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Diagnosis of a disease is one of the most important processes in the field of medicine. Thus, computer-aided detection systems are
becoming increasingly important to assist physicians. The iron deficiency anemia (IDA) is a serious health problem that requires
careful diagnosis. Diagnosis of IDA is a classification problem, and there are various studies conducted. Researchers also use
feature selection approaches to detect significant variables. Studies so far investigate different classification problems such as
outliers, class imbalance, presence of noise, and multicollinearity. However, datasets are usually affected by more than one of
these problems. In this study, we aimed to create multiple systems that can separate diseased and healthy individuals and
detect the variables that have a significant effect on these diseases considering influential classification problems. For this, we
prepared different datasets based on the original dataset whose outliers were removed using different outlier detection
methods. Then, a multistep classification algorithm was proposed for each dataset to see the results under irregular and
regulated conditions. In each step, a different classification problem is handled. The results showed that it is important to
consider each question together as it can and should change the outcome. Dataset and R codes used in the study are available
as supplementary files online.

1. Introduction

Iron is a component of every living cell and is an essential ele-
ment for maintaining health. Iron participates in a large num-
ber of biochemical reactions, mainly related to oxygen
transport and storage, the production of adenosine triphos-
phate, the synthesis of deoxyribonucleic acid, and electron
transport [1]. Iron metabolism is controlled by absorption
rather than excretion. Iron is lost only through blood loss or cell
loss as it is shed. Men and women who do not have menstrua-
tion lose about 1mg of iron per day. Iron deficiency occurs
when the body’s iron needs are notmet by iron absorption from
the diet [2]. Anemia is a condition in which hemoglobin is less
than normal, and the oxygen carrying capacity of the blood is
reduced to meet the physiological needs of the body [3].
Approximately 43% of children under the age of 5 and 29% of
nonpregnant women of reproductive age worldwide are anemic
[4]. The prevalence varies significantly between countries and is
especially high in India [5]. Iron (Fe) deficiency has been recog-
nized as the most common cause of anemia and is associated
with about 25-50% of anemia worldwide [6–8].

There are previous studies in this field in the literature.
Yildiz et al. [9] propose a system to enable the recognition
of anemia in general clinical practice conditions. For this
system, a model was created using four different artificial
learning methods. Artificial neural networks, support vector
machines, Naive Bayes, and ensemble decision tree methods
were used as classification algorithms, and they achieved the
highest accuracy rate with the bagged decision tree method
(85.60%). The differential diagnosis of IDA and β-thalasse-
mia was made by using machine learning techniques such
as RBC indices, support vector machine (SVM), and K
-nearest neighbor (KNN) by Ayyıldız and Tuncer [10]. Çil
et al. [11] developed a decision support system to distinguish
between β-thalassemia and IDA using logistic regression, K
-nearest neighbors, support vector machine, extreme learn-
ing machine, and regularized extreme learning machine clas-
sification algorithms. Nur et al. [12] investigated the IDA in
children with severe caries undergoing dental surgery under
general anesthesia. Azarkhish et al. [13] developed an artifi-
cial neural network (ANN) and an adaptive neurofuzzy
inference system (ANFIS) to diagnose the IDA and predict
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serum iron levels. Yılmaz and Bozkurt [14] developed an
application by using different machine learning algorithms
to diagnose IDA in women. They achieved 97.60% sensitiv-
ity and 99.16% accuracy using feed forward distributed time
delay. Yılmaz et al. [15] introduced a fuzzy expert system
which determines the level of IDA. Dogan and Turkoglu
[16] proposed a decision tree system to detect IDA from
hematology. Yavuz et al. [17] used decision tree based on
feed forward network and KNN to diagnose IDA.

The main purpose of this study is to create a system that
can diagnose IDA in an individual in a computer environ-
ment using real data samples belonging to individuals and
identify variables that are important for IDA diagnosis in
different situations. Under this purpose, a system that
addresses each of the outlier, noise, class imbalance, and var-
iable selection problems encountered in the dataset belong-
ing to real patients has been proposed. The proposed
system achieves the variable effects and performance scores
observed in the presence of outliers separately along with
the variable effects and performances observed in the
absence of outliers. In this system, the original data can be
examined both without discarding outliers and by creating
a total of four different models in which outliers are dis-
carded using three different methods.

We used Z-score, relative density-based outlier factor
(RDOS) [18], and natural outlier factor (NOF) [19] as out-
lier detection. The Z-score method is preferred because it
is the most basic method, while RDOS and NOF are some
of the most recent outlier detection methods. Then, we
selected the important variables with the method Boruta fea-
ture selection [20].

