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SUMMARY

This protocol describes the application of a mechanistic mathematical model of
immune checkpoint inhibitor (ICI) immunotherapy to patient tumor imaging
data for predicting solid tumor response and patient survival under ICI interven-
tion. We describe steps for data collection and processing, data pipelines, and
approaches to increase precision. The protocol is highly predictive as early as
the first restaging after treatment start and can be usedwith standard-of-care im-
aging measures.
For complete details on the use and execution of this protocol, please refer to
Butner et al. (2020)1 and Butner et al. (2021).2

BEFORE YOU BEGIN

Immune checkpoint inhibitor (ICI)-based immunotherapies have made significant strides in

improving cancer therapeutic outcomes. Despite the success of ICIs in several solid tumors (most

notably melanoma, lung and colorectal cancers), the majority of patients fail to respond to ICI ther-

apy,3 and reliable methods of identifying patients who will respond early in the course of treatment

remain elusive. Mathematical modeling of immunotherapy is yielding valuable insights into dose-

response relationships and associated immunotherapy response outcomes,4,5 which may help over-

come this limitation. However, models that are fully structurally identifiable (e.g., not over-fitted),

practically identifiable (e.g., all parameters may be reliably measured),6 and immediately usable un-

der current clinical standards have remained elusive. Here, we present a detailed guide to using a

mechanistic model of ICI immunotherapy that has been demonstrated to reliably predict patient

response and survival under ICI therapy, and that can be used with only already-available, non-inva-

sively collected standard-of-care data.

The modeling effort was built upon our long-standing track record of developing translational bio-

physical models of drug transport for predicting cancer treatment outcome.7–16 In essence, the

model describes the immunotherapy treatment system using differential equations based on the
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underlying biological and physical mechanisms in the cancer immune response, resulting in greater

predictive capabilities than traditional biomarker analysis, and yielding robust results founded upon

mechanistic principles. The final model form describes tumor burden (r) over time as:

dr
�
dt = rða0 � m + ^mÞ+ r2ð�^mÞ; (Equation 1)

Where a0 is the intrinsic (baseline) tumor growth rate without treatment intervention, and the key

model parameters represent tumor kill rate (m) by immunotherapy and patient anti-tumor immune

state (L), which we have defined as the coupling of immune cell activity and the tumor cell kill

(i.e., tumor immunogenicity) scaled by the ratio of tumor cells to intratumoral immune cells at the

start of treatment (full derivation may be found in Butner et al.1,2).

Integrating Equation 1 leads to the time-dependent form of the model, which will be used for model

solution in this tutorial, such that:

rðtÞ =
rN

1 � ð1 � rNÞe�A,t
; (Equation 2)

where

A = a0 � m+m$^ (Equation 3)

and the long-term solution for tumor burden when t/N is:

rN =
a0 � m

m$^ + 1: (Equation 4)

In this protocol, we will calculate two growth rates (a) corresponding to growth rates directly before

and after start of treatment (t0 = baseline, when t = 0 at start of treatment); these are short-term

growth rates. Tumor growth rate before treatment may be calculated as:

a0 =
ln
�
r0=r� 1

�
t0 � t� 1

; (Equation 5)

where t� 1 refers to the time of measurement before start of treatment (the specific time will likely

vary between patients). Likewise, tumor growth rate directly after treatment may be calculated as:

a1 =
ln
�
r1=r0

�
t1 � t0

; (Equation 6)

where t1 refers to the time of the first follow-up tumor burden measurement after start of therapy.

Institutional permissions (if applicable)

Approval from the Institutional Review Board at The University of TexasMDAnderson Cancer Center

was acquired prior to aggregation and analysis of all patient data.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Renal cell carcinoma measured response (Figure A1 in Motzer et al.17) Motzer et al.17 https://doi.org/10.1200/jco.2014.59.0703

Non-small-cell lung cancer measured response (Figure S6 in Borghaei
et al.18)

Borghaei et al.18 https://doi.org/10.1056/nejmoa1507643

Melanoma measured response (Figure 1A in Topalian et al.19) Topalian et al.19 https://doi.org/10.1056/nejmoa1200690

