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Abstract

Previously, we reported that Ku70 binds and inhibits Bax activity in the cytosol, and that 

ubiquitin-dependent proteolysis of cytosolic Ku70 facilitates Bax-mediated apoptosis. We found 

that Hdm2 (Human Homologue of Murine Double Minute) has an ability to ubiquitinate Ku70 and 

that Hdm2 overexpression in cultured cells causes a decrease in Ku70 expression levels. An 

interaction between Ku70 and Hdm2 was demonstrated by means of immunoprecipitation, while 

none could be shown between Ku80 and Hdm2. Vascular endothelial growth factor (VEGF) is 

known to inhibit endothelial cell (EC) apoptosis through an Akt-mediated survival kinase signal, 

however, the mechanism underlying this inhibition of apoptosis has not been fully elucidated. We 

found that VEGF inhibited cytosolic Ku70 degradation induced by apoptotic stress. It is known 

that Akt-dependent phosphorylation of Hdm2 causes nuclear translocation of Hdm2 followed by 

Hdm2-mediated inactivation of p53. We found that VEGF stimulated nuclear translocation of 

Hdm2 in EC, and efficiently inhibited Ku70 degradation. We also found that constitutively active 

Akt, but not kinase-dead Akt, inhibited Ku70 degradation in the cytosol. Furthermore, Ku70 

knock-down diminished anti-apoptotic activity of Akt. Taken together, we propose that Hdm2 is a 
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Ku70 ubiquitin ligase and that Akt inhibits Bax-mediated apoptosis, at least in part, by 

maintaining Ku70 levels through the promotion of Hdm2 nuclear translocation.

Introduction

Apoptosis is the physiological process by which the body eliminates unwanted cells, for 

example, those which are overgrown, mutated, or infected by parasitic organisms 1,2. 

Irregularities in apoptosis control can lead to health problems such as cancer and 

degenerative diseases. Therefore, understanding the mechanism underlying apoptosis is 

essential for the development of therapies for treating such diseases. Bax is expressed in 

nearly all cell types, and it is an important mediator of the intrinsic cell death pathway 

activated by DNA damage as well as other cellular stresses3–5; however, its mechanism of 

activation remains enigmatic. Upon apoptotic stress (e.g. staurosporin, etoposide, or 

doxorubicin treatments), Bax undergoes a conformational change in the cytosol exposing its 

N-terminus to the molecular surface by an unknown mechanism 6,7. This change is known 

to promote mitochondrial translocation of Bax 8. At the outer membrane of mitochondria, 

Bax stimulates the release of apoptogenic factors [e.g. Cytochrome c (Cyto c), HtrA2/Omni, 

Endo G, and AIF] (Reviewed in 9). Previously, we found that Ku70 binds Bax in the cytosol 

inhibiting its translocation to mitochondria 10–12. This anti-Bax activity of Ku70 has 

already been confirmed by others 13–18. Ku70 is a ubiquitously expressed protein localized 

in both the nucleus and cytoplasm. In the nucleus, Ku70 is known to play an essential role in 

non-homologous end joining (NHEJ) repair of DNA double strand breaks 19–22. Our 

laboratory and others have shown that cytosolic Ku70 has an anti-Bax activity that is 

independent from its DNA repair activity in the nucleus 10,13–18,23,24.

Previously, we reported that apoptotic stresses induce Ku70 destabilization in the cytosol by 

stimulating Ku70 ubiquitination 25. Based on this finding, we hypothesize that such loss of 

Ku70 activity is a critical mechanism activating Bax. Ku70 acetylation is another 

mechanism that releases Bax from Ku70 14,24. Since acetylation does not cause degradation 

of the target protein as ubiquitination does, acetylation-mediated Ku70 inactivation may 

represent a reversible mechanism to increase cellular sensitivity to Bax on a temporary 

basis. In fact, SIRT1 and 3 have been reported to restore anti-Bax activity of Ku70 by 

deacetylating Ku70 11,14,18,26. Ubiquitin-dependent Ku70 proteolysis is irreversible. 

Therefore, Ku70 ubiquitination will generate cellular conditions that are more susceptible to 

Bax activation than those that would occur through Ku70 acetylation. To better understand 

the molecular mechanism of Bax activation, identification of enzyme(s) catalyzing Ku70 

ubiquitination is necessary.

Here we show that Ku70 is a substrate for Hdm2 and Mdm2 ubiquitin ligases. Hdm2 is a 

human homologue of mouse p53 ubiquitin ligase, Mdm2, and these enzymes are known to 

be negative regulators of p53 27,28. It has been shown that phosphorylation of Hdm2 by the 

survival kinase pathway (e.g. Akt) facilitates the nuclear localization of Hdm2 29–31. In this 

case, Hdm2 ubiquitinylates p53 in the nucleus, and inhibits p53-dependent cellular events 

such as cell cycle arrest and cell death 29–31. However, if the survival kinase signal is 

insufficient, Hdm2 remains unphosphorylated, stays in the cytosol32,33, leaving p53 free to 
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activate its target genes, including Bax34. The present study shows that cytosolic retention 

of Hdm2 enhances induction of apoptosis by decreasing cytosolic Ku70, and that Akt-

mediated nuclear translocation of Hdm2 protects cytosolic Ku70 from degradation. We 

propose that the balance of survival kinase signal and DNA-damage-response signal 

determines cellular fate with respect to living or dying, at least in part, through the 

regulation of the Ku70-Bax interaction which is under the control of Akt and Hdm2.