Oversampling and undersampling methods are used to
eliminate class imbalance. The synthetic minority oversam-
pling technique (SMOTE) [21] is preferred as the oversam-
pling method since it is the most well-known resampling
method. SMOTE is a technique that is vulnerable to noise
in data [22–26]. Thus, the ensemble filter (EF) noise detec-
tion method [27] is used as the noise detection and under-
sampling method to establish models resistant to the
presence of noise. The reason why this method is preferred
is that it has performed successfully together with SMOTE
before [28]. Extreme gradient boosting (XGBoost) used by
Chen and Guesthin [29] was preferred as a classification
method since it has proven to be a successful method in
many studies such as Sandulescu and Chiru [30], Abel
et al. [31], Anelli et al. [32], and Cogranne et al. [33]. The
XGBoost method is a method that can make the variable
selection in itself. In this way, model-based variable selection
is also made within crossvalidation. In addition, XGBoost is
not affected by multicollinearity [34, 35]. Thus, we made it
possible to establish classification models that are resistant
to the existence of all the problems mentioned. What distin-
guishes this study from other studies is that it can address
the most important classification problems altogether.

The paper consists of four sections. The first section, the
introduction, gives a summary of IDA and literature on the
problem. The second section explains the dataset, proposed
system, and its flowchart and details about methods used
in the system. The third section gives the results belonging

to the dataset. The fourth and last section gives conclusive
interoperations.

2. Materials and Method

2.1. Collecting Data. Between October 2017 and March 2020,
516 cases diagnosed with malaise and fatigue (ICD-10 code:
R53) who applied to the Samsun Training and Research
Hospital, Hematology Department were retrospectively ana-
lyzed. IDA was diagnosed in 359 patients by looking at lab-
oratory results. The remaining 157 cases were evaluated with
the same diagnosis, and their laboratory values were not
compatible with IDA: age, gender, hemoglobin (Hb), hemat-
ocrit (Hct), mean corpuscular volume (MCV), mean corpus-
cular hemoglobin concentration (MCHC), red cell
distribution width (RDW), red blood cell (RBC) and IDA
parameters, iron (Fe), ferritin (FERR), unsaturated iron
binding capacity (UIBC). There are 516 cases were recorded.
The abbreviations are shown in Table 1. DD is the response
variable. It has two classes, true and false, true means the
person has IDA, and false if vice versa. The data set is
included within the supplementary information file (avail-
able here).

2.2. Proposed Classification System. We have two goals in
this study. The first is to obtain a model that can determine
whether an individual has IDA or not, is resistant to the
problem of class imbalance and noise, and makes a choice
of variables within itself. Secondly, to determine the effec-
tiveness of variables and the parameters of the best model
in cases of the presence and absence of outliers. Figure 1
gives the flowchart of the proposed system. Before crossvali-
dation, outliers are detected and removed. Outlier detection
methods are Z-score, RDOS, and NOF. The variable selec-
tion process has two stages, before and during crossvalida-
tion. Whether the variables belonging to these data sets are
significant before crossvalidation is determined by Boruta.
In the crossvalidation, the training set is transformed to have
zero mean and one variance. The class imbalance and noise
problems are solved by oversampling using SMOTE and
noise detection-undersampling EF.

XGBoost is used to form classification models. The
hyperparameters belonging to XGBoost have been deter-
mined to maximize Matthew’s correlation coefficient perfor-
mance with grid search because class imbalance has been
taken into account. In this way, this system will establish
the most appropriate model that can make an IDA diagnosis
suitable for every situation in a way that takes into account
each of the major classification problems.

2.3. Outlier Removal. Outlier is defined by Hawkings [36] as
“An observation which deviates so much from other obser-
vations as to arouse suspicions that it was generated by a dif-
ferent mechanism.”

Outliers may cause the model to make incorrect predic-
tions, incorrect feature selection, and misleading perfor-
mance measurements.

2.3.1. Z-Score. The Z-score method is a univariate outlier
detection method. In this method, Z-scores are obtained by
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standardizing the values of each variable. By taking the abso-
lute value of Z-scores, samples above a certain threshold
value are considered outliers. After removing the outlier,
the process is repeated until a certain number of outliers
are detected or a new sample cannot be found on the
remaining samples.