Urothelial carcinoma (Figure 2C in Powles et al.20) Powles et al.20 https://doi.org/10.1038/nature13904

Software and algorithms

Mathematica 13.0.0 Wolfram Research21 https://www.wolfram.com/mathematica/

WebPlotDigitizer Rohatgi22 https://automeris.io/WebPlotDigitizer

RayStation 11B RaySearch Laboratories23 https://www.raysearchlabs.com/raystation/
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STEP-BY-STEP METHOD DETAILS

Data collection

Timing: days to months

The model predicts patient response and/or survival using time-course tumor burden measure-

ments. It may be used with publicly available published data, or with clinically collected patient

data for research purposes. Note that although model predictions have been shown to correlate

with clinical outcomes, this research remains ongoing, and these predictions should not replace

expert clinical opinions. In all cases, the minimum measurements needed are 1) at baseline (start

of treatment) and 2) at first restaging (follow-up). In order to obtain unique solutions for all model

parameters, 3) one pre-baseline (usually at time of on-study) tumor burden measurement is also

necessary for calculating a0. We have provided a sample data set from Borghaei et al. and Topalian

et al.18,19 in Data S1. Sample data.

1. Collecting literature-reported tumor burden data.

a. Extract the spider plot of normalized measured tumor burden over time and save locally as an

image file.

Note: Sources of spider plots used in published studies, as well as the specific figure we have

collected data from in each of these references, are provided in the key resources table. A spi-

der plot graphs the normalized (e.g., percent) change from baseline of the total indexed tu-

mor burden over time for each patient in a study.

b. Load spider plot into WebPlotDigitizer.

i. Once spider plot is loaded, calibrate x-axis and y-axis scales as instructed.

ii. In manual extraction mode, place the cursor on each measured point on one curve on the

spider plot (including the origin) and place a mark using the ‘A’ key.

iii. Once all points aremarked, click ‘ViewData’ to obtain point values. Thesemay be exported

as delimited text and imported or copied and pasted directly into spreadsheet software.

iv. Repeat for each curve on the spider plot, and then assign each patient a unique identifier

number.

2. Collecting in-house clinical patient data.

Note: we have included details specific to our study on melanoma brain metastases treated

with Ipilimumab and Nivolumab with or without concurrent stereotactic radiosurgery and

measured using magnetic resonance imaging (MRI) from Butner et al.2 as an example case

study here. Although the details of your study may vary (for example, different cancer types,

drugs used, or imaging modalities), the principles used here for patient eligibility and lesion

selection serve as useful guidelines for model application to patient data from alternate dis-

ease and ICI drug combinations.

a. Patient selection.

i. Retrospectively identify eligible patients who are 18 years of age or older, diagnosed with

brain metastases from a histologically confirmed melanoma, and have been treated with a

combination of the immune check point inhibitor (ICI) immunotherapies ipilimumab and ni-

volumab as an initial treatment intervention for brain metastasis, with or without concurrent

stereotactic radiosurgery (SRS).

CRITICAL: Enrolled patients must have at least one baseline pre-treatment (acquired

within 4 weeks of starting the treatment of interest) and two follow-up post-treatment

but pre-operative 3-dimensional (3D) contrast-enhanced T1-weighted MRI scans.
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Note: It is expected that times between scans (both pre-treatment vs. baseline and baseline

vs. follow-ups) will vary among scans and among patients. In the study presented in Butner

et al.,2 times between baseline and first restaging ranged from 5–230 days. Because the

method presented herein quantifies tumor growth as a rate instead of a scalar, it is uniquely

robust to such variation.

b. Imaging data collection and transfer.

i. Collect all available in-house images, in our case from The University of Texas MD

Anderson Cancer Center, as well as outside center acquired images if they are of adequate

quality.

ii. Export post-contrast enhanced T1-weighted MRI from the picture archiving and communi-

cation system (PACS) into a network drive in Digital Imaging and Communications in Med-

icine (DICOM) format either using manual or automatic batch export.

iii. Import the serial DICOM MRI images for each patient into image viewing and annotation

software.