Results

Genotoxic stress induces Ku70 proteolysis in the cytosol

Previously, we reported that genotoxic stress induces Ku70 proteolysis through the 

stimulation of the ubiquitin-dependent proteolytic pathway25, suggesting that DNA damage 

activates a Ku70 ubiquitinylating enzyme. As shown in Fig. 1a, we confirmed that genotoxic 

treatments (etoposide and doxorubicin) decreased Ku70 levels in Human Umbilical Vein 

Endothelial Cells (HUVECs). We also confirmed that siRNA-mediated Ku70 knockdown 35 

increased HUVEC’s sensitivity to etoposide (Fig. 1b and c) and staurosporin (not shown). 

This is consistent with previous observations in other cell types showing that Ku70 has anti-

apoptotic activity 11,12,14,16.

Since Hdm2 is an ubiquitin ligase which is activated by DNA damage (Reviewed in 36), we 

became interested in examining whether Hdm2 is involved in Ku70 ubiquitination caused by 

genotoxic stress. First, we analyzed the time-dependent changes in Ku70 and Hdm2 protein 

levels after genotoxic stress (doxorubicin) treatment in primary cultured Mouse Embryonic 

Fibroblasts (MEFs) (Fig.1d) and HUVECs (Fig. 1e). In both cells types, Ku70 

destabilization occurred after the significant increase of Mdm2 or Hdm2 expression. In the 

case of HUVECs, Hdm2 level increased until 16 h of the treatment, but started to decline 

from 24 h onward (Fig.1e), probably due to its auto-ubiquitination activity (Reviewed in 

36). Although Hdm2 levels showed a decrease after 24 h of doxorubicin treatment, p53 level 

decrease became evident after 48 h of treatment suggesting that Hdm2 ubiquitin ligase 

activity is operative after 24 h of treatment. This is the same time at which Ku70 levels 

started to decline.

Hdm2 is a Ku70 ubiquitinylating enzyme

To examine whether Hdm2 induces ubiquitin-dependent Ku70 proteolysis, we determined 

the ability of Hdm2 to control both Ku70 levels and Ku70 ubiquitination in vivo (cultured 

cells) and in vitro (recombinant proteins). Hdm2 overexpression caused a significant 

decrease of Ku70 levels in H1299 cell line (human lung cancer cell line) (Fig. 2a). Hdm2 

mutant lacking ubiquitin ligase activity (C464S mutant) 37 did not influence Ku70 levels 

(Fig. 2a) suggesting that the ubiquitin ligase activity of Hdm2 is required for Ku70 

destabilization. When proteasome activity was inhibited and HA-tagged ubiquitin were 

expressed in HEK293 cells, Hdm2-induced Ku70 ubiquitination was detected (Fig. 2b). 

Ku70 levels of mdm2−/− (p53−/−) MEFs were significantly higher than those observed in 

mdm2+/+ (p53−/−) MEFs (Fig.2c), supporting the hypothesis that Mdm2 plays a role to 

destabilize Ku70. Furthermore, we found that recombinant Hdm2 ubiquitinated recombinant 

Ku70 proteins in vitro (Fig. 2d, Supplemental Figure 1)). The interaction between Hdm2 and 
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Ku70 was confirmed by co-immunoprecipitation of endogenous proteins from cell lysates 

(Fig. 2e). Importantly, no interaction between Hdm2 and Ku80 was detected (Fig.2e), an 

observation which further supports the specificity of Ku70-Hdm2 interaction. This 

interaction was also detected when purified recombinant proteins were used (Fig. 2f). These 

results indicate that Hdm2 is a Ku70 ubiquitin ligase. Moreover, Nutlin-3, an Hdm2 

inhibitor blocking Hdm2-dependent p53 ubiquitination, disrupted Ku70-Hdm2 interaction in 

vitro (Fig.3a), and inhibited Doxorubicin-induced Ku70 level decrease in HUVECs (Fig.3b). 

These results suggest that a Nutlin-3 sensitive domain of Hdm2 is required for Ku70 

destabilization. Interestingly, Nutlin-3 has been reported to show cytoprotective effects in 

non-transformed cells and certain types of tumor cell lines 38,39, contrary to its known 

effect in Hdm2-adictive cancer cells 40. We also observed that Nutlin-3 suppressed 

doxorubicin-induced apoptosis in HUVECs (Fig.3c). In particular cell types, such as 

HUVECs, proliferating mouse fibroblasts 38 and human kidney cells 39, Nutlin-3 may be 

able to attenuate apoptosis induction, at least in part, by maintaining Ku70 levels.

VEGF activates Akt and inhibits Ku70 proteolysis

Vascular Endothelial Growth Factor (VEGF) is a tropic factor for endothelial cells, and was 

reported to inhibit endothelial cell apoptosis through the activation of the Akt pathway 

41,42. We confirmed that VEGF protected endothelial cells against doxorubicin-induced 

apoptosis (Fig. 4a and b). VEGF prevented Ku70 degradation in doxorubicin-treated cells 

(Fig. 4c) suggesting that VEGF protects endothelial cells, at least in part, by inhibiting Ku70 

proteolysis. It has been reported that Akt phosphorylates Hdm2 30,43. As shown in Fig. 4c, 

we confirmed that VEGF, which activates Akt, induced Hdm2 phosphorylation on serine 

166.