2.3.2. Relative Density-Based Outlier Factor (RDOS). Given a
set of objects X = fX1, X2,⋯, Xng, where Xi ∈ℝd for i = 1,
⋯, n kernel density, estimation (KDE) estimates the distri-
bution as

p Xð Þ = 1
n
〠
n

i=1

1
hd

K
X − Xi

h

� �
, ð1Þ

where KðX − Xi/hÞ is the defined kernel function with
the kernel width of h. To estimate the density at the location
of the object Xj, only its neighbors of Xj as kernels consid-
ered. To better estimate the density distribution in the neigh-
borhood of an object, k nearest neighbors, reverse nearest
neighbors, and shared nearest neighbors are used. Let NNr

ðXjÞ be the r-th nearest neighbors of Xj. k nearest neighbors
of Xj as SKNNðXjÞ is denoted as

SKNN Xj

À Á
= NN1 Xj

À Á
, NN2 Xj

À Á
,⋯, NNk X j

À ÁÈ É
: ð2Þ

The reverse nearest neighbors of Xj are those who con-
sider Xj as one of their k nearest neighbors. The shared near-
est neighbors are those who share one or more nearest
neighbors with Xj.

Let SRNNðXjÞ and SSNNðXjÞ be reverse nearest neighbors
and shared nearest neighbors of Xj, respectively. An
extended local neighborhood, SðXjÞ, is obtained by combi-
nation of three datasets, SKNNðXjÞ ∪ SRNNðXjÞ ∪ SSNNðXjÞ.
Estimated density at Xj is written as

p Xj

À Á
=

1
S Xj

À Á
+ 1
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X∈S X jð Þ∪ Xjf g

1
hd

X − Xj

h
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, ð3Þ

where jSj denotes the number of elements in the set of S.

Relative density-based outlier factor (RDOS) is then
obtained by

RDOSk X j

À Á
=
∑Xi∈S X jð Þp Xið Þ
S Xj

À Á�� ��p Xj

À Á : ð4Þ

RDOS is the ratio of the average neighborhood density
to the density of Xj. Higher RDOSkðXjÞ value means
higher outlierness of Xj.

2.3.3. Natural Outlier Factor (NOF). If an object Xj considers
Xl to be a neighbor and Xl considers Xj to be a neighbor at
the same time, then Xl is called a natural neighbor of Xj.
Algorithm of natural neighbor searching (NaN-Searching)
is given in Algorithm 1.

RnbðiÞ is the times that point i contained by the neigh-
borhood of other points, which the number of i’s reverse
neighbor. supk is called natural eigenvalue and is the average
value of the number of each point’s neighbors.max RnbðiÞ is
called natural value.

The point which RnbðiÞ = 0 after Algorithm 1 is natural
outlier. The Natural Influence Space (NIS) is defined as

NIS Xj

À Á
= NNk X j

À Á
⨆RNNk Xj

À Á
: ð5Þ

The Natural Outlier Factor (NOF) is defined as

NOF Xj

À Á
=

∑q∈NIS Xlð ÞIrdk Xlð Þ
NIS Xj

À Á�� ��Irdk Xj

À Á : ð6Þ

Here, IrdkðXjÞ is local reachability density and defined
as

Irdk X j

À Á
=

NNk Xj

À Á�� ��
ΣXm∈NNk X jð Þreach−distk X j ,Xmð Þ

,

reach − distk X j, Xm

À Á
=max k − dist Xmð Þ, d Xj, Xm

À ÁÈ É
:

ð7Þ

NOFðXjÞ gives the degree of outlierness of Xj. Higher
NOFðXjÞ value means higher outlierness of Xj.

2.4. Boruta Feature Selection. Boruta is a method that
decides whether the effect of the features is statistically sig-
nificant using the random forest algorithm. It creates
shadow features with randomness and determines the signif-
icance of the effects of the features by referencing these fea-
tures. The randomness created in shadow features will
reduce the relationship of these feature with the response.
The Boruta process works as follows. Duplicate features of
all features are included in the system. No matter how many
features are in the system, at least 5 copies are added. By
mixing these randomly within themselves, the relationship
with the response is removed. A random forest model is cre-
ated for each run on the new system, and feature importance
levels are calculated. The shadow feature with maximum

Table 1: List of laboratory test abbreviations used in this study.

Laboratory test Abbreviations

Hemoglobin Hb

Hematocrit Hct

Mean corpuscular volume MCV

Mean corpuscular hemoglobin concentration MCHC

Red blood cell count RBC

Red blood cell distribution width RDW

Iron Fe

Unsaturated iron binding capacity UIBC

Ferritin FERR

Disease diagnosis DD

3Computational and Mathematical Methods in Medicine



feature importance is called shadowMax. Feature with
higher feature importance than shadowMax is significant.
Hypothesis tests are used to determine significant features.
The feature that has statistically higher importance than sha-
dowMax is significant. If it has lower importance than sha-
dowMax, then it is insignificant and can be removed. If
there are statistically significant difference, then it is undeter-
mined. Boruta continues until the specified number of runs
or until statistically significant results are obtained for all
features.