Note:We used Raystation 11B in our study, but users will need to choose the one most appli-

cable from those available at their institution. Using a consistent platform along with stan-

dard operating procedure will ensure more consistent annotation generation.

c. Image registration.

i. Apply image registration of the serial images for establishing brain location links to ensure

accurate identification of the region of interest on the follow-up imaging timepoints.

d. Lesion segmentation.

i. Segment and annotate each visible enhancing brain lesion separately. Use semiautomated

or automated approaches, if available.

Note: Semiautomated approaches are commonly based on intensity values (e.g., a region

growing tool). If using semiautomated methods, performmanual adjustments using the brush

to ensure accurate delineation of each lesion.

CRITICAL: Use consistent annotation for each lesion or region of interest for serial imag-

ing. For example, label a melanoma brain metastasis region of interest as ‘‘lesion_1’’ and

use consistent labeling as you segment this same lesion on follow-up imaging time points.

Another separate lesion can be labeled as ‘‘lesion_2’’, ‘‘lesion_3’’, etc.

e. Volumetric data extraction.

i. Extract and record the volume (e.g., in cm3) of each segmented lesion from the serial imag-

ing timepoints into a separate data collection file (e.g., Excel).

Note: This can be done manually or automated by using a script. Although the details of your

script will vary based on the imaging viewing and annotation software used, we used Raysta-

tion imaging and segmentation/annotation data export tools including Region of Interest

(ROI) name, ROI volume to extract lesion volumes from images, and we have found that plenti-

ful open-source resources to export extracted data from Raystation to Excel are available; for

example, the Python script export statistics to excel.py for Raystation (our software of choice)

may be found on GitHub).

f. Clinical data collection.

i. Collect and record clinical data of interest for each patient, including treatment agents,

treatment start and end dates, stereotactic radiosurgery (SRS) details for each lesion, SRS

dates, etc.
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CRITICAL: The model requires at least 2 tumor burden measurements at or after start of

treatment; however, full statistics on goodness-of-fit can only be obtained if 3 or more

measurements are collected. To obtain unique values for all model parameters, one pre-

treatment measurement (this can be estimated, see data processing) is also required.

Note: Often, time of baseline imaging may deviate a few days from actual start of treatment.

This data can safely be used as an accurate measure of baseline volume without modification.

Code and directory setup

Timing: hours

3. Obtain and install software.

a. Install Mathematica21 according to manufacturer guidelines for your operating system; see

key resources table.

i. Alternatively, other software with differential equation fitting capability may be used (e.g.,

R, Matlab). However, detailed instructions, guidelines, and hints herein are specific for

Mathematica.

b. Download and install WebPlotDigitizer22; link in key resources table.

Optional: The web-based version of WebPlotDigitizer may be used in place of installation on

the local host.

c. A software for storing tumor volume measurements is needed. We recommend Microsoft

Excel, as will be presented in this manuscript.

Note:Mathematica is also able to import from alternative formats (i.e., Libre Office Calc), but

importing data into Mathematica from these may be less straightforward. Delimited text may

also be used.

4. Directory setup.

a. We recommend placing the spreadsheet andMathematica script in the same directory to facil-

itate data import. Then, instruct Mathematica to look for the data file in its local directory with

the following command at the top of the Mathematica notebook:

Data processing

Timing: hours to days

Depending on data source used, post-processing may be necessary before model analysis. If using

clinical data, missing data due to lesions not being visible on some scans must be addressed first,

and lesions receiving non-ICI ancillary treatment (such as radiation therapy) must be excluded.

5. Post-processing clinical data.

a. If lesions are not visible on one or more scans, but are confirmed to be still be present on a

subsequent scan, then they can reasonably be assumed to be present at the ‘not visible’

time. This can be handled by either estimating the missing data via interpolation or excluding

the data for all leasions at that time point.

>SetDirectory[NotebookDirectory[]];
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i. If only a small number of measurement times are available, then the number of unique time

measurements should be maximized by estimating lesion value at the missing time; stan-

dard interpolation or extrapolation methods may be used.

Note: In order to reduce error introduced in the estimation process, we recommend linear

estimation unless your data clearly demonstrates non-linear behavior.

