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Abstract: In recent years, the diversity of cancer cells in tumor tissues as a result of intratumor
heterogeneity has attracted attention. In particular, the development of single-cell analysis technology
has made a significant contribution to the field; technologies that are centered on single-cell RNA
sequencing (scRNA-seq) have been reported to analyze cancer constituent cells, identify cell groups
responsible for therapeutic resistance, and analyze gene signatures of resistant cell groups. However,
although single-cell analysis is a powerful tool, various issues have been reported, including batch
effects and transcriptional noise due to gene expression variation and mRNA degradation. To
overcome these issues, machine learning techniques are currently being introduced for single-cell
analysis, and promising results are being reported. In addition, machine learning has also been
used in various ways for single-cell analysis, such as single-cell assay of transposase accessible
chromatin sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq) analysis,
and multi-omics analysis; thus, it contributes to a deeper understanding of the characteristics of
human diseases, especially cancer, and supports clinical applications. In this review, we present
a comprehensive introduction to the implementation of machine learning techniques in medical
research for single-cell analysis, and discuss their usefulness and future potential.

Keywords: single-cell analysis; next-generation sequencing; machine learning; multi-omics analysis

1. Introduction

Cells are the smallest units of life, and a wide variety of them exist in living organisms.
Through the developmental differentiation process, they form tissues and organs with
different lineages and functions, making the particular body a living organism. In addition,
it operates biological activities through mutual reactions and intercellular communication
in response to signals from inside and outside the cell, as well as environmental changes.
Therefore, understanding life at the single-cell level is essential for medical research to
understand and control diseases, which relate to alterations of the mechanisms of life. For
example, cancer tissues are composed of cancer cells and their surrounding non-cancerous
cells, such as cancer-associated fibroblasts, macrophages, other blood system cells, and
blood endothelial cells, and these intercellular networks play an important role in cancer
survival and proliferation [1]. In particular, cancer cells are not a population of cells
with uniform characteristics; genetic mutations and epigenetic modifications give rise

Biomedicines 2021, 9, 1513. https://doi.org/10.3390/biomedicines9111513 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-0548-4449
https://orcid.org/0000-0001-8699-0858
https://orcid.org/0000-0003-0421-8085
https://orcid.org/0000-0003-4558-9800
https://doi.org/10.3390/biomedicines9111513
https://doi.org/10.3390/biomedicines9111513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9111513
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111513?type=check_update&version=2


Biomedicines 2021, 9, 1513 2 of 15

to a population of cancer cells with different characteristics, such as cancer stem cells
and differentiated cells [2,3]. Such cellular diversity in cancer tissues is the root of the
contribution of malignant traits such as tumorigenicity, anticancer drug resistance, and
metastatic potential of cancer cells, and it is considered to be the essential cause of refractory
cancer. Therefore, analysis at a single-cell level is important because understanding cancer
tissue diversity is expected to contribute to the establishment of cancer therapies.

An attempt to isolate cells from tissues and understand their properties of individual
cells was first reported in 1992; the construction of an expression profile of a single living
cell from the rat hippocampus was demonstrated through quantitative analysis using DNA
gel blotting [4]. Subsequently, RT-PCR analysis in single cells was performed [5], and in
1998, fluorescence in situ hybridization (FISH) enabled quantitative analysis of mRNA
molecules in single cells [6]. A comprehensive one-cell gene expression analysis was
initially performed using microarray analysis [7]. Subsequently, a method that drastically
improved the efficiency of cDNA synthesis from a single cell was reported [8]; based on
that method, the first single-cell RNA-seq (scRNA-seq) method using next-generation
sequencing was reported in 2009 [9]. This was the beginning of a rapid spread of research
using comprehensive one-cell gene expression analysis. However, various problems have
been identified as challenges in single-cell analysis. Among them, the critical issues are
“sensitivity and accuracy” and “linkage with spatial information”; hence, the introduction
of new technology is required.

In recent years, the expectations for artificial intelligence (AI) have increased greatly,
and machine learning (ML) technology has made remarkable progress, including the rise
of deep learning technology [10,11]. It is important to note that ML has been actively used
in the fields of medical and biological research [12–23], and it has already been used in
actual clinical practice [24–26]. Single-cell analysis is another field in which ML techniques
have been used to overcome challenges and make more effective use of its results. Given
the ability of ML technology to extract features from large-scale data, we believe that its
use is essential for single-cell analysis, and it can be applied in various ways. In this review,
we present a comprehensive overview of the use of ML techniques in the field of single-cell
analysis and discuss their usefulness and future development.

2. History of Single-Cell Analysis

In 1992, gene expression analysis using a single neuron was first reported in a quanti-
tative analysis using DNA gel blotting [4]. Subsequently, RT-PCR and FISH in single cells
were reported [5,6], and in the late 1990s, microarray technology was used to analyze the
expression of thousands of genes [27–29]. The central nervous system and neurons consist
of multiple cell types; in other words, different regions correspond to different functions.
Therefore, single-cell analyses have been actively investigated in this field. For example,
the combination of two methodologies, i.e., laser capture microdissection for selective
sample collection, and the aforementioned microarray technology for analyzing thousands
of genes in a single sample, were used to disclose cellular landscapes [7,30–32].