2.5. Imbalanced Data Resampling. Classification is a kind of
pattern recognition method and assigns each input value to a
value in the vector of “classes.” In almost all of the real data,
the numbers of observations pertaining to classes show a
skewed distribution, which, then is called class imbalance.
Resampling methods are preprocessing methods in which
the dataset is modified so that the classes of observations
in the dataset become more balanced [37]. Past studies have

shown that modeling by achieving class balance with resam-
pling methods is a useful solution approach [38–40]. Resam-
pling is divided into three categories as undersampling,
oversampling, and mixed. Undersampling is to reach class
balance by reducing majority class instances. Oversampling,
on the other hand, aims to provide class balance by increas-
ing the instances of minority classes. Mixed methods use
undersampling and oversampling methods together.

2.5.1. Ensemble Filter (EF). Noise filtering methods are pop-
ular undersampling methods for imbalanced data sets. EF is
a noise detection method which uses m weak base-level clas-
sifiers. Dataset is partitioned into train and test datasets. All
instances are used as test set data m number of times. If an
instance is wrongly predicted by all m classifiers, then it is
tagged as noise.

2.5.2. Synthetic Minority Oversampling Technique (SMOTE).
The SMOTE algorithm generates artificial data between
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Figure 1: Flowchart of proposed system.

Input: r = 1, RnbðiÞ = 0,NNrðiÞ =∅, RNNrðiÞ =∅,NaNðiÞ =∅
1: Find the r-th neighbour Xl for each data point Xj

a. RnbðXlÞ = RnbðXlÞ + 1
b. NNrðXjÞ =NNrðXjÞ ∪ fXlg
c. RNNrðXlÞ = RNNrðXlÞ ∪ fXjg

2: Compute the number of data point Xj that RnbðXjÞ = 0
a. If the number does change for 3 times, go to step 5
b. else r = r + 1 and go to step 3

Output: supk = r and max RnbðiÞ = k

Algorithm 1: NaN-Searching (set of points).
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existing positive observations based on the gaps in the fea-
ture space [41]. For Xpos ∈ X subset and xi ∈ Xpos, consider
the nearest k neighbors of xi. Using the Euclidean distances
between xi and nearest neighbors x̂i and a λ random uni-
formly distributed value between ½0, 1�, new synthetic sample
is created as

xsyn = xi + x̂i − xið Þ × λ: ð8Þ

The synthetic sample, xsyn, created from this equation
becomes a random point on the line between xi and its near-
est neighbor x̂i. A pseudocode for the SMOTE algorithm
used in this study is given in Algorithm 2. Here, nsyn, npos,
and nneg are the number of points in synthetic, positive class,
and negative class datasets, respectively.

2.6. eXtreme Gradient Boosting (XGBoost). XGBoost is one
of the implementations of gradient boosting machines
(gbm) which is known as one of the best performing algo-
rithms utilized for supervised learning. The way the
XGBoost works is as follows: if we have for example a data-
set D that has p features and n number of examples D = fð
xi, yiÞ: i = 1,⋯, n, xi ∈ℝp, yi ∈ℝg. Let ŷi be the predicted
output of an ensemble tree model generated from the follow-
ing equations:

Ai = ϕ xið Þ = 〠
K

k=1
f k xið Þ, f k ∈ F, ð9Þ

where K represents the number of trees in the model, f k
represents the k-the tree, to solve the above equation, and we
need to find the best set of functions by minimizing the loss
and regularization objective.

L ϕð Þ =〠
i

l yi, Aið Þ +〠
k

Ω f kð Þ, ð10Þ

where l represents the loss function which is the difference
between the predicted output ŷi and the actual output yi.
While Ω is a measure of how complex the model is, this
assists in avoiding overfitting of the model, and it is calcu-
lated using

Ω f kð Þ = γT +
1
2
λ wk k2: ð11Þ

T , in the above equation, represents the number of leaves
of the tree, and w is the weight of each leaf.

