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A novel method for correcting 
scanline-observational bias of 
discontinuity orientation
Lei Huang1, Huiming Tang1,2, Qinwen Tan1, Dingjian Wang1, Liangqing Wang1, 
Mutasim A. M. Ez Eldin1,3, Changdong Li1 & Qiong Wu1

Scanline observation is known to introduce an angular bias into the probability distribution of 
orientation in three-dimensional space. In this paper, numerical solutions expressing the functional 
relationship between the scanline-observational distribution (in one-dimensional space) and the 
inherent distribution (in three-dimensional space) are derived using probability theory and calculus 
under the independence hypothesis of dip direction and dip angle. Based on these solutions, a novel 
method for obtaining the inherent distribution (also for correcting the bias) is proposed, an approach 
which includes two procedures: 1) Correcting the cumulative probabilities of orientation according to 
the solutions, and 2) Determining the distribution of the corrected orientations using approximation 
methods such as the one-sample Kolmogorov-Smirnov test. The inherent distribution corrected by the 
proposed method can be used for discrete fracture network (DFN) modelling, which is applied to such 
areas as rockmass stability evaluation, rockmass permeability analysis, rockmass quality calculation 
and other related fields. To maximize the correction capacity of the proposed method, the observed 
sample size is suggested through effectiveness tests for different distribution types, dispersions and 
sample sizes. The performance of the proposed method and the comparison of its correction capacity 
with existing methods are illustrated with two case studies.

Rockmass is a discrete medium composed of rock material and discontinuities including faults, fractures, joints, 
veins, bedding planes, cleavage planes, and schistosity planes, among others. Such discontinuities dominate the 
kinematical and mechanical behaviour of engineering rockmass1–5, with the analysis of this behaviour extending 
to various applications in such areas as rockmass stability evaluation, rockmass permeability analysis, rockmass 
quality calculation and other related fields, using three-dimensional rockmass models frequently generated via 
discrete fracture network (DFN) modelling with input geometrical variables including orientation6–15. These ori-
entations are primarily measured on fresh rock exposures, with previous studies reporting various representative 
techniques16–19. More recently, a circular window sampling has been used to measure geometrical features20, and 
a careful window mapping was used for geometric fracture measurement at a surface outcrop in Kilve on the 
southern margin of the Bristol Channel Basin21, while a Lidar scanning technology was applied to determine the 
discontinuity orientation along a highway in Canada22,23.

However, some studies have used a line sampling technique, the most common being scanline sampling 
or borehole sampling. For example, scanlines were fixed on the rock faces of the San Manual copper mine in 
Arizona, USA, to collect orientations24. Boreholes were also used to obtain the orientation sample of a trending 
anticline at an anonymous field25. Both a single scanline and a multiple scanline method were used at Big Quarry 
site in northeast Wisconsin on the Door Peninsular between Lake Michigan and Green Bay26. These studies have 
shown that line sampling introduces a bias because a scanline preferably samples those discontinuities having 
large intersection angles, meaning the sampled probability increases with the intersection angle. To illustrate this 
bias, Supplementary Fig. S1(a) arbitrarily supposes two sets of discontinuities, where (1) the intensities of the 
two discontinuity sets are equal and (2) the intersection angle between the scanline and the Discontinuity Set 1 is 
smaller than that between the scanline and Set 2, that is, θ1 <  θ2. Consequently, fewer discontinuities in Set 1 are 
sampled by the scanline than for Set 2. In the extreme case, none of Set 1 is sampled if θ1 =  0°, and consequently 
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no orientation is observed in this set (Supplementary Fig. S1(b)). As this example suggests, it is easy to see that 
this angular bias exists in orientation observation using scanline, especially with small intersection angles.

The first approach for correcting this bias, the Terzaghi method which appeared in 1965, obtained the cor-
rected frequency by dividing the observed frequency by the sine of intersection angle27. A detailed explanation 
of this method can be found in past research28. Since its introduction, most orientation corrections have adopted 
this method or one of its improved versions. For example, this method was applied to discontinuity orientation 
data obtained from scanline and borehole sampling in road cuts29. Subsequently, the application of this method 
was extended to curved scanlines and boreholes30, with a modification being applied to the sampling of frac-
tures with a borehole and the sampling with the surface of a borehole31. A revision of this method, the Fouché 
method, which adds the discontinuity sample size into the original equation was developed to improve correction 
capacity32. The work reported here found that the correction of the Fouché method still results in a considerable 
error as mentioned in the Results Section. To address this issue, this paper proposes a more effective correction 
method. Firstly, the solutions for expressing the functional relationship between the distribution observed by a 
scanline (in one-dimensional space) and the inherent distribution (in three-dimensional space) are derived using 
probability theory and calculus (shown in the Supplementary Information). Secondly, based on these solutions, 
a novel method for correcting the bias is proposed, one which includes a hypothesis and two procedures (shown 
in Methods). Thirdly, the effect of the observed sample size on the correction capacity of the proposed method 
is examined based on 84 artificial datasets. Then, the optimal sample size, defined as that which can achieve the 
maximum correction capacity with few observations, is determined (shown in Results). Finally, the correction 
capacity of the proposed method is compared with the existing Fouché method using two discontinuity orienta-
tion samples, one from a lithic arkose exposure at Wenchuan, Sichuan, and a second from a dacite tunnel wall in 
Mankang, Tibet, China (shown in Results).