CRITICAL: In order to reduce estimation error, interpolation should be based on calcu-

lated lesion volumes, not by interpolating lesion diameters if using RECIST-based mea-

sures. Lesion volume for surrounding times should be calculated as in Coding a script to

solve the model: 6.d, missing volume should be interpolated from these, and then the

mean diameter for missing lesion can be back-calculated assuming a spherical lesion. If

lesion volumes were directly measured via contouring, then interpolation should be

done directly between the measured volumes.

ii. Any lesions that received non-ICI ancillary, targeted treatment, such as radiation therapy or

surgical resection, should not be included in this analysis at any time point.

CRITICAL: Inclusion of any lesions receiving targeted ancillary therapy may introduce dra-

matic shifts in tumor burden that do not reflect the effects of ICI, and model predictions

may not be reliable in this case. Care must be taken to ensure these lesions are excluded.

b. Lesions that received ancillary treatment, such as targeted radiation therapy or surgery should

be excluded, as these do not represent the effects of ICI.

Coding a script to solve the model

Timing: hours to days

The time-dependent model form presented in Equation 2 is fit to time-course data collected as

described above via nonlinear regression fitting methods. In this two-step process, the pre-treat-

ment growth kinetic is first obtained from an exponential fit to pre-treatment data, and then the

full model is fit to lesion volume data at baseline and at least 1 post-baseline volume. The protocol

described herein is based on model coding in the Mathematica language, and a sample script con-

taining the code described herein is provided in Data S1. Example script; however, other languages

(e.g., R, Matlab) may also be used.

6. Importing and processing data for model analysis.

a. First, specify the worksheet and tab where data will be imported from. If the workbook is in

the same directory as the Mathematica notebook and working directory has been set as

above, this is done as follows:

If data is in a different directory, then the file path must also be specified.

b. Once data is imported, select the data for only one patient, based on the assigned unique

patient ID value (see data collection) in the appropriate column in the spreadsheet (A=1,

B=2, etc.). This is easily done with the Cases[] function.

>data=Table[Import["ExcelFile.xlsx",{"Sheets","Sheet1"}]]

>singlePatientData=

Cases[data,x_/;(x[[IDNumberColumn]]==patientID)];
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Note: Mathematica identifies columns numerically instead of alphabetically, such that A=1,

B=2, etc. All column numbers in this section are converted accordingly.

c. Identify unique lesion numbers and time points.

d. If lesion axes weremeasured (i.e., RECIST; see data collection), then thesemust be converted

into an estimated volume, one for each indexed lesion. If lesion volume was measured by

contouring, skip to the next step.

i. Long axis (RECIST) and approximately perpendicular short axis should be averaged, and

lesion volume may be estimated as a 3D sphere.

Volume = 4 =

3p

�
1 =

2

�
ðlong axis+ short axisÞ =

2

��3

e. Sum lesion volumes at each time point to get a total tumor burden at each time point, and

append each volume to a list. In this case, we might name the list allPatientVolumes.

f. Data must be normalized by the volume at time t = 0, so that the volume at t = 0 is equal to 1.

If your data has one pre-treatment measurement, then this would be at index [[2]] on the

summed volume list.

Note: Baseline (start of treatment) has been defined at t = 0. This means that if pre-treatment

lesion measurements are available, they will be at negative times relative to baseline.

Note:Mathematica starts indexing at [1]; if you are using a language that starts indexing at [0]

please adjust the above accordingly.

g. MapThread the normalized volumes together with the time coordinates for model analysis in

order to obtain a single list of linked {x,y} coordinates.

Note: this step may not be necessary if using another mathematical language (e.g., this data

format is generally not used for regression analysis in R or Matlab).

7. Solving the model.

>lesionNumbers=DeleteDuplicates[

singlePatientData[[All,lesionColumnNumber]]];

>uniqueTimes=DeleteDuplicates[

singlePatientData[[All,timeColumnNumber]]];

>AppendTo[allPatientVolumes,totaLesionVolume];

>normalizedVolumesSummedLesions=

allPatientVolumes⁄(allPatientVolumes[[2]]);

>normalizedDataPoints=MapThread[{#1,#2}&,

{uniqueTimes,normalizedVolumesSummedLesions}];
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a. If pre-treatment volume data is available, solve for the pre-treatment growth kinetic (a0).