Decision trees to minimize the objective function boost-
ing are used in the training the model, which works by add-
ing a new function f as the model keeps training. So, in the t
-th iteration, a new function (tree) is added as follows:

L tð Þ = 〠
n

i=1
l yi, A

t−1ð Þ
i + f t xið Þ

� �
+Ω f tð Þ,

Lsplit =
1
2

∑i∈lLgi
À Á2
∑i∈lLhi + λ

+
∑i∈lRgi

À Á2
∑i∈lRhi + λ

−
∑i∈lgið Þ2

∑i∈lhi + λ

" #
− γ,

gi = ∂A t−1ð Þ l yi, A
t−1ð Þ

� �
,

hi = ∂2A t−1ð Þ l yi, A
t−1ð Þ

� �
:

ð12Þ

XGBoost speeds up the tree construction and uses a dif-
ferent algorithm for tree searching than earlier gradient
boosting methods [42]. Compared to earlier gradient boost-
ing algorithms, XGBoost is computationally efficient [43].
Because of its high speed out of core computation, data sci-
entists prefer to use it commonly [44]. It also has shown sat-
isfactory results in machine learning competitions [45].

2.7. Performance Metrics. Performance evaluations of the
models can be calculated using confusion matrix and ROC

Input: Xn×p, Yn×1, k.
1. Divide Xn×p into Xpos

npos×p and Xneg
nneg×p using Y

2. nsyn ⟵ ðnneg − nposÞ
3. C⟵ dnsyn/npose
4. Randomly take ðnsyn − sumðCÞÞ samples from C, increase by 1 and put them back (for exact balance).
5. Xsyn

0×p ⟵ empty 0 × p matrix.
6. For i = 1,⋯, npos

a. NN ⟵ indices of k nearest neighbors of xposi in Xpos

b. k id⟵ Random Ci integer between 1 and k
c. λ⟵ Random Ci value between 0 and 1
d. kk⟵ data-set in Xpos with indices NN½k id�
e. xsyn = xposi + ðkk − xposi Þ × λ
f. Xsyn ⟵ bindrowðXsyn, xsynÞ

7. Xnew ⟵ bindrowðXsyn
nsyn×p, XÞ

8. nnew = n + nsyn

Output: Xnew
nnew×p

Algorithm 2: Pseudocode for SMOTE (exact balance).
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curves. Table 2 gives confusion matrix table. Here, TP is
true-positive, FN is false-negative, FP is false-positive, and
TN is true-negative predictions. Metrics accuracy (ACC),
Matthew’s correlation coefficient (MCC), sensitivity (Sens),
and specifity (Spec) can be calculated using Table 2 as
follows:

ACC =
TP + TN

TP + TN + FP + FN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

Sens =
TP

TP + FN
,

Spec =
TN

TN + FP
:

ð13Þ

Area under curve (AUC) is calculated by calculating the
area under ROC curve.

Here, the positive class means the minority class, and the
negative class means the majority class. When it comes to
class imbalance, all mentioned metrics will have bias
towards the negative class. When we examine the literature,
we see that all these criteria have different usage areas.
Despite this, many studies say that the MCC criterion is
more advantageous than other criteria [46–48].

3. Results

For outlier detection, we used Z-score, RDOS, and NOF
methods. For Z-score, we selected threshold as 3. For RODS
and NOF, outlier scores are investigated using Z-scores of
theirs. Again, threshold is selected as 3. As a result, we
obtained 4 different datasets which are summarized in
Tables 3 and 4. In Table 3, if we consider the average ranges
for a person, we see considerable extreme values in the max-
imum values of MCHC, RDW, Fe, UIBC, and FERR values.
Also, there are obvious extreme values in the minimum
values of Fe (1mcg/dL), FERR (1 ng/mL), and UIBC
(4.78mcg/dL). Since there is always the possibility of mis-
measuring or misrecording, we used outlier detection
methods and obtained new ranges for these variables. Even
after removing outliers, minimum values of Fe an FERR still
shows extreme values. Also, maximum values of FERR of
RDOS and NOF and RDW of NOF are still extremely high.
When we look at Table 4, we see that the method that finds
the highest number of outliers is RDOS. However, Z-score
removed more false outliers.

Figure 2 gives the feature importance levels for the Bor-
uta feature selection method. According to Boruta, all fea-
tures have significant effect on response. There are
comparative differences in original data and datasets which
outliers are removed. FERR seems to be more important
after when data is clean. RBC and MCHC are among the less
important ones in all four datasets. In RDOS and Z, RBC is
almost redundant. As conclusion, we can use all features in
crossvalidation for all datasets.

Figure 3 shows the correlation matrixes of four datasets.
It seems that Hb and Hct have a correlation of almost 1.
There are various absolute correlations above 0.7. MCV
seems to have increased correlation with other features after
outliers are removed. There seems to be high multicollinear-
ity in original dataset but higher multicollinearity in datasets
without outliers.

Figure 4 shows the scatter plots of first two component
of t-Distributed Stochastic Neighbour Embedding (tsne).
Using tsne, we can see how classes are separated in a multi-
variate space and how they are not. Original data and NOF
seem to have overlapped class instances which are noise. Z
and RDOS datasets seem to have no problem about noise.