VEGF promotes nuclear translocation of Hdm2

It is known that Akt-dependent phosphorylation of Hdm2 induces the translocation of Hdm2 

from the cytosol to the nucleus 30,43. Therefore, VEGF is expected to enhance nuclear 

localization of Hdm2 through Akt activation. As expected, Hdm2 was found both in the 

cytosol and nucleus in the absence of VEGF (Fig.5 a left upper panel). VEGF treatment 

enhanced nuclear translocation of Hdm2 regardless of the presence of genotoxic stress 

(doxorubicin) (Fig.5a right upper and lower panels). Fig. 5b shows the result of quantitative 

analysis of cells with different distribution of Hdm2. This quantitative analysis confirmed 

that VEGF promotes nuclear localization of Hdm2 in endothelial cells.

Akt inhibits Ku70 proteolysis in the cytosol

Consistent with previous studies (Reviewed in 44), transient over-expression of 

constitutively active Akt (Myr-Akt), but not kinase-dead Akt (K179M-Akt), protected HeLa 

cells (Fig. 6a) and HUVECs (Fig.6b, Supplemental Fig. 2a and b) from etoposide- and 

doxorubicin-induced apoptosis. Since Akt is required for cytoprotection by VEGF 30,43, we 

examined whether Akt activation is sufficient to suppress Ku70 proteolysis in cells treated 

by genotoxic stress. We found that constitutively active Akt, but not kinase-dead Akt, 

suppressed Ku70 disappearance in the cytosol of etoposide-treated cells (Fig. 6c and d). 

Next, we examined the effects of Akt on subcellular localization of Hdm2 in doxorubicin 

Gama et al. Page 4

Cell Death Differ. Author manuscript; available in PMC 2009 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treated HUVECs (Supplemental Fig.3). Hdm2 localized both in the cytosol and nucleus 

when constitutive-active Akt was not expressed, whereas Hdm2 localized mainly in the 

nucleus when the active Akt was expressed. These results imply that Akt, which is activated 

by VEGF in HUVECs, inhibited Hdm2-dependent Ku70 degradation in the cytosol by 

enhancing nuclear relocalization of Hdm2 from the cytosol.

Ku70 is required for Akt to protect cells from genotoxic stress

Since Akt inhibits Ku70 destabilization, we hypothesized that Akt inhibits Bax-mediated 

apoptosis, at least in part, by maintaining Ku70 levels. To examine this hypothesis, the 

effect of Akt on cell survival was compared between Ku70-proficient and –deficient cells. 

As shown in Fig. 7, Akt could not inhibit apoptosis induced by etoposide and staurosporin 

(Fig. 7 a, b and d) in Ku70-deficient cells. Ku70 deficiency did not induce a significant 

increase of Bax expression and it did not decrease Bcl-2 (Fig. 7c and e). Therefore, an 

alteration of Bax and Bcl-2 levels is not likely the reason why Akt lost its cytoprotective 

activity in Ku70-deficient cells.

Akt maintains the Ku70-Bax interaction

As previously shown by us and others (reviewed in 12), Ku70 binds Bax and inhibits Bax 

activation. The conformational change of Bax associated with its activation can be detected 

using an antibody that recognizes the N-terminus of Bax (6A7 antibody) 6,8. We have 

confirmed that the interaction of Ku70 and Bax was diminished when cells were treated with 

etoposide (Fig. 8a top panel). In this condition, an increase in the level of active Bax was 

detected by 6A7 antibody (Fig. 8a second panel). Importantly, constitutively active Akt 

maintained the Ku70-Bax interaction and significantly attenuated Bax activation (Fig. 8a 

Left panel). As shown in other experiments, etoposide treatment decreased Ku70 levels, and 

Akt inhibited this Ku70 degradation (the third panel). In Ku70-null cells (ku70−/− MEFs), 

Akt was observed to have only a slight effect in suppressing the Bax conformation change 

(Fig. 8a Right panel). These results further support our hypothesis that Akt inhibits Bax-

mediated apoptosis, at least in part, by maintaining Ku70 levels.

Discussion

The present study shows that Hdm2 plays a role as a mediator of apoptotic stress by 

decreasing cytosolic Ku70 levels. We also demonstrate evidence suggesting that Akt 

suppresses Bax-mediated apoptosis, at least in part, through inhibiting Hdm2-dependent 

cytosolic Ku70 proteolysis by promoting nuclear translocation of Hdm2 from the cytosol. 

Based on these observations, we propose two scenarios that determine cellular fate in 

response to genotoxic stress that activates p53 and Hdm2 (Fig. 8b). DNA damage stimulates 

Ku70 ubiquitinylation through increasing Hdm2 levels in the cytosol, and Ku70 proteolysis 

promotes Bax-mediated apoptosis (scenario 1) (Fig. 8b, right panel). However, if there is a 

sufficient survival kinase signal activating Akt, then Akt maintains cytosolic Ku70 levels by 

translocating Hdm2 into the nucleus, resulting in the stabilization of cytosolic Ku70 levels 

and a reduction in nuclear levels of p53 (Fig. 8b, left panel). We propose that the Hdm2-

dependent Ku70 ubiquitinylation mechanism provides an adjustable rheostat system 
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determining cell survival or death by sensing the balance between survival kinase signal and 

the DNA damage response signal.

For years the notion of Ku70 existing in a complex with Ku80 in a one-to-one ratio19,20, 

and observations that Ku70 and Ku80 stabilize each other 45–47 limited the possibilities of 

uncovering Ku70 or Ku80 specific mechanism regulating the turnover of these proteins. We 

found that Hdm2 binds with Ku70 and targets it for degradation, but not with Ku80 (Fig. 