Alternatively, if pre-treatment tumor burden is unknown, the pre-treatment growth kinetic

(a0) should be estimated by calculating the growth kinetic for the fastest growing tumor bur-

den(s) from a subset of patients within the population (we used the top 10% fastest growing

in Butner et al.2) shortly after start of treatment as described in 7.b, using Equation 6.

Note: Details on this approach can be found in Butner et al.2,24

i. The model assumes exponential pre-treatment growth between lesion measurement

directly preceding baseline and at baseline (see Equation 5 for details). After extracting

these two points, exact solution for the exponential growth rate is accomplished by taking

the log of the y-coordinate and performing linear regression.

Note: This approach only uses one pre-treatment volume measurement, even if others are

available. In this case, earlier times should be removed from the data. We recommend at least

2 weeks’ time between pre-treatment measurement and baseline measurement.

Note: This same method is used to calculate the growth kinetic after start of treatment (a1).

ii. Extract the numeric value of a0 from the exact solution.

b. Extracting the first restaging growth kinetic (a1).

i. Repeat the steps described in step 7.a., but using the baseline (t = 0) and first restaging/

follow-up (after start of treatment: t > 0) points (see Equation 6).

Note: In the case of unavailable pre-treatment measurements, a0 should be estimated

from the a1 of the fastest growing tumor burdens within the patient population (these

are assumed to have the least response to therapy, and therefore to give a reasonable esti-

mate of untreated growth rate). We used the average of the top 10% fastest growing in Butner

et al.2

c. Fitting the model to data.

i. In order to obtain an exact model solution, the time-dependent model form (see Equa-

tion 2) is fit numerically to all tumor burden time course data with only tR 0 (dataPositive)

using the function NonlinearModelFit.

>dataToComputeAlpha=

normalizedDataPoints[[{1,2},{1,2}];

>logAlphaData=

{#[[1]],Log[#[[2]]]}&/@dataToComputeAlpha;

>alphaMinusFit=

FindFit[logAlphaData,cx+d,{c,d},x];

>alphaZero=FromDigits[{c}/.alphaExpFit];

>nlm=NonlinearModelFit[dataPositive,

{(rinf⁄((1-(1-rinf)*Exp[-A*t])))},{rinf,A},t]
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Note: This equation may be expanded such that nlm = f(a0, L, m). This should be avoided, as

doing so will introduce a region where the model is undefined (due to dividing by zero) and

may cause the algorithm to fail. rinf and A should also be constrained to be > 0.

Note: Once obtained, the solution should be plotted against the data to ensure goodness of

fit. If the solution is not satisfactory, it may be improved by further refining the numerical

method. Mathematica offers many ways to do this, we suggest a dual phase evolution-based

method we’ve found to reliably produce satisfactory results here.

Note: This method seeks to avoid local minima to find the global best fit. Suggestions to

further optimize this approach are provided in troubleshooting.

d. Obtaining exact model parameter solutions.

i. Extract numerical values for model parameters from the NonlinearModelFit solution, i.e.,

ii. If pre-treatment tumor burden was known, use these values and the value for a0 obtained

in 7.a to solve the system of equations in Equations 3 and 4; this is easily done with the

Solve[] function.

EXPECTED OUTCOMES

The model may be informed using non-invasively obtained tumor burden imaging data, either from

in-house generated patient data or from publicly-available literature or database sources, and the

model may be solved through numerical fitting to measured data. Once solutions are obtained, sta-

tistical analysis may be performed to find binary classifier threshold values for eachmodel parameter

to predict patient response, and patient survival if survival data is available.