Results
The effect of sample size on correction capacity. When preparing a discontinuity survey, it is impor-
tant to know the sample size required for maximizing the capacity of the bias correction, referred to as the optimal 
sample size. To analyse the effect of sample size on the capacity and to select the optimal sample size for the pro-
posed method, we compared the accuracies of the correction results of 84 artificial datasets from 4 distribution 
types, 3 dispersions and 7 sample sizes.

The accuracy is expressed by the root square error between the true and the corrected probability densities. 
For dip direction this value is represented by

∫δ α α α α= −
α
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where pc(α) is the corrected probability density function of the dip direction, pt(α) the true probability density 
function of the dip direction, αmin the lower limit of the definition domain, αmax the upper limit of the definition 
domain, and δ(α) the root square error between the true and the corrected probability densities of the dip direc-
tion. For dip angle the root square error is calculated using the formula below,
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where pc(β) is the corrected probability density function of the dip angle, pt(β) the true probability density func-
tion of the dip angle, βmin the lower limit of the definition domain, βmax the upper limit of the definition domain, 
and δ(β) the root square error between the true and the corrected probability densities of the dip angle. The lower 
the root square errors δ(α) and δ(β), the more accurate the correction is.

The investigation method is shown in the Methods Section. The result (Fig. 1) shows:

(a)  Normal distribution: The error curve of N (180, 102) dip direction decreases from 4.1 ×  10−2 to 4.4 ×  10−3 
with an average descent rate of 8.1 ×  10−5 per sample size in the sample size interval of 50 to 500. For N 
(45, 102) dip angle, the error curve decreases from 3.6 ×  10−2 to 1.5 ×  10−3 with an average descent rate of 
7.7 ×  10−5 per sample size in the same interval. In the adjacent interval over a sample size of 500, the curve for 
dip direction is approximately horizontal at 5.0 ×  10−3 with an average ascendant rate of 1.2 ×  10−6 per sam-
ple size; and the curve for dip angle is approximately horizontal at 7.3 ×  10−4 with an average descent rate of 
1.5 ×  10−6 per sample size. This result reveals that the increase in sample size can improve correction capacity 
up to a sample size of 500. Similar trends can be found in the cases with more disperse dip directions/angles 
N (180, 152)/N (45, 152) and N (180, 202)/N (45, 202) although there exists a local minimum point at a sample 
size of 200 for N (180, 202). So the sample size should be constrained below 500 for normally distributed 
orientations.

(b)  Lognormal distribution: The error curve of lnN (5.19, 0.062) dip direction decreases approximately linearly 
from 6.8 ×  10−2 to 3.1 ×  10−4 with an average descent rate of 6.7 ×  10−4 per sample size in the sample size 
interval ranging from 50 to 150. For lnN (3.78, 0222) dip angle, the error curve decreases approximately 
linearly from 5.2 ×  10−2 to 6.9 ×  10−3 with an average descent rate of 4.5 ×  10−4 per sample size in the same 
interval. In the adjacent interval over sample size 150, the error fluctuates and ultimately becomes stable. Sim-
ilar overall trends are exhibited in the more disperse data of dip directions/angles lnN (5.19, 0.082)/lnN (3.75, 
0.322) and lnN (5.19, 0.112)/lnN (3.72, 0.422), meaning that increasing the sample size can greatly improve the 
correction capacity up to a sample size of 150.
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(c)  Uniform distribution: The error curves of U (160, 200) dip direction/U (25, 65) dip angle are almost horizon-
tal at 1.0 ×  10−3/1.0 ×  10−4. Similarly, in the cases of U (150, 210)/U (15, 75) and U (140, 220)/U (5, 85), the 
error curves are approximately horizontal at 2.9 ×  10−3/2.0 ×  10−3 and 2.1 ×  10−3/3.2 ×  10−3. These results 
suggest that the change in sample size has little effect on the correction capacity. Furthermore, these errors are 
close to 0, suggesting that the proposed method is quite effective for uniformly distributed orientations.

(d)  Exponential distribution: The error curves of Exp (180) dip direction/Exp (45) dip angle reach up to more 
than 1.1 ×  10−2/2.9 ×  10−2. In particular, the error is more than 2.1 ×  10−2 and 3.6 ×  10−2 when the sample 
size is between 300 and 1000. Similarly, in the cases of Exp (185)/Exp (50) and Exp (190)/Exp (55), the errors 
are fairly large, more than 0.0177/0.0134 and 0.0111/0.0116. This shows the proposed method is unsuitable 
for exponentially distributed orientations.