2d). We reported that Ku80 as well as Ku70 are subjected to ubiquitination 25, implying the 

presence of an unidentified Ku80 ubiquitin ligase(s). We propose that there are hetero-

dimerization-dependent and –independent mechanisms controlling Ku protein levels. 

Importantly, concentrations of Ku70 and Ku80 are not equal, and Ku70 levels in the cytosol 

are much higher than those observed for Ku80 (Gama V. Gomez J, and Matsuyama S, 

unpublished observation). This observation indicates the presence of hetero-dimerization-

independent mechanism of Ku70 stabilization. Since Hdm2 targets Ku70, but not Ku80, the 

regulation of Ku70 ubiquitin ligase activity of Hdm2 will represent one of hetero-

dimerization-independent mechanisms controlling Ku70 level.

How then does Ku70-Ku80 hetero-dimer formation protect Ku proteins from degradation? 

Ku70 and Ku80 form stable complexes with DNA in the nucleus20,21 and this complex 

formation may prevent access of enzymes that induce proteolysis of Ku proteins. The 

present study showed that cytosolic localization of Hdm2 stimulates Ku70 disappearance 

from the cytosol, whereas Akt-dependent nuclear translocation of Hdm2 did not cause a 

major decrease in nuclear levels of Ku70 (Fig. 6c). Although further study is clearly needed, 

it is possible that a stable complex formation of Ku70-Ku80-DNA may protect Ku70 from 

Hdm2-mediated ubiquitin-dependent degradation.

Hdm2 is a known oncogene since Hdm2 negatively regulates tumor suppressor p53 and is 

highly expressed in several types of tumors 27,28,48. Previous studies suggest the presence 

of p53-independent oncogenic activity of Hdm2 49. Ku70 ubiquitinylating activity of Hdm2 

may contribute to its p53-independent oncogenic activity. The elevated levels of Hdm2 may 

cause a decrease of Ku70 supply from the cytosol, which may negatively influence Ku-

dependent DNA repair activity in the nucleus. If this is the case, an elevated Hdm2 level 

may facilitate genomic instability by lowering Ku70 levels. In certain types of cancer cells, a 

temporary Ku70 decrease caused by an elevated Hdm2 level may facilitate acquisition of 

further mutations, and cancer cells may become resistant to apoptosis by an elevation of 

Ku70 levels through the hyperactivation of Akt that inhibits Ku70 proteolysis. The present 

study focused on elucidating the mechanism of how Hdm2 controls the decision making 

process of cells to survive or die over a short period (1–2 days) of cellular life. Further 

studies will be necessary to investigate the biological significance of Ku70 ubiquitinylation 

by Hdm2 in tumorigenesis with respect to determining long-term effects of elevated Hdm2 

on Ku70 levels and Ku-dependent DNA repair activity.

Akt is known as a cytoprotective kinase mediating the PI-3 kinase pathway activated by 

growth factors and tropic factors (Reviewed in 44). There are multiple mechanisms by 

which Akt inhibits apoptosis. For example, Akt inactivates pro-apoptotic factors by 

phosphorylation (e.g. Bad and Caspase-9) 50,51 and maintains cellular energy homeostasis 
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by stimulating glycolysis (Reviewed in 44). Previously, it was shown that Akt suppresses 

activation (conformational change resulted in the exposure of the N-terminus) of Bax and 

mitochondrial translocation of Bax 52,53. However, the precise details of the mechanism by 

which Akt suppresses Bax activation remain unknown. The present study demonstrated a 

new mechanism by which Akt can protect the cell by suppressing Bax activation through 

maintaining cytosolic Ku70 levels. Interestingly, Akt was unable to protect Ku70-deficient 

cells from etoposide (Fig. 6), and staurosporin (not shown). These results indicate that Ku70 

is required for Akt to fully express its anti-apoptotic activity. Based on these and other 

observations in the present study, we hypothesize that Akt inhibits Bax activation, at least in 

part, by suppressing Hdm2-dependent Ku70 proteolysis. However, we concede that other 

interpretations may be possible. For example, Ku70 deficiency itself may lead to an increase 

of un-repaired genomic damage, which in turn may generate unexpected changes in the 

expression levels of molecules mediating Akt-dependent signals in Ku70-deficient cells. 

Further studies investigating the role of Ku70 in Akt-mediated cytoprotection will be needed 

to test our hypothesis.

In summary, the present study demonstrated that Hdm2 is a Ku70 ubiquitin ligase. The 

present study also showed results suggesting that Akt inhibits Bax-activation, at least in part, 

by maintaining Ku70 levels by inhibiting Hdm2-dependent Ku70 proteolysis. In this study, 

we focused on Ku70 ubiquitination in cells treated with genotoxic stress. Our observations 

do not exclude the possibilities of the existence of other Ku70 ubiquitin ligase(s) that 

regulates Ku70 activities in response to challenges other than genotoxic stress. In addition to 

poly-ubiquitination25, other post-translational modifications of Ku70, such as ; acetylation 

14, phosphorylation (Reviewed in 22), and mono-ubiquitination 35 have been reported. 

Further studies investigating the impacts of these modifications on Ku70 stability will 

increase our understanding of the multiple roles of Ku70 in controlling cellular life and 

genomic stability.