Model parameters L and m have been shown to be associated with patient response to ICI therapy,

and parameter a1 is also shown to be predictive of patient survival (Figure 1). The exact numerical

cutoff for optimal response and survival prediction is likely disease and therapy specific; these

may be identified for applications of interest as described in quantification and statistical analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Timing: hours to days

Model users will likely want to identify parameter thresholds for binary classification of patient

response (responder: tumor burden is reduced vs. non-responder: tumor burden increases, at

time of last available follow-up) or survival after ICI therapy. While determination of this threshold

for response is always possible with this approach (if it exists within the population being studied),

the ability to predict patient survival is inherently dependent on the availability of survival data (e.g.,

Method/{NMinimize,Method/

{"DifferentialEvolution","ScalingFactor"/0.7,

"CrossProbability"/0.3,

"PostProcess"/{FindMinimum,AccuracyGoal/0,

PrecisionGoal/20,

Method/"LevenbergMarquardt"}}}

>rN=rinf/.nlmRhoInf["BestFitParameters"];
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time to death or censor), which can usually be obtained when using in-house data but cannot be

gleaned from published spider-plots.

In order to make model-based response predictions, specific model parameter ranges for the drug-

disease combination being studied should be established. Reliable ranges for multiple drug-disease

combinations have already been reported1,2,24; however, values may vary slightly depending on dis-

ease and ICI,2 and this should still be performed for further validation. Parameter ranges that predict

for responders vs. non-responders may be separated by a binary classifier, which represents a spe-

cific value for each parameter with highest likelihood for accurate separation of response categories.

CRITICAL: Care must be taken to select a binary classifier that separates the data in a

reasonable fashion. Values on extreme ends of the data should be avoided in most cases.

This is usually a function of the desired predictive focus. For example, maximizing sensi-

tivity may lead to unacceptably low specificity, and vice versa. We recommend that users

start by maximizing the accuracy statistic to establish a reasonable estimation of where

the binary classifier should be found.

1. Identifying binary classifier values for patient response prediction.

Figure 1. Examples of model analysis and results

(A) Model fits to normalized time-course tumor burden data.

(B) Model-estimated strength of immune response (L3m) is expected to be significantly different between patients by

measured tumor response at last follow-up (responders: tumor burden reduced vs. baseline, non-responders: tumor

burden increased vs baseline). In the example shown, P < 0.001 by Wilcoxon rank-sum test, and error bars show mean

and standard deviation (red and black, respectively).

(C) Model-estimated strength of immune response is also expected to correlate with model-predicted long-term

tumor burden (rNpredicted, see Equation 4).

(D) Model parameter a1 (model-derived growth rate at first restaging; Equation 6) reliably predicts patient survival no

later than first restaging. P values (Mantel-Cox) for separation shown in inset. Reproduced with permission from

Butner et al.1,2
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a. Determine if there is a significant difference between model parameter values for different

response categories.

i. Define desired response categories. Examples could be tumor volume increases or de-

creases relative to baseline (at time of first ICI treatment) or sorting based on standard

RECIST criteria (e.g., stable or progressive disease vs. partial or complete response).

ii. Sort model parameter values based on the chosen response criteria, where response cate-

gory is determined based on measured tumor burden at last restaging.

iii. Perform appropriate statistical test for significant difference between values in two cate-

gories.

Note: In our observations, data is usually nonparametric (not normally distributed). Standard

tests for normalcy include skewness and kurtosis or Shapiro-Wilk tests; these may be accom-

plished using your statistical analysis software of choice. Based on the results, significant dif-

ference may be determined based on parametric tests (e.g., Student’s t test) or non-para-

metric (e.g., Wilcoxon rank-sum, Mann-Whitney, etc.). If a significant difference is found

between categories (i.e., p < 0.05 or other desired significance level) proceed to step b

next; otherwise, this parameter is not supported as a binary classifier in your data set.

b. If significant difference is found in step 1.a.iii, the binary classifier threshold for response

prediction may be optimized by generating a Receiver Operator Classifier (ROC) curve,

where response is sorted based on a proposed binary classifier threshold vs. measured response.

Note: The optimal binary classifier threshold is identified by performing a parameter sweep of

the binary classifier value in order to identify the value where a desired ROC statistic (e.g.,

sensitivity, specificity, accuracy, F-score, Youden’s J statistic, etc.) is maximized; the statistic

used should be chosen based on your desired outcome or prediction need.

i. Sensitivity quantifies the percentage of patients predicted to be non-responders by the

first restaging growth kinetic (a1).

ii. Specificity quantifies the percentage of patients predicted to be non-responders by model

parameters m and L.

iii. If a balanced optimization between accuracy in predicting responders and non-responders

is desired, accuracy or Youden’s J statistic may be used.