The actual distribution type and dispersion of orientations of any of the samples are not known until the 
correction is calculated. Thus, taking into account these findings, the optimal sample size, if possible, is 150 for 
the proposed correction method. However, this optimal sample size is applicable for each discontinuity set rather 
than for the entire sample of multiple discontinuity sets, and it may vary depending on the correction method. 
In other words, the optimal sample size may be a different value or may not exist for various correction methods.

Case I. This case of natural discontinuities is used to compare the correction capacities of the proposed and 
the existing methods. The existing methods for correcting orientation bias include the Terzaghi method17,18,27–29 

Figure 1. Root square error versus sample size curves: (a) Orientation follows normal distribution. Left is 
dip direction and right is dip angle. (b) Lognormal distribution. (c) Uniform distribution. (d) Exponential 
distribution.
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and its modified versions31,32. The Terzaghi method obtains the corrected frequency by weighting the observed 
frequencies using the bias-compensatory factor:

θ
θ

=w ( ) 1
sin (3)

where w is the bias-compensatory factor, θ the intersection angle between the scanline and the discontinuity 
defined at each cell centre.

A modification of this method, the Fouché method, adds the discontinuity sample size to the original Terzaghi 
equation to improve the correction capacity32:

θ =
+
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where n is the sample size of observed discontinuities and K  denotes the largest integer less than or equal to K. It 
was found that the original Terzaghi method is more applicable to the case n →  ∞  while this modified method is 
applicable to an arbitrary value of n. The comparison conducted here is limited to the Fouché method.

Case I involves joints. The background and test method for Case I are shown in the Methods Section. The test 
returned two-tailed significances corresponding to the Fouché method of 0.739 for the dip direction and 0.782 
for the dip angle, and for the proposed method of 0.913 for the dip direction and 0.918 for the dip angle. The 
significances for the proposed method are higher than that for the Fouché method, indicating that the proposed 
method performs more effectively than the Fouché method.

Case II. To support the comparison result above, a case with natural discontinuities, Case II, is used. In addi-
tion, this case is further used to check the optimal sample size previously determined from the artificial data. Case 
II involves bedding planes. The background and test method for this case are shown in the Methods Section. The 
result (Fig. 2) indicates that for the proposed method, the highest correction capacity is achieved at a sample size 
of approximately 150; when the sample size is over 150, the correction capacity does not significantly improve as 
the sample size increases. This result is in good agreement with the optimal sample size previously determined 
from the artificial data. Additionally, the comparison of significances corresponding to the Fouché method and 
the proposed method in this figure reveals that the proposed method provides a more accurate correction result 
than the Fouché method.

Discussion
As suggested in the Results Section, the method proposed here is more effective than the Fouché method because 
of its higher correction capacity. The reason for this is that the Terzaghi method is based on the assumption that 
all of the discontinuities in each counting cell are parallel33 (see Supplementary Appendix A). Because all discon-
tinuities are not parallel, this discrepancy between the assumption and the fact leads to an error. The revised ver-
sion of this method is also based on this assumption, meaning the Fouché method includes the same error. Unlike 
the Fouché method, the proposed method does not make this assumption and, thus, does not introduce this error.

The proposed method is derived from Supplementary Equation (11) based on an implicit assumption that the 
sampling tool is 0 m in diameter, an assumption fulfilled by a scanline. However, it is not clear if this method can 
be applied to diameters greater than 0 m, for example a borehole/well. We believe that the applicability of this pro-
posed method in this situation could be determined if adequate fracture data from boreholes can be obtained, or 
more importantly, a revised method could be derived as long as the underlying Supplementary Equation (11) can 
be rewritten to address a diameter greater than 0 m. While this study did not include these data, future research 
can investigate the borehole/well case.

The proposed method is based on probability theory, which assumes that discontinuity orientations fol-
low probability distributions, an assumption also made by numerous geologists. More specifically, many geol-
ogists have assumed or verified that the orientations of fractures investigated by the line sampling technique 
follow several theoretical random distribution types, such as the uniform distribution34,35, exponential distri-
bution36, normal distribution37–40, Fisher distribution41–44, Kent distribution45–47, Weibull distribution48, and 
Bingham distribution49–53. In addition, engineers who have found that these theoretical distribution types do 

Figure 2. Two-tailed significance returned by the two-sample Kolmogorov-Smirnov test (Case II). 
This significance is used to quantify the distribution difference between the observed and the “modelled” 
orientations. The orientation is comprised of two components: (a) Dip direction. (b) Dip angle.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:22942 | DOI: 10.1038/srep22942

not fit the orientation sample have concluded that the data may follow empirical probability distributions not 
yet reported54,55; some observed orientation samples may fit a lognormal distribution. Hence, the probability 
distribution assumption is reasonable for most observed fractures. Unlike fractures, another type of discontinuity, 
bedding planes, are nearly parallel. In fact, the orientation of bedding planes can be considered as a special case 
following a probability distribution defined within a narrow domain, for instance from 132 to 141° in dip direc-
tion and from 68 to 76° in dip angle shown here in Case I. From this perspective, such a special case of sub-parallel 
discontinuities, thus, belongs to a probability distribution, where the proposed method can be applied.