Materials and Methods

Cell culture and detection of apoptosis

HeLa, Human Embryonic Kidney (HEK) 293 and HEK293T cells (obtained from ATCC) 

were cultured in DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 10% 

fetal bovine serum (FBS) and 1% L-Glutamine. H1299 cells and MEFs were cultured in 

DMEM supplemented with 10% FBS, 1% L-glutamine, 1% sodium pyruvate, and 1% non-

essential aminoacids. Human umbilical vein endothelial cells (HUVECs) were isolated from 

freshly obtained human umbilical cords (from three different donors) by collagenase 

digestion of the interior of the umbilical vein. These cells were used up to passage 7. 

HUVECs were cultured in endothelial cell growth medium plus supplements (EGM®-2-

Endothelial Cell Medium-2 (Lonza, Switzerland)). Apoptosis was induced by treatment with 

10–25 uM etoposide, 1 uM doxorubicin or 200 nM staurosporin (STS) as indicated in figure 

legends. One or two days after treatment, cells were stained with Hoechst dye and apoptotic 

nuclei were counted by fluorescence microscopy (three hundred cells were counted for each 

experiment) as before 11. Plasmid transfection was performed with Lipofectamine Plus 
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according to manufacturers instructions, except HUVECs. Lipofectamine-LTX/Plus was 

used for the transient transfection of HUVECs.

Antibodies and reagents

Rabbit polyclonal antibody to human Ku70 (H-308), mouse monoclonal antibody to human 

Ku70 (N3H10), mouse monoclonal to human Ku80 (B-1), rabbit polyclonal to human Ku80 

(H300) and mouse monoclonal anti-ubiquitin antibody (P4D1) were purchased from Santa 

Cruz Biotechnology (St. Louis, MO); mouse monoclonal actin antibody was from Santa 

Cruz Biotechnology. Hdm2 antibody (2A10) and (IF2) were purchased from Calbiochem 

(San Diego, CA). VEGF was purchased from R&D Systems (Minneapolis, MN). For the 

detection of Flag-tagged Ku70, anti-Flag antibody from Stratagene (Cedar Creek, TX) was 

used. Additional reagents were purchased from the following sources: protein-A sepharose 

CL-4B, Amersham Pharmacia Biotech (Piscataway, NJ); Caspase Inhibitor (z-VAD-fmk), 

Calbiochem (San Diego, CA) and ECL Western blotting detection reagents, Amersham 

Biosciences (Buckinghamshire, England).

Immunoprecipitation and immunoblotting

Adherent cells in 10-cm dishes were collected by scraping and pelleted at 1000 rpm for 10 

min at 4°C. Cell pellets were then lysed in ice-cold (4°C) CHAPS buffer (150 mM NaCl, 10 

mM Hepes, pH 7.4, and 1% CHAPS) or RIPA buffer (PBS, 1% Nonidet P-40, 0.1% sodium 

dodecylsulfate, 0.5% sodium deoxycholate) containing protease inhibitors (protease 

inhibitor cocktail, Sigma P8340, diluted 1:100), and 1 mM phenylmethylsulfonyl fluoride 

(PMSF). Lysates were transferred to microcentrifuge tubes and centrifuged at 14,000 rpm 

for 30 min at 4°C to remove the insoluble fraction. These lysates were used for Western blot 

analysis. Immunoprecipitation experiments were performed by incubating 200 uL of 5 

ug/uL lysate protein with 20 uL protein A sepharose, pre-absorbed with 2 ug anti-Ku70 

polyclonal antibody (H308), or anti-Ku80 polyclonal antibody at 4°C for 2 h. Two 

micrograms normal rabbit IgG were used as a negative control. After three times washing by 

buffer, the sepharose beads were boiled in 40 uL of Laemmli loading buffer and 20 uL of 

the eluted proteins were resolved by SDS–PAGE. After SDS–PAGE, Western blot analyses 

were performed using anti-Ku70 antibody (1:1,000), or anti-Ku80 antibody (1:2,000), as 

indicated in the figure legends.

For detecting the active form of Bax—HUVECs or ku70−/− MEFs in 10-cm dishes 

were lysed in 200 uL Chaps buffer containing protease inhibitors and PMSF. 

Immunoprecipitation was performed by incubating 200 uL of the lysates with 2 ug of anti-

Bax monoclonal antibody (clone 6A7, BD-Pharmingen) at 4°C for 2 h. Immunocomplexes 

in 200 uL of the lysates were precipitated with 20 uL protein A-sepharose. After three times 

washing with buffer, beads were boiled in 40 uL Laemmli buffer and 20 uL of the eluted 

proteins were analyzed by Western blotting. Western blotting analysis of pre-

immunoprecipitation (Input) and immunoprecipitated samples (IP) was performed with an 

anti-Bax polyclonal antibody (N-20, sc-493; Santa Cruz).

For detecting Bax-Ku70 interactions—HUVECs in 10-cm dishes were lysed in 200 

uL Chaps buffer containing the protease inhibitors and PMSF. Immunoprecipitation was 
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performed by incubating 200 uL of the lysates with 2 ug of monoclonal anti-Bax antibody 

(B9, Santa Cruz) or 2 ug of monoclonal anti-Ku70 antibody (A9, Santa Cruz) at 4 °C for 2 

h. Immunocomplexes in 200 uL of the lysates were precipitated with 20 uL protein G-

sepharose. After three times washing with buffer, beads were boiled in 40 uL Laemmli 

buffer and 20 uL of the eluted proteins were analyzed by Western blotting. Mouse IgG was 

used as negative control. Western blot analysis of pre-immunoprecipitation (Input) and 

immunoprecipitated samples was performed with an anti-Ku70 polyclonal antibody (H-308, 

sc-9033; Santa Cruz) or an anti-Bax polyclonal antibody (N-20, sc-493; Santa Cruz).