Now, we have four datasets, as each have different and
similar problems. Original dataset and NOF have noise
and multicollinearity problem. Z and RDOS dataset have
class imbalance and multicollinearity problem. Since
XGBoost is a method that is robust to multicollinearity, it
should select only the most informative of the correlated
features.

Repeated crossvalidation is conducted to determine the
best hyper parameters and performances of each model. In
order to tune hyperparameters of XGBoost models, we used
grid search. Table 5 gives the hyperparameters, grid search
values, and best hyperparameters for each model. We
formed models using R package “xgboost” [44]. We used
available four of the available hyperparameters to tune.
nrounds is the max number of boosting iterations, lambda
is L2 regularization term on weights, alpha is L1 regulariza-
tion term on weights, and eta is the learning rate. Best hyper-
parameters are determined according to MCC value of
crossvalidation.

Figures 5–8 give the average feature importance of
XGBoost models for original, Z, DFOS, and NOF datasets,
respectively. In original dataset, Fe, FERR, and Hb features
are used, and other features have almost nonexistent effect.
The most important feature is Fe for original dataset. For
datasets cleaned by Z score and DFOS, we see the effect of
FERR more clearly compared to Fe. For EF+ SMOTE
models, even the Hb’s effect is redundant. For dataset
cleaned by NOF, results are similar to original dataset. Fe
is the most informative feature, and FERR and Hb are other
features which are informative to diagnose IDA.

Tables 6–9 give performance results for original, Z,
RDOS, and NOF datasets, respectively. Original dataset
had outlier, noise, and multicollinearity problems. Table 7
shows that best ACC, MCC, and Spec values are obtained
for the EF+ SMOTE method. For AUC and Sens, no resam-
pling was needed. Since our negative (majority) class is true,
which means the individual has IDA, without resampling,

Table 2: Confusion matrix.

Truth
Prediction

Positive Negative

Positive TP FN

Negative FP TN

6 Computational and Mathematical Methods in Medicine



we expect the model to be biased towards true. As we can see
in Table 8, sensitivity of no resampling model is the highest
among them. If we look at a more balanced measure like
MCC, the best model is the EF+SMOTE model.

Dataset cleaned based on Z-scores had the most imbal-
ance rate of the four datasets. It did not have a noise problem
compared to original and NOF dataset. Therefore, we expect

EF to be not that effective. When we look at the perfor-
mances, we see that SMOTE is the most successful one for
ACC, MCC, AUC, and Sens. EF+ SMOTE achieves for the
best value for Spec. RDOS dataset had less imbalance and
noise problem. Probably, the cleanest dataset is RDOS data-
set. Performances in Table 8 show us that the best model for
ACC, MCC, and sensitivity is achieved without resampling.

Table 3: Summary statistics of features in the datasets obtained and statistics for average person.

Feature
Outlier removal method

Original data Z RDOS NOF Average person
Min Max Min Max Min Max Min Max Min Max

Age 17.00 89.00 17.00 88.00 18.00 82.00 17.00 89.00 — —

Hb 6.20 17.30 6.20 15.80 6.20 15.80 6.20 17.30 11 gm/dL 18 gm/dL

Hct 18.30 48.80 21.00 46.30 21.00 46.30 18.30 48.80 35 perc 49 perc

MCV 34.90 111.60 52.50 98.90 52.50 96.00 34.90 99.70 80 fl 100 fl

MCHC 25.10 309.00 29.60 36.20 29.10 36.00 25.10 36.20 31 gr 37 gr

RBC 2.02 6.63 3.02 5.80 2.93 5.65 2.02 6.63 4.2mcL 6.1mcL

RDW 3.50 128.00 12.00 24.40 12.20 36.50 3.50 38.60 11.8 perc 16.1 perc

Fe 1.00 464.00 1.00 111.00 1.00 133.00 1.00 200.00 80mcg/dL 180mcg/dL

UIBC 4.78 717.00 135.00 634.00 145.00 591.00 126.00 591.00 111mcg/dL 343mcg/dL

FERR 1.00 1650.00 1.00 84.00 1.00 669.00 1.00 965.00 10 ng/mL 263 ng/mL

Table 4: Summary statistics for response variable.

Dataset n Outliers True outliers False outliers True False Imbalance rate (true/false)

Original 516 0 0 0 359 157 2.287

Z 353 163 72 91 287 66 4.348

RDOS 269 247 162 85 197 72 2.736

NOF 488 28 23 5 336 152 2.211
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Figure 2: Boruta feature importance of each dataset.