The distribution after correction in Case I is altered slightly relative to the raw distribution, while that in Case 
II is altered more significantly as seen in Fig. 3 even though the averages of the intersection angles between the 
scanline and the discontinuities (48.1° for Case I and 51.7° for Case II) are similar. The dispersion of the orienta-
tions of the non-parallel discontinuities (e.g. 12.1° and 10.0° standard deviations corresponding to dip directions 
and dip angles, respectively, of the 1,016 joints in Case II) is responsible for this observational bias. Compared 
with joints, sub-parallel discontinuities are less dispersed in orientation (e.g. 2.9° and 2.2° standard deviations 
corresponding to dip directions and angles of bedding planes, respectively, in Case I), meaning that the observa-
tional bias is smaller, even negligible at times. Consequently, the correction for bedding planes seems less signifi-
cant than for joints. In particular, for extremely parallel bedding planes, the correction may not be required due to 
two primary reasons. The first is that, to our knowledge, the observational bias is so small that the data sufficiently 
approximate the distribution in three-dimensional space which is just required for DFN modelling. The second 
is that the improved accuracy will be very limited even using the proposed method, owing to the appropriately 
high approximation of the raw data in relation to the three-dimensional distribution as mentioned previously. 
Our next study will analyse this issue more fully.

The proposed method uses dip direction/dip angle to delineate orientation. This linear delineation is limited 
because when a discontinuity cluster crosses the 0° dip direction, the statistics of dip direction will break down. 
However, the conversions of the dip direction in Supplementary Appendix B can be used to avoid this statistical 
break. A similar limitation may appear with a discontinuity cluster close to the 0° dip angle, where the same con-
version of the dip direction is also required before correction.

In addition to the orientation focused on in this paper, another geometric element of discontinuity, volume 
intensity, sometimes referred to as volume density, is important in DFN modelling. Three aspects are needed 
to calculate volume intensity, scanline or borehole orientation, the orientation probability distribution, and the 
diameter or radius probability distribution. As a prerequisite for this calculation, the orientation probability dis-
tribution corrected by the proposed method may contribute to a more accurate intensity calculation.

Conclusions
This paper presents a novel method for correcting the scanline-observational bias of discontinuity orientation. 
This method includes two steps that 1) correct the cumulative probabilities of orientation based on numerical 
solutions of orientation probability density in three-dimensional space and 2) determine the distribution of the 
corrected orientations using approximation methods. The numerical solutions in the first step were derived using 
probability theory and calculus under the distribution independence hypotheses of dip direction and dip angle. 
The approximation in the second step can be easily implemented using the one-sample Kolmogorov-Smirnov 

Figure 3. Orientation distribution parameters before and after correction using the proposed method:  
(a) Mean of dip directions. (b) Standard deviation of dip directions. (c) Mean of dip angles. (d) Standard 
deviation of dip angles.
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test. The results corrected by the proposed method, the probability distribution function of orientation in 
three-dimensional space, can be used as one of the parameters for discrete fracture network (DFN) modelling. 
As is known, DFN can be applied in various research areas, including the evaluation of rockmass stability, the 
analysis of rockmass permeability, the calculation of rockmass quality and other such related fields.

To maximize the correction capacity of the proposed method with few observations, the optimal sample size is 
determined from capacity comparisons of different sample sizes, distribution types and dispersions of orientation 
data. The results revealed that the highest correction capacity is achieved at an approximate sample size of 150; 
once it exceeds this value, the correction capacity does not significantly improve with a larger sample size, mean-
ing the optimal sample size tends to be this value. However, this optimal sample size is only applicable for each 
discontinuity set, not the entire sample comprised of multiple discontinuity sets, and the determination of the 
optimal sample size depends on the correction method. In other words, the optimal sample size is approximately 
150 for the proposed method, but may take different values or even not exist for other correction methods. This 
optimal sample size determined from artificial data is supported by an actual orientation sample of dacite joints 
exposed on a tunnel wall in Mankang, Tibet, China.

The proposed method was subsequently compared with the existing Fouché method using two observed ori-
entation samples from both the tunnel wall and a second case involving lithic arkose beddings exposed on an 
outcrop in Wenchuan, Sichuan, China. The results demonstrate that the proposed method provides a more accu-
rate corrected orientation distribution for DFN modelling than the Fouché method. The reasons for this higher 
correction capacity of the proposed method were discussed as well as the low correction capacity when applied 
to bedding planes.

Methods
The proposed method. The proposed method is based on numerical approximate solutions and includes 
one hypothesis and two procedures. Supplementary Appendix C presents a detailed derivation of the functional 
relationship between the observed distribution by scanline (in one-dimensional space) and the inherent distribu-
tion (in three-dimensional space). The derived result shows that it is difficult to obtain the exact analytic solutions 
of the inherent distribution because of an unsolved integral. Thus, numerical approximate solutions are derived in 
terms of piecewise functions (see Supplementary Equations (33) for dip direction and (34) for dip angle).