In vitro Ubiquitination Assays

Reaction volumes of 50 ul containing 40 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 2 mM ATP, 

2 mM DTT, 40 nM human ubiquitin activating enzyme, 150 nM HsUbc5a, 400 nM Ku70 

(Enzymax LLC, Lexington, KY) and 400 nM GST-Hdm2, were incubated for 2 h at 37°C in 

the presence or absence of 10 uM unlabeled ubiquitin. Reactions were quenched with 50 ul 

of Laemmli sample buffer containing 2% (v/v) B-mercaptoethanol and boiled for 5 min.

RNA Interference (RNAi)

HeLa cells were plated onto six-well plates at 1.2×105 cells per well and transfected with the 

indicated siRNAs as described 35. Forty-eight h posttransfection, cells were harvested for 

Western blot analysis. Cells were lysed at 4°C with ice-cold RIPA buffer containing 1mM 

sodium orthovanadate, protease inhibitor cocktail and 1 mM PMSF. Samples were then 

analyzed by Western blotting. Annealed small interfering RNAs (siRNAs) against Ku70 

sense strand 50-GGAAGAGAUAGUUUGAUUUTT-30, antisense strand 50-

AAAUCAAACUAUCUCUUCCTG-30, and Silencer negative control #1 siRNA were 

purchased from Ambion.

GST pulldowns

To examine the binding of Ku70 with GST-Hdm2 in vitro, the GST pull-down experiments 

were performed by using ProFound™ pull-down GST protein:protein interaction kit (Pierce) 

as described by the manufacturer. The bound proteins were eluted, denatured in sample 

buffer, separated by 4–15% SDS-PAGE and were detected by Western blot analysis using 

anti-Ku70 antibodies.

Immunocytochemistry

HUVECs were seeded on gelatin-coated 35 mm dishes. Cells were serum starved for 15 

minutes and treated with VEGF (100 ng/ml-dissolved in serum-free medium) for 2 h. 

Doxorubicin was then added for additional 2 h. Immunofluorescence was done as previously 

described 30. After fixation of samples in 4% PFA for 10 minutes and permeabilization with 

0.2% Triton X-100, the cellular localization of Hdm2 was detected using a monoclonal 

antibody against Mdm2 (IF2). After five times washing by PBS, the samples were further 

incubated with Texas-Red- conjugated goat anti-mouse IgG and examined under a 

fluorescent microscope.
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Adenovirus

Adenovirus vectors that direct the expression of Myc-Myr-Akt (constitutively active Akt), 

Myc-K179M-Akt (dominant negative Akt) (Admax-Myc-AktMyr and Admax-Myc-

AktK179M) were previously described54. Virus content was calculated by the optical density 

of the samples at 260 nm using the relationship of 1012 virus particles/ml/OD260 unit as 

reported54. HUVECs or HeLa cells were infected with 1:200 dilution of stock Adenovirus 

for 16 h. Cells were then washed 3 × Hank’s Balance Salilne Solution (HBSS) and cultured 

for 24 h in complete medium containing 20 uM Etoposide, 1 uM Doxorubicin or 200 nM 

STS. Then apoptosis was detected as described previously and cells were lysed at 4°C with 

ice-cold RIPA buffer containing 1mM sodium orthovanadate, protease inhibitor cocktail and 

1 mM PMSF. Samples were then analyzed by Western blotting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ku70 decreases in response to genotoxic stress
a, HUVECs were seeded in 6-well plates and 24 h later treated with 10 uM Etoposide 

(Etopo) or 1 uM Doxorubicin (Doxo) for 24 h. After incubation, cells were collected and 2 

ug of total protein were examined by Western blotting with anti-Ku70 (N3H10) and anti-

actin antibodies. b, HUVECs were plated onto six-well plates at 1.2×105 cells per well and 

transfected with the indicated siRNAs as described in Materials and Methods. Results from 

24 h and 48 h post-transfection are shown. c, Forty-eight h after siRNA transfection, 

HUVECs were treated with 10 uM Etoposide for 24 h and 48 h. Apoptosis was detected by 

nuclear fragmentation using Hoechst-dye nuclear staining. Data shown are averages (± S.E.) 

(n= 300 cells per condition in triplicate) of three independent experiments. d MEFS 

Gama et al. Page 14

Cell Death Differ. Author manuscript; available in PMC 2009 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(ku70+/+) were seeded in 6 well dishes and treated with 1 uM Doxorubicin for the times 

shown in the figure. Cells were then collected and Western blot analysis was performed with 

anti-Mdm2, anti-p53, anti-Ku70 and anti-Actin antibodies. e, HUVECs were seeded in 6-

well plates and 24 h later treated with 1 uM Doxorubicin for the times shown in the figure. 