7Computational and Mathematical Methods in Medicine



Also, SMOTE gives the best AUC, and EF+ SMOTE gives
the best Spec value.

NOF dataset is the most similar to the original dataset. It
had noise and multicollinearity problem. Table 9 shows that
the best score for AUC is achieved without resampling. EF
+ SMOTE achieves the best ACC, MCC, and Spec values.
Also, the best Sens is achieved by the EF model.

Figure 9 gives overall results for four datasets together
with problems and methods.

4. Discussion

The RDOS method was the one that found the most outliers,
and the NOF method was the one that found the least out-
liers. The Z-score selected the outliers more from healthy
individuals, while the RDOS and NOF method selected them
more from IDA patients.

Boruta determined that the effects of all variables are sig-
nificant in the original dataset before crossvalidation. High
noise density was observed in the tsne graphs of the data
set in which important variables were used. When we looked
at the correlations between the variables, we realized that
there is multicollinearity. We used XGBoost to model in
order not to be affected by the multicollinearity. When
SMOTE is applied to solve the class imbalance, and EF is

applied to solve the noise problem. We have seen that the
combined application is successful in ACC, MCC, and spec-
ificity metrics. This showed us that in situations where noise
and class imbalance problems exist, approaches that con-
sider both, rather than just one problem, are successful.
The XGBoost method found Fe, Ferr, and Hb variables to
be important for all cases, in order of importance. Variable
importance did not differ by method.

We found that all variables were important before cross-
validation in the data set where outliers were eliminated with
the Z-score. tsne graphs showed little noise density. Prob-
lems of multicollinearity and class imbalance still exist.
When we did not address the noise problem but the class
imbalance problem, the best models were obtained in
ACC, MCC, AUC, and sensitivity metrics. It was enough
to apply only SMOTE. The variable importance levels of
XGBoost differed from the original dataset. For the models
of the Z-score dataset, the Ferr variable is more important
than the Fe variable in the absence of outliers. No effect of
Hb variable was observed in EF and EF+ SMOTE methods.

All variables are important when eliminating outliers
with RDOS. As in the Z-score, the noise density is low,
and class imbalance and multicollinearity are present. In this
case, the best performance was achieved in the ACC, MCC,
and sensitivity metrics when no resampling method was

Figure 3: Correlation matrixes for four datasets.
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used. The SMOTE model achieved the best performance in
AUC, and the EF+SMOTE model in specificity metrics. The
EF model failed compared to other models. We have seen that
class imbalance does not pose a problem for the performance
of the model in terms of ACC, MCC, and sensitivity in this
dataset, which already has a low noise ratio. XGBoost found

variable importance and order of importance in the RDOS
dataset, similar to the original dataset, but he found the vari-
able Hb meaningless for EF, SMOTE, and EF+SMOTE.

When we discarded outliers with NOF, there was no
reduction in noise density compared to other outlier
methods. The dataset includes noise, class imbalance ,and

Table 5: Best hyperparameters for XGBoost models.

nrounds Lambda Alpha Eta

Grid (25, 50, 75, 100, 125, 150) (0, 0.25, 0.5, 0.75, 1) (0, 0.25, 0.5, 0.75, 1) (0.01, 0.1, 0.25)

Original data

No resampling 25 0 0.5 0.01

EF 50 0.75 0 0.01

SMOTE 50 0 0.75 0.01

EF + SMOTE 25 0.75 0.5 0.01

Z

No resampling 50 0 0.25 0.01

EF 25 0.25 0.5 0.1

SMOTE 50 0 0.25 0.25

EF + SMOTE 75 0.5 1 0.01

RDOS

No resampling 25 0.75 0.5 0.01

EF 50 0.25 0.25 0.1

SMOTE 25 0 0 0.1

EF + SMOTE 75 0 0 0.25

NOF

No resampling 25 1 0.25 0.01

EF 25 0 0.25 0.01

SMOTE 25 0.5 0.5 0.01

EF + SMOTE 75 0.75 1 0.01
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Figure 5: Original data XGBoost feature importance.
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Figure 8: NOF data XGBoost feature importance.

Table 6: Performance results for original data.

Metric No resampling EF SMOTE EF+ SMOTE

ACC 0:9713 ± 0:0217 0:9727 ± 0:0207 0:9704 ± 0:0267 0:9735 ± 0:0214

MCC 0:9341 ± 0:0504 0:9378 ± 0:0470 0:9321 ± 0:0615 0:9400 ± 0:0479

AUC 0:9959 ± 0:0051 0:9952 ± 0:0058 0:9944 ± 0:0074 0:9933 ± 0:0087

Spec 0:9638 ± 0:0482 0:9732 ± 0:0366 0:9681 ± 0:0497 0:9764 ± 0:0373

Sens 0:9747 ± 0:0237 0:9725 ± 0:0252 0:9713 ± 0:0272 0:9721 ± 0:0271

Table 7: Performance results for Z.