Hypothesis. As shown in Supplementary Appendix C, the numerical approximate solutions are derived under 
the hypothesis that the observed dip direction and dip angle are independent of each other. The proposed method 
uses these solutions and accordingly relies on this hypothesis. Although the dip direction and dip angle are 
dependent for some discontinuities like bedding planes in plunging folds56, there are several cases that consider 
them as independent variables17,34–36,42–44,57–60. For this reason, it is necessary to check whether the observed ori-
entation sample meets the independence hypothesis before using the proposed method. Only if the independence 
test is met, can the proposed method be applied.

There are many methods for checking for independence, one of which is the Pearson’s chi-square (χ 2) test. 
This method assesses whether paired observations of two variables are independent of each other as expressed in 
a contingency table. It returns a two-tailed significance characterizing the independence ranging from 0 to 1; the 
greater the value, the more significant is the independence. It is generally believed that the independence hypoth-
esis can be accepted if the significance is above the confidence level of 0.05. Its properties were first investigated in 
the last century61 and further details can be found in recent literature62,63.

Procedure. The procedure for the proposed method is as follows.

1. Correct the cumulative probabilities of the dip direction and angle based on the numerical solutions Sup-
plementary Equations (33) and (34), respectively.

2. Determine the distribution of the corrected orientations using approximation methods such as the 
one-sample Kolmogorov-Smirnov test. This nonparametric test was developed to compare a sample with 
a hypothesized probability distribution64,65. It returns a two-tailed significance quantifying the distance 
between the empirical distribution function of the sample and the cumulative distribution function of the 
hypothesized distribution. This test is usually applied to approximating the distribution of a sample with 
a hypothesized distribution type66,67. It allows for various hypothesized distribution types to be selected to 
obtain the fittest distribution.

Investigation of the effect of sample size. This investigation focuses on the effect of sample size on the 
correction capacity of the proposed method. It contains the following four steps.

Firstly, the true distribution of the orientations is arbitrarily hypothesized, in addition to other geometric 
parameters that are necessary for the modelling as listed in Table 1. This hypothesized orientation includes 4 
common probability distribution types: normal, lognormal, uniform and exponential. For each distribution type, 
dispersion is set at 3 different values, while for each dispersion, the sample size is assigned 7 different values: 50, 
100, 150, 200, 300, 500 and 1,000.

Then, entering these parameters into discrete fracture modelling as described in the previous literature68–70 
results in the construction of 12 models of discontinuity networks, corresponding to the 12 combinations of the 
4 distribution types and the 3 dispersions. Supplementary Fig. S2 shows only the model for the uniform distribu-
tion (i.e., Groups 43–49 in Table 1) due to space constraints.

Thirdly, the observations for each of the 12 models are conducted under 7 different sample sizes, so that a 
total of 84 samples of orientations of discontinuities are derived. Supplementary Fig. S3 shows only the observed 
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Volumetric 
intensity (m-3)

Simulated zone Applied zone Scanline

Length (m) Width (m) Height (m) Length (m) Width (m) Height (m) Trend (°) Plunge (°)