After incubation at specific times, cells were collected and examined by Western blotting 

with anti-Ku70, anti-Hdm2, anti-p53 and anti-actin antibodies.
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Figure 2. Hdm2 is a ubiquitin ligase of Ku70
a, Hdm2 overexpression decreased Ku70 levels. HUVECs were transfected with pCMV 

vector, pCMVHdm2-wt or pCMVHdm2-C464S (dead ligase) and cultured for 16 h. Cells 

were then collected and analyzed by Western blot using anti-Ku70, anti-Hdm2 and anti-

Actin antibodies. b, HEK293 cells were transfected with pCMVHdm2-wt and HA-tagged 

Ubiquitin-wt constructs as indicated. Twenty-one hours later cells were treated with 5 uM 

MG132 for 3 h; cells were then collected and lysed in RIPA buffer. Immunoprecipitation 

with anti-Ku70 antibody (H308) was performed as indicated in Materials and Methods, and 

Western blot was done with anti-Ku70 (N3H10) and anti-HA antibody. Mouse IgG was 

used as control for the immunoprecipitation. c, Ku70 level in mdm2+/+ and mdm2−/− 

MEFs. Mdm2−/− (p53−/−) and mdm2+/+(p53−/−) MEFs were seeded in 10-cm dishes. 

Twenty four hours later, cells were harvested and lysed with RIPA buffer. Western blot 

analysis was then performed with anti-Ku70 (N3H10 antibody). Mdm2 antibody was used to 

confirm Mdm2 levels. d, In vitro ubiquitination assay of Ku70 by Hdm2. Reaction volumes 

were prepared as indicated in Material and Methods and incubated for 2 h at 37°C in the 

presence or absence of 10 uM unlabeled ubiquitin. Reactions were quenched with 50 ul of 

Laemmli sample buffer containing 2% (v/v) B-mercaptoethanol and boiled for 5 minutes. 

Western blot was performed with anti-ubiquitin antibody. e, Co-immunoprecipitation of 
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Hdm2 and Ku70. HUVECs were collected and immunoprecipitation with anti-Hdm2 

antibody was performed in Chaps buffer. Western blot analysis was done using anti-Ku70 

antibody, anti-Ku80 antibody and anti-Hdm2 antibody. f, GST pull-down assay using GST-

tagged Hdm2 and recombinant Ku70 was peformed using the ProFound™ pull-down GST 

protein:protein interaction kit (Pierce) as described by the manufacturer. Interaction was 

analyzed by Western blotting using anti-Ku70 antibody.
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Figure 3. Nutlin-3 disrupts the Ku70-Hdm2 interaction
a, Nutlin-3 inhibits Ku70-Hdm2 interaction. 50 ng of recombinant Hdm2 were incubated 

with beads preabsorbed with Hdm2 antibody, for 2 hours. After incubation, 50 ng of 

recombinant Ku70 (Enzymax) were added in the presence of 20 uM Nutlin-3 when 

indicated. After additional 2 h incubation, beads were washed and samples were analyzed by 

Western blotting using anti-Ku70 (H308) or anti-Hdm2 (2A10) antibodies. b, Nutlin-3 

inhibited Doxorubicin-induced Ku70 proteolysis. Cells prepared as in (b) were lysed and 2 

ug of total protein were analyzed by Western blotting using anti-Ku70 (N3H10) and anti-

actin antibodies. c, Nutlin protected HUVECs from Doxorubicin-induced apoptosis. 1×105 

cells were seeded in 6-well dishes. Twenty-four h later cells were treated with 5 uM Nutlin 

and after 30 minutes, 1 uM Doxorubicin was added to corresponding wells. Apoptosis was 

detected twenty-four h later by nuclear fragmentation using Hoechst nuclear staining. Data 

shown are averages (± S.E.) of triplicated samples (300 cells per condition in triplicate).
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Figure 4. Trophic Factor VEGF protects endothelial cells from apoptosis and inhibits Ku70 
proteolysis
a, VEGF inhibited doxorubicin-induced apoptosis, HUVECs were serum starved for 15 min 

and treated with VEGF (100 ng/ml) for 2 hours. Doxorubicin was then added for additional 

14 h. Apoptosis was detected by nuclear fragmentation using Hoechst-dye nuclear staining, 

and b, by caspase activation. Data represent averages (± S.E.) (from 3 independent 

experiments). c. VEGF inhibited Ku70-proteolysis induced by Doxorubicin. HUVECs were 

seeded in 6-cm dishes and 24 h later treated with VEGF (100 ng/ml) in serum free media for 

2 h. Doxorubicin (1 uM) was then added and cells were collected after additional 16 h 

incubation. Western blot analysis with anti-Ku70, anti-Hdm2, anti-phospho-Hdm2 (Ser 166, 
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Akt-dependent phosphorylation site), anti-phospho-Akt (Ser 473), anti-total Akt and anti-

Actin antibodies was performed 30. This is representative of three independent experiments.
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Figure 5. VEGF promotes nuclear translocation of Hmd2
a, Immunohistochemical analysis. HUVECs were seeded on gelatin-coated 35 mm dishes. 

Cells were serum starved for 15 minutes and treated with VEGF (100 ng/ml) for 2 h. 

