and homogeneity of the system during experiments together with precision method of manipulating 
the temperature of dust particles allowed us to observe the clear evidence of hexatic phase never seen before in 
laboratory dusty plasma systems.
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