Note: We recommend users start with maximizing the accuracy statistic first; see Critical,

above.

2. Identifying binary classifier threshold for patient survival prediction.

a. We recommend predicting survival to median survival time in your patient cohort; that is, this

survival time will determine ‘good’ vs. ‘bad’ survival outcomes. Survival prediction will be

based on model-derived growth kinetic after start of treatment (a1), and accuracy statistic

should be optimized as described.

b. Calculate the a1 parameter for each patient as specified coding a script to solve the model:

7.a. However, in this case, the growth rate is estimated between times at baseline (start of

treatment) and time of first restaging after start of treatment. Assuming data is structured

as in the example so far, in Mathematica this is done as:

>dataToComputeAlphaOne=normalizedDataPoints[[{2,3}]];

>logAlphaOneData=

{#[[1]],Log[#[[2]]]}&/@dataToComputeAlphaOne;

>alphaOneFit=FindFit[logAlphaOneData,cx+d,{c,d},x];
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c. Determine median survival time in your population. This may be done by generating a single

Kaplan-Meier curve for the full data set in your statistics package of choice and extracting the

time when 50% of the population is surviving or censored.

Note: We recommend generating a Kaplan-Meier curve instead of using methods like

simply calculating the median (e.g., the MEDIAN() function in Microsoft Excel) because

the Kaplan-Meier method will handle censured data correctly to determine true 50% survival

time.

d. Categorize data based on if the patient survived to the calculated median survival time.

Sort patients known to have survived to times later than the 50% survival time into the

positive category and patients who died or were censured before this time into the negative

category.

e. Generate an ROC curve based on positive vs. negative categories identified.

f. Perform another parameter sweep to determine optimal binary classifier threshold for predict-

ing survival with a1 using the same procedure detailed in step 1.b.

g. To assess the performance of a1 for predicting patient survival, divide patients based on the

identified binary classifier threshold and generate Kaplan-Meier curves for both in your statis-

tical analysis software of choice and assess statistics for separation between groups. We

recommend using the standard threshold of p-value < 0.05.

LIMITATIONS

As previously mentioned, this procedure is dependent on data availability. If pre-treatment tumor

burden measurements are unavailable, then unique solutions for all model parameters cannot be

obtained; however, patient response prediction may still be possible through parameter com-

binations or estimation of pre-treatment growth rate. In the case of insufficient numbers of tumor

measurement times (restagings) or errors in lesion volumemeasurement, model accuracy will under-

standably be reduced; however, we have shown that Spearman coefficient between model fits with

full vs. truncated data are strong for all values of model parameter m, but less so for cases of extreme

truncation (baseline + 1 more measurement after start of treatment) of L, while variations of G 10%

of model parameter values were found to correspond to G 9.2% in tumor volumes, demonstrating

good stability when tumor volume measurement fluctuates.24 Additionally, the numeric values of

binary classifier thresholds identified with this procedure may be disease-drug specific, although

we have shown some crossover in binary classifier thresholds among different disease-ICI com-

binations.1 Finally, we note that response prediction has been shown to increase in accuracy with

additional, longer-time follow-up data.24 Although this is to be reasonably expected, early-time pre-

diction is still shown to be highly reliable, demonstrating accuracy as high as 88% at time of first

restaging.1

TROUBLESHOOTING

Problem 1

Variable treatment response measurement.

Despite efforts to standardize treatment response measurements (even for clinical trials), the widely

accepted standards (such as RECIST or RANO) are vulnerable to interpretation and categorization of

tumors based on threshold-based changes in 2-dimensional metrics. Tumor segmentation for volu-

metric measurement is subject to inter- and intra-individual variability.

Potential solution

Ensuring a clear standard, consistent operating procedure (SOP) for the tumor measurements

across all observers that also including cross-review of measurements for agreement to address

interobserver variability will improve consistency in tumor response measurement. Development,

ll
OPEN ACCESS

12 STAR Protocols 3, 101886, December 16, 2022

Protocol



validation, and implementation of automated tools can enhance the consistency and performance of

tumor measurements with human-in-the-loop operational procedures. Treatment response rubrics

should also be codified and standardized across all users when calibrating model parameters for

response prediction in order to maximize accuracy of identified binary classifier thresholds. Users

may define response categories based on existing standards, or using simplified response cate-

gories (e.g., responders vs. non-responders, as shown in Figure 1).