7 30 30 30 20 20 20 0 45

Group True dip direction(°) True dip angle (°) Radius (m) Sample size

1 N (180, 102) N (45, 102) Exp (1.5) 50

2 N (180, 102) N (45, 102) Exp (1.5) 100

3 N (180, 102) N (45, 102) Exp (1.5) 150

4 N (180, 102) N (45, 102) Exp (1.5) 200

5 N (180, 102) N (45, 102) Exp (1.5) 300

6 N (180, 102) N (45, 102) Exp (1.5) 500

7 N (180, 102) N (45, 102) Exp (1.5) 1000

8 N (180, 152) N (45, 152) Exp (1.5) 50

9 N (180, 152) N (45, 152) Exp (1.5) 100

10 N (180, 152) N (45, 152) Exp (1.5) 150

11 N (180, 152) N (45, 152) Exp (1.5) 200

12 N (180, 152) N (45, 152) Exp (1.5) 300

13 N (180, 152) N (45, 152) Exp (1.5) 500

14 N (180, 152) N (45, 152) Exp (1.5) 1000

15 N (180, 202) N (45, 202) Exp (1.5) 50

16 N (180, 202) N (45, 202) Exp (1.5) 100

17 N (180, 202) N (45, 202) Exp (1.5) 150

18 N (180, 202) N (45, 202) Exp (1.5) 200

19 N (180, 202) N (45, 202) Exp (1.5) 300

20 N (180, 202) N (45, 202) Exp (1.5) 500

21 N (180, 202) N (45, 202) Exp (1.5) 1000

22 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 50

23 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 100

24 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 150

25 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 200

26 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 300

27 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 500

28 lnN (5.19, 0.062) lnN (3.78, 0.222) Exp (1.5) 1000

29 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 50

30 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 100

31 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 150

32 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 200

33 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 300

34 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 500

35 lnN (5.19, 0.082) lnN (3.75, 0.322) Exp (1.5) 1000

36 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 50

37 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 100

38 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 150

39 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 200

40 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 300

41 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 500

42 lnN (5.19, 0.112) lnN (3.72, 0.422) Exp (1.5) 1000

43 U (160, 200) U (25, 65) Exp (1.5) 50

44 U (160, 200) U (25, 65) Exp (1.5) 100

45 U (160, 200) U (25, 65) Exp (1.5) 150

46 U (160, 200) U (25, 65) Exp (1.5) 200

47 U (160, 200) U (25, 65) Exp (1.5) 300

48 U (160, 200) U (25, 65) Exp (1.5) 500

49 U (160, 200) U (25, 65) Exp (1.5) 1000

50 U (150, 210) U (15, 75) Exp (1.5) 50

51 U (150, 210) U (15, 75) Exp (1.5) 100

52 U (150, 210) U (15, 75) Exp (1.5) 150

Continued
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samples from Groups 7, 28, 49 and 70 in Table 1. A Pearson’s chi-square (χ 2) test is then executed to check the 
independence of the observed dip directions and dip angles, with results listed in Supplementary Table S1. As this 
table shows, the two-tailed significances are all above the confidence level of 0.05, indicating that the observed 
orientations meet the independence hypothesis, meaning the proposed method can be used.

Finally, the 84 observation samples were corrected using the proposed method, with results being listed in 
Table 2. Then, the root square errors between the corrected and the true distributions are calculated based on 
Equations (1) and (2), with results being shown in Fig. 1.

Case I. The study area of this case is located near Yingxiu town in Wenchuan, Sichuan Province, China, about 
1,800 m east of the epicentre of the 2008 Wenchuan earthquake. The specific roadcut is 11 m long, 5 m wide and 
6 m high, and consists of Upper Triassic lithic arkose of the Xujiahe Formation. The rockmass has two primary 
discontinuity sets, one of which comprises the bedding planes seen in Fig. 4.

A scanline with the trend/plunge 108/15° was fixed on the outcrop to sample these bedding planes. Their 
orientations were measured with a geologic compass. As geologists have reported71–75, a single measurement by a 
geologic compass will introduce a large measurement error to the bedding plane orientation data. Because of this 
error, the data are frequently unable to represent the natural distribution. To reduce such an error, ten repeated 
measurements were conducted here and their average was considered as the observed orientation. Supplementary 
Fig. S4(a) shows the orientations of 121 observed bedding planes. A Pearson’s chi-square (χ 2) test was used to 

Volumetric 
intensity (m-3)

Simulated zone Applied zone Scanline

Length (m) Width (m) Height (m) Length (m) Width (m) Height (m) Trend (°) Plunge (°)

7 30 30 30 20 20 20 0 45

Group True dip direction(°) True dip angle (°) Radius (m) Sample size

53 U (150, 210) U (15, 75) Exp (1.5) 200

54 U (150, 210) U (15, 75) Exp (1.5) 300

55 U (150, 210) U (15, 75) Exp (1.5) 500

56 U (150, 210) U (15, 75) Exp (1.5) 1000

57 U (140, 220) U (5, 85) Exp (1.5) 50

58 U (140, 220) U (5, 85) Exp (1.5) 100

59 U (140, 220) U (5, 85) Exp (1.5) 150

60 U (140, 220) U (5, 85) Exp (1.5) 200

61 U (140, 220) U (5, 85) Exp (1.5) 300

62 U (140, 220) U (5, 85) Exp (1.5) 500

63 U (140, 220) U (5, 85) Exp (1.5) 1000

64 Exp (180) Exp (45) Exp (2.5) 50

65 Exp (180) Exp (45) Exp (2.5) 100

66 Exp (180) Exp (45) Exp (2.5) 150

67 Exp (180) Exp (45) Exp (2.5) 200

68 Exp (180) Exp (45) Exp (2.5) 300

69 Exp (180) Exp (45) Exp (2.5) 500

70 Exp (180) Exp (45) Exp (2.5) 1000

71 Exp (185) Exp (50) Exp (2.5) 50

72 Exp (185) Exp (50) Exp (2.5) 100

73 Exp (185) Exp (50) Exp (2.5) 150

74 Exp (185) Exp (50) Exp (2.5) 200

75 Exp (185) Exp (50) Exp (2.5) 300

76 Exp (185) Exp (50) Exp (2.5) 500

77 Exp (185) Exp (50) Exp (2.5) 1000

78 Exp (190) Exp (55) Exp (2.5) 50

79 Exp (190) Exp (55) Exp (2.5) 100

80 Exp (190) Exp (55) Exp (2.5) 150

81 Exp (190) Exp (55) Exp (2.5) 200

82 Exp (190) Exp (55) Exp (2.5) 300

83 Exp (190) Exp (55) Exp (2.5) 500

84 Exp (190) Exp (55) Exp (2.5) 1000

Table 1.  Parameters for discontinuity modelling. Some of technical terms and notations used in this table are 
defined as follows: volumetric intensity =  number of discontinuity centres per rock volume; N(i, j2) =  normal 
distribution, where i represents the mean and j the standard derivation; Exp(k) =  exponential distribution, 
where k represents the mean; lnN(l, m2) =  lognormal distribution, where l represents the location parameter 
and m the scale parameter; and U(n, p) =  uniform distribution, where n represents the lower limit and p the 
upper limit.
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calculate the independence of the dip direction and dip angle. The two-tailed significance obtained from this 
test was 0.86, above the confidence level of 0.05, indicating that the observed orientations met the independence 
hypothesis of the proposed method, meaning it can be used for these observed orientations.