Doxorubicin was then added for 2 h and immunohistochemistry was performed as 

previously described. After fixation of samples in 4% PFA for 10 minutes and 

permeabilization with 0.2% Triton X-100, the cellular localization of Hdm2 was detected 

using a monoclonal antibody against Mdm2 (IF2). After extensive washing in PBS, the 

samples were further incubated with Texas-Red- conjugated goat anti-mouse IgG and 

examined under a fluorescent microscope. Arrows identify cells with Hdm2 nuclear 

localization. b, Quantitative analysis of subcellular localization of Hdm2 detected by 

immunocytochemistry. In each sample, at least 100 cells were analyzed. Data represent 

averages (± S.E.) of three independent experiments performed using duplicated samples
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Figure 6. Akt protects cells from Etoposide-induced apoptosis and inhibits Ku70 degradation
a, Akt inhibited etoposide-induced apoptosis in HeLa cells. HeLa cells were transfected with 

control plasmid pcDNA3 (control) or plasmid expressing HA-Myr-Akt (myr-Akt). Twenty-

four h later transfection, cells were treated with 25 uM Etoposide (Etopo) for additional 16 h 

and apoptosis was detected by nuclear fragmentation using Hoechst nuclear staining. Data 

represent averages (± S.E.) of 3 independent experiments (300 cells per sample were 

counted). b, Akt inhibited etoposide-induced apoptosis in HUVECs. 2×105 HUVECs per 

well were seeded in 6-well plates. Next day cells were infected using adenovirus expressing 

Akt constructs (Myc-Myr-Akt (constitutively active), Myc-K179M-Akt (dominant negative) 

or empty vector (control virus)). Twenty-four h later cells were extensively washed with 

Hank’s Buffer Saline Solution (HBSS) and then treated with 10 uM Etoposide (Etopo) for 

24 h. Infection efficiency was almost 100% as shown in Supplemental Figure 2a. Data 

represent averages (± S.E.) of 3 independent experiments (300 cells per sample were 
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counted) c, Akt inhibited etoposide-induced Ku70 level decrease in HUVECs. Cells were 

treated as described in (a). After the treatment, cells were collected and subcellular 

fractionation was performed as described in Materials and Methods. Each fraction subjected 

to Western blot and expression level of Ku70, Actin, and HA-Akt was determined. d, Akt 

inhibited etoposide-induced Ku70 level decrease in HeLa cells. Cells were treated as 

described in (b). Cell lysates were subjected to Western blot analysis and expression levels 

of Myc-Akt, phospho-GSK3, Ku70 and actin were determined.
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Figure 7. Ku70 is required for Akt to protect cells from genotoxic stress
a and b, Akt did not show cytoprotection in Ku70 siRNA treated cells. HeLa cells were 

plated onto six-well plates at 1.2×105 cells per well and transfected with the Ku70 siRNA 

(SiKu70) or scrambled control RNA (Scr) as described 35. Twenty-four h after transfection, 

cells were infected with adenovirus expressing Myc-Myr-Akt (constitutively active) 

andincubated additional 24 h. Then, cells were treated with 25 uM Etoposide (Etopo) (a) or 

200 nM staurosporin (STS) (b) for 16 h, and apoptosis induction was determined by 

Hoechst-dye nuclear staining. Data represent averages (± S.E.) (300 cells per sample were 

counted) of triplicated experiments. c, Ku70 siRNA successfully knocked down Ku70 in 

HeLa cells. Ku70 siRNA (SiKu70) and Myc-Akt were expressed in HeLa cells as described 

in (a), and Western blotting analysis was performed with anti-Ku70, anti-Bax, anti-Bcl-2, 
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anti-Myc and anti-actin. d, Akt did not show significant cytoprotective activity in Ku70 null 

MEFs. Wild type and ku70−/− MEFs (8×104 cells/well) were seeded in 12-well plates. 

Twenty-four h later cells were infected with adenovirus expressing Myc-Myr-Akt. The 

following day cells were treated with 10 uM Etoposide for additional 12 h and apoptosis was 

analyzed as described in Fig. 1a. e, Expression levels of Ku70, Bax, and Bcl-2 of wild type 

and ku70−/− MEFs. Wild type and ku70−/− MEFs were analyzed by Western blotting with 

anti-Ku70 (N3H10), anti-Hdm2 (2A10), anti-p53, anti-Bax (N20), anti-Bcl-2, and anti-actin 

antibody.
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Figure 8. Akt inhibits apoptosis by mantaining Ku70-Bax interaction
a, Right panels: Akt maintained Ku70-Bax interaction in etoposide-treated HUVECs. 

HUVECs were were infected with control adenovirus or adenovirus expressing Myc-Myr-

Akt. The next day, cells were treated with 20 uM Etoposide for 8 h. Cells were then lysed 

and Ku70 (top panel) was co-immunoprecipiatated by anti-Bax polyclonal antibody 

(detecting both conformationally inactive and active Bax). Activated Bax (second panel) 

was immunoprecipitated by 6A7 monoclonal antibody (detecting conformationally active 

Bax). Western blot analysis with anti-Ku70 monoclonal (top and third panels) or anti-Bax 

polyclonal antibody (N20) (second and fourth pannels) was performed. The levels of Ku70 

and Bax in cells in each condition are shown in the third and fourth panels. Left panels: 
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Ku70−/− MEFs were treated as described for Right Panel experiments, and active Bax was 

immunoprecipitated by 6A7 monoclonal Ab. Immunoprecipitated Bax was detected by 

Western blot using Bax polyclonal Ab. Ku70 and Bax levels in each sample are shown in 

the second and third panels, respectively. b, Hypothesized model for Ku70 regulation by 

Hdm2 and Akt. In the presence of growth/survival factor signals (Left scheme), Ku70 levels 

are high enough to suppress Bax activation. Akt promotes Hdm2 translocation to the nucleus 

and induces the targeting of p53 for degradation. In the presence of apoptotic signals without 

active Akt signals (Right scheme), Hdm2 remains in the cytosol and it targets Ku70 for 

degradation. This condition allows the release of Bax from inhibition, and Bax is activated 

by activators such as BH3 only proteins that are activated by p53.
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