Metric No resampling EF SMOTE EF+ SMOTE

ACC 0:9878 ± 0:0202 0:9853 ± 0:0182 0:9898 ± 0:0160 0:9850 ± 0:0168

MCC 0:9616 ± 0:0645 0:9550 ± 0:0556 0:9676 ± 0:0527 0:9544 ± 0:0512

AUC 0:9981 ± 0:0046 0:9979 ± 0:0047 0:9986 ± 0:0032 0:9985 ± 0:0035

Spec 0:9733 ± 0:0684 0:9771 ± 0:0631 0:9779 ± 0:0647 0:9814 ± 0:0560

Sens 0:9913 ± 0:0180 0:9871 ± 0:0202 0:9923 ± 0:0145 0:9857 ± 0:0192

Table 8: Performance results for RDOS.

Metric No resampling EF SMOTE EF+ SMOTE

ACC 0:9841 ± 0:0235 0:9773 ± 0:0308 0:9837 ± 0:0213 0:9786 ± 0:0291

MCC 0:9628 ± 0:0546 0:9482 ± 0:0660 0:9615 ± 0:0495 0:9508 ± 0:0642

AUC 0:9988 ± 0:0038 0:9958 ± 0:0093 0:9989 ± 0:0043 0:9952 ± 0:0101

Spec 0:9864 ± 0:0447 0:9863 ± 0:0415 0:9877 ± 0:0395 0:9889 ± 0:0378

Sens 0:9833 ± 0:0296 0:9741 ± 0:0410 0:9824 ± 0:0280 0:9747 ± 0:0382
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Table 9: Performance results for NOF.

Metric No resampling EF SMOTE EF+ SMOTE

ACC 0:9689 ± 0:0208 0:9723 ± 0:0228 0:9691 ± 0:0259 0:9729 ± 0:0251

MCC 0:9301 ± 0:0467 0:9383 ± 0:0497 0:9311 ± 0:0573 0:9395 ± 0:0558

AUC 0:9962 ± 0:0046 0:9955 ± 0:0090 0:9961 ± 0:0054 0:9947 ± 0:0078

Spec 0:9666 ± 0:0485 0:9709 ± 0:0456 0:9678 ± 0:0534 0:9757 ± 0:0425

Sens 0:9699 ± 0:0264 0:9729 ± 0:0304 0:9697 ± 0:0322 0:9717 ± 0:0300

Figure 9: Overall results for four datasets.
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multicollinearity problems. Boruta found all variables signif-
icant. The EF+ SMOTE model was successful on most met-
rics (ACC, MCC, and specificity) as it addresses both noise
and class imbalance problem. While XGBoost found Fe,
Ferr, and Hb variables to be important in all models in order
of importance, it achieved the best AUC performance when
resampling was not applied and found the RDW variable to
be important.

For all datasets, cases where all the problems were handled
at once, instead of examining the problems one by one, allowed
us to obtain better results, but there are some points to be
noted: First is the correct selection of the outlier method. This
study does not make a recommendation about which method
should be used to detect outliers. In addition, the problems
must be well identified. We have shown that successful results
can be obtained when the presence of noise and class balance is
correctly detected. However, different methods should be
explored for noise detection and class imbalance resampling.
The interpretations of each of the performance measures also
vary and is used for different circumstances. Once the
researcher has identified all of them correctly, he should tackle
all the problems together, as we suggest.

5. Conclusion

This study is aimed at modeling IDA results of patients
using auxiliary variables considering different classification
problems. We have argued that dealing with all the problems
together will lead to more successful results, rather than
dealing with each problem individually, as has been done
before in the literature. We identified significant problems
as outlier, variable significance, noise, multicollinearity, and
class imbalance. For these purposes, we created four differ-
ent data sets according to the missing data situations. Thus,
we were able to examine the changes in the interpretations
of the models when outliers were removed. For each dataset,
we created XGBoost models, which is a multicollinearity
resistant method. While obtaining the performances of these
models, we used the crossvalidation method. We used
SMOTE and EF methods to deal with both noise and class
imbalance problems separately and together in crossvalida-
tion. As a result, the models we obtained were successful in
more metrics when all identified problems were taken into
account. We believe that this study will be useful to
researchers who will do other disease detection modelling.
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