Firstly, the sampling bias of the observed orientations was corrected using both the Fouché method and the 
proposed method. The result corrected by the Fouché method is shown in Supplementary Fig. S4(b); the result 
corrected using the proposed method indicated that the dip direction follows the normal distribution N(140.9, 
5.02) and the dip angle, the normal distribution N(77.4, 4.02). Moreover, other essential parameters for modelling, 
specifically the volumetric intensity, the diameter and the aperture, were calculated, with the results being listed 
in Table 3.

Secondly, using these corrected geometric parameters, two three-dimensional models of the rock were con-
structed (see Supplementary Fig. S5). A scanline with the same orientation as the field scanline was applied to 
the model outcrop, and the discontinuities intersected by this scanline were then “measured”. Here, the sample 
size of these “measured” discontinuities was set equal to that of the observed discontinuities in the field. To 

Group Dip direction (°) Dip angle (°) Group Dip direction (°) Dip angle (°)

1 N (178.3, 8.02) N (46.1, 8.12) 43 U (160.3, 200.2) U (25.0, 64.9)

2 N (178.8, 8.52) N (46.5, 8.92) 44 U (160.4, 199.9) U (25.0, 64.9)

3 N (179.3, 8.52) N (45.6, 9.42) 45 U (160.3, 199.9) U (25.0, 64.9)

4 N (179.0, 9.22) N (45.3, 9.02) 46 U (160.3, 199.9) U (25.0, 64.9)

5 N (178.9, 9.42) N (45.5, 9.42) 47 U (160.1, 199.9) U (25.0, 65.0)

6 N (179.5, 10.12) N (45.0, 10.12) 48 U (160.1, 200.1) U (25.0, 65.0)

7 N (179.7, 10.22) N (45.0, 10.12) 49 U (160.0, 200.1) U (25.0, 65.0)

8 N (176.9, 13.72) N (46.2, 11.62) 50 U (154.5, 217.6) U (13.0, 72.1)

9 N (177.6, 14.92) N (45.9, 11.52) 51 U (153.5, 212.9) U (11.4, 71.7)

10 N (178.2, 15.12) N (45.8, 12.72) 52 U (151.7, 211.8) U (12.9, 72.0)

11 N (178.6, 15.32) N (45.2, 13.92) 53 U (152.2, 211.4) U (12.5, 71.2)

12 N (178.9, 15.32) N (44.8, 14.12) 54 U (150.7, 209.9) U (13.6, 73.2)

13 N (178.8, 14.72) N (45.2, 14.32) 55 U (150.8, 209.5) U (14.2, 74.1)

14 N (179.4, 15.32) N (45.4, 14.72) 56 U (150.3, 210.2) U (15.2, 73.7)

15 N (185.2, 16.62) N (43.5, 15.72) 57 U (145.9, 215.2) U (2.0, 82.0)

16 N (184.4, 18.92) N (40.2, 18.22) 58 U (141.3, 218.9) U (1.4, 78.5)

17 N (184.0, 19.92) N (43.2, 19.82) 59 U (142.4, 219.5) U (2.7, 80.4)

18 N (182.5, 19.22) N (43.2, 18.92) 60 U (142.4, 213.6) U (3.0, 80.6)

19 N (181.9, 18.62) N (44.5, 18.02) 61 U (141.3, 219.0) U (3.8, 81.6)

20 N (180.9, 18.92) N (43.1, 18.42) 62 U (142.8, 214.0) U (5.7, 82.7)

21 N (180.2, 19.82) N (44.5, 18.92) 63 U (140.1, 218.8) U (6.2, 84.1)

22 lnN (5.203, 0.0382) lnN (3.819, 0.1662) 64 Exp (355.5) Exp (87.4)

23 lnN (5.198, 0.0502) lnN (3.803, 0.1972) 65 Exp (311.6) Exp (83.1)

24 lnN (5.200, 0.0552) lnN (3.795, 0.2222) 66 Exp (107.3) Exp (79.1)

25 lnN (5.199, 0.0562) lnN (3.797, 0.2082) 67 Exp (133.1) Exp (72.6)

26 lnN (5.198, 0.0552) lnN (3.796, 0.2112) 68 Exp (102.6) Exp (82.5)

27 lnN (5.196, 0.0572) lnN (3.796, 0.2202) 69 Exp (104.5) Exp (81.7)

28 lnN (5.194, 0.0562) lnN (3.796, 0.2162) 70 Exp (109.0) Exp (82.2)

29 lnN (5.210, 0.0552) lnN (3.869, 0.2422) 71 Exp (81.7) Exp (71.7)

30 lnN (5.199, 0.0702) lnN (3.831, 0.2562) 72 Exp (104.6) Exp (85.8)

31 lnN (5.194, 0.0772) lnN (3.752, 0.3102) 73 Exp (118.4) Exp (62.9)