Problem 2

Variable imaging data acquisition.

If data is being acquired from patients who are receiving standard of care therapy, and even in clin-

ical trials, there may be time points when some patients did not have the imaging required to make

tumor measurements for the model. Additionally, even if imaging was acquired, the image acquisi-

tion protocol and scanner may not be consistent across all time points, leading to variability in tumor

detection and measurement. For example, variability in slice thickness can dramatically impact tu-

mor detection and volume measurement, particularly for small brain metastatic lesions.25

Potential solution

Patients without the required imaging time points or imaging sequences that follow pre-specified

imaging protocols to minimize inconsistency in tumors measurements may be excluded. Missed

or missing measurement times do not prevent model-based prediction, as long as these are not

the critical times of one pre-treatment scan, baseline (at start of treatment), and at least one

follow-up scan after treatment start. In the case of inconsistent imaging protocols across the patient

cohort, there are also ongoing efforts to harmonize imaging data acquired with differing imaging

protocols.26,27

Problem 3

Imaging-based tumor measurements are missing or not visible at one or more time points.

Commonly, a lesion may not be visible at one or more imaging time (restaging); this can cause an

artificially low tumor burden and associated overestimation of tumor kill.

Potential solution

The investigator must assess if they believe the tumor is still there but not visible or if the tumor has

shrunk belowminimum resolution size; this can be inferred by confirming the presence or absence of

the tumor at subsequent follow-ups. If the tumor is measured to be similar sizes before and after the

not visible time point, then it is likely present. In this case, the tumor volume can be estimated by

linear interpolation between surrounding measured volumes. Conversely, if the tumor is not seen

at later time points, or demonstrates a long delay before reemergence, then it is likely that the tumor

was reduced below the visible threshold, and its volume may be assumed to be zero at these times

(unless this causes the total tumor volume to be zero).

Problem 4

Variability in treatment course.

Many patients do not get the full immunotherapy treatment course for 4 cycles often due to side ef-

fects. Many patients receive SRS concurrently with immunotherapy which shows direct shrinkage and

possible effect on other distant lesions.

Potential solution

The investigator can account for variability in treatment durations within the model or set eligibility

criteria that sets a threshold for minimum treatment received. Developing a model that predicts
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treatment response at a lesion level rather than patient level would account for metastases treated

with local therapies such as SRS or surgical resection.

Problem 5

Model curve does not fit data well.

We have observed that local minima may cause problems with regression analysis of our model,

which is also usually the cause of poor fits.

Potential solution

There are many other methods to overcome local minima in regression analysis, which often func-

tion by introducing random noise into the algorithm to increase likelihood of finding the global

minimum. Well-suited algorithms include stochastic optimization approaches such as simulated

annealing or stochastic gradient methods.28,29 We have provided a dual phase evolution

method30 to do this in Mathematica in coding a script to solve the model: 7.c. If another program-

ming language is used, then investigators will need to select an available method for the platform

of choice.

Problem 6

Total measured tumor burden goes to zero.

Total tumor burden may be reported to be zero, too small to be seen, or not visible at one or more

time points. Attempting the numerical fit to this data will result in a ‘divide by zero’ error.

Potential solution

Remove all data points where total volume = zero and rerun the fitting script. Note that the model

does not predict recurrence that may happen after total tumor burden is reduced below observable

levels or eliminated.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Zhihui Wang (zwang@houstonmethodist.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

A detailed guideline regarding how to parameterize the model and then use it to make predictions

on immunotherapy outcome has been provided, so users should be able to implement the model in

their own computational language of choice. We have also provided a sample Mathematica script

(Data S1. Example script) and literature-obtained data for ICI treatment of non-small cell lung cancer

(NSCLC) andMelanoma as representative cases (Data S1. Sample data), so interested users may test

the model out of the box.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101886.
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