32 lnN (5.199, 0.0752) lnN (3.764, 0.2952) 74 Exp (110.9) Exp (61.9)

33 lnN (5.197, 0.0772) lnN (3.752, 0.3062) 75 Exp (102.5) Exp (70.6)

34 lnN (5.194, 0.0772) lnN (3.757, 0.2962) 76 Exp (99.9) Exp (73.2)

35 lnN (5.194, 0.0782) lnN (3.755, 0.3022) 77 Exp (99.1) Exp (76.5)

36 lnN (5.210, 0.0762) lnN (3.845, 0.3492) 78 Exp (116.3) Exp (69.5)

37 lnN (5.197, 0.0882) lnN (3.801, 0.3762) 79 Exp (141.4) Exp (68.1)

38 lnN (5.196, 0.1032) lnN (3.757, 0.3942) 80 Exp (114.6) Exp (66.7)

39 lnN (5.192, 0.1012) lnN (3.768, 0.3882) 81 Exp (107.0) Exp (72.9)

40 lnN (5.192, 0.0992) lnN (3.755, 0.3982) 82 Exp (117.6) Exp (71.7)

41 lnN (5.193, 0.0982) lnN (3.759, 0.3932) 83 Exp (117.9) Exp (76.9)

42 lnN (5.191, 0.1022) lnN (3.763, 0.3912) 84 Exp (118.7) Exp (77.4)

Table 2.  Probability distribution of orientations corrected using the proposed method.
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distinguish them from the discontinuities observed, these “measured” discontinuities generated artificially were 
named “modelled” discontinuities. Supplementary Fig. S6 shows these “modelled” discontinuity orientations.

Finally, the distribution difference between the observed and the “modelled” orientations was tested using 
the two-sample Kolmogorov-Smirnov test, a nonparametric hypothesis test that evaluates the difference between 
the cumulative distribution functions of two sample data vectors76–80. This test returns a two-tailed significance 
characterizing the difference. The significance ranges from 0 to 1, with the higher the significance, the lower the 
difference. The result is shown in the text of the Results Section.

Case II. This case involves the Rumei Dam slope on the Lancang River, located in Mankang, Tibet, China 
(29° 34′  30.0″  N, 98° 20′  49.2″  E). The study area is primarily composed of two exposed strata: one is a light-gray, 
ash-black or dark-green dacite originating from the Zhuka Formation, Triassic, and the other is a fuchsia or 
lime-green sandstone from the Huakai Formation, Middle Jurassic. Three primary sets of discontinuities (bed-
ding, Joint 1 and Joint 2) can be found in the rockmass. We conducted a geometrical measurement of the discon-
tinuity orientation, spacing, aperture and trace length along a scanline with a trend/plunge of 243/4° on a tunnel 
wall. This paper considers only Joint 1; the orientations observed with a compass are shown in Supplementary 
Fig. S7(a). To check the independence of the dip direction and dip angle, a Pearson’s chi-square test was executed 
on the orientation sample, resulting in a significance of 0.56, above the confidence level of 0.05, suggesting that 
the observed orientation sample satisfies the independence hypothesis of the proposed method, meaning it can 
be applied to this sample.

Similar to the steps used in Case I, the orientations corrected using the Fouché method (see, for example, 
Supplementary Fig. S7(b) showing the corrected result from the sample of the first 1,000 observed orientations) 
and that using the proposed method (in terms of probability functions; see Table 4) were obtained, as well as the 
“modelled” orientations derived from the corrected results of these two methods (see Supplementary Fig. S7(c) 
and (d)). Then, the significances of 7 sample sizes (the first 50, 100, 150, 200, 300, 500 and 1,000 of 1,016 observed 
orientations) were tested, with the results being shown in Fig. 2.

Figure 4. Field outcrop, scanline and discontinuities (Case I). The outcrop is the surface of a rock cut slope 
located near Yingxiu town in Wenchuan, Sichuan Province, China, about 1,800 m east of the epicentre of the 
2008 Wenchuan earthquake and consists of Upper Triassic lithic arkose of the Xujiahe Formation. Two primary 
sets of discontinuities, i.e. bedding plane and joint, have developed in the rock.

Volumetric 
intensity (m−3) Diameter (m) Aperture (mm)

Simulated zone

Length (m) Width (m) Height (m)

4 Exp(0.5) Exp(1.2) 10 10 10

Table 3.  Volumetric intensity, diameter, aperture and size of simulated zone.

Sample size Dip direction (°) Dip angle (°)

50 N (276.4, 18.22) N (74.9, 16.92)

100 N (277.0, 17.52) N (75.6, 16.02)

150 N (279.0, 17.52) N (76.0, 15.62)

200 N (278.5, 17.82) N (76.9, 15.22)

300 N (277.3, 18.02) N (76.8, 15.22)

500 N (277.3, 17.82) N (76.7, 15.32)

1,000 N (277.6, 18.02) N (76.0, 15.32)

Table 4.  Probability distribution of orientations corrected using the proposed method (Case II).
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