Next-generation sequencing (NGS) technology is now widely used in laboratories as
well as in hospitals to aid decision-making for guided precision medicine [33]. Additionally,
it is necessary to use big data and multi-omics data obtained by NGS to achieve precision
oncology [34]. However, NGS analysis requires hundreds to thousands of cells as a material;
this creates a technical barrier as samples (or cells) are difficult to obtain. Thus, apart from
the biological aspect, the first scRNA-seq analysis using the SOLiD system was reported
from a realistic experimental point of view, and it was quickly and widely accepted [9].
Importantly, it was reported only a year after the first RNA-seq with bulk cell samples was
published [35,36]. The scRNA-analysis introduced by Tang et al. was composed of two
parts: (1) isolation of a single blastomere by mouth pipetting, and (2) cDNA synthesis from
a single cell. Their method enables single-cell transcriptomic analysis that can detect 75%
more gene expression than previous microarray-based methods. The basic approach as
proposed by Tang et al., and especially the flow chart of cell isolation followed by NGS,
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remains unaltered. Yet other researchers have improved their application. For example,
Islam et al. developed a custom-built semi-automated cell picker that collects a single
cell into each 96-well capture plate [37], while Kivioja et al. reported the addition of
unique molecular identifiers (UMIs) to cDNA during a single-cell reverse-transcription
reaction to minimize PCR amplification errors [38]. In this method, a random 10-base-
pair DNA tag was added to the 5′ adaptor for sequencing. Theoretically, more than
100 million (410 = 1,048,576) UMIs are available and they bind to each mRNA; therefore,
we can accurately estimate the amount of input mRNA by counting UMIs.

The first reported scRNA-seq analysis using a microfluidic system (Fluidigm) could an-
alyze up to 2000 single cells at a time [39], which laid the basis for high-throughput analysis.
Pico-well and nano-droplet technology lowered the cost of scRNA-seq analysis and further
facilitated high-throughput analysis [40–42]. In 2017, the combinatorial indexing method
sci-RNA-seq (GemCode), which uses gel bead-in-emulsion (GEM) from 10x Genomics,
enhanced the reproducibility and accelerated the high-throughput performance [43,44]. In
Table 1, we summarize the widely accepted scRNA-seq methods.

Table 1. scRNA-seq methodology used for analysis.

scRNA Technology Description Characteristics Year References

1. STRT (Single-cell tagged
reverse transcription)-Seq

This method is based on
using reverse transcriptase

that possesses
template-switching activity.

High accuracy of the position of 5′-end mRNA. Low cost
and short time owing to the barcode strategy. 2011 [37]

2. Smart (Switching
mechanism at 5′ end of RNA

template)-Seq

This method enriches 5′-end mRNA and provides robust
and reproducible results. SMARTer Ultra Low RNA kit

for Illumina sequencing is available.
2012 [45]

3. Smart-Seq2

Improvement of reverse transcription, template switching,
and pre-amplification efficacy. Exchanging one single

guanylate for a locked nucleic acid (LNA) at the
template-switching oligonucleotides 3′ end leads to a

two-fold increase in cDNA yield.

2013 [46]

1. CEL-Seq This method is based on
in vitro transcription to

reduce PCR-induced
amplification bias.

This method provides highly strand specific,
reproducible, linear, and sensitive results compared with
PCR-based amplification and allows detection of 3′-end
mRNAs using in vitro transcription. Small amounts of

input RNA can be used.

2012 [47]

2. CEL-Seq2
This method is improved to achieve less amplification

bias of genome sequencing, higher sensitivity, lower cost,
and less working time.

2016 [48]

1. Quartz-Seq
This is a combined method
of suppression PCR with

poly(A) tails.

Robust suppression of byproduct synthesis with the
combined techniques of poly(A) tailing with

PCR amplification.
2013 [49]

2. Quartz-Seq2

The efficiency of converting initial reads into unique
molecular identifiers (UMIs) has been improved because
of the major improvement of poly(A) tagging, allowing

for the detection of more genes.

2018 [50]

Microfluidic platform

This method is based on a
microfluidic platform; single
cells are captured and lysed

in a microfluidic device.

The analysis of individual cells can be automated and
parallelized, and cDNA can be synthesized in small-scale

reactions using low-input RNA.
2014 [51]

1. Drop-Seq
This method is based on a

microfluidic device that
creates droplets with a
single cell and reagents

(such as a bead).

Digital counting of mRNA in thousands of single cells
is possible. 2015 [42]

2. inDrop

A theoretical capacity to barcode tens of thousands of
cells in a single run, allowing randomly labeling 3,000
cells with 99% unique labeling; many more cells can be

processed by splitting a large emulsion into
separate tubes.

2015 [41]

Seq-Well

This method enables the
detection of a single cell in a

PDMS array of more than
80,000 subnanoliter wells.

This method achieves efficient cell lysis with rapid
solution exchange, while increasing the capture rate of

transcripts and reducing cross-contamination by trapping
biological macromolecules.

2017 [52]
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Table 1. Cont.

scRNA Technology Description Characteristics Year References

Microwell-seq

This method uses
microwells, which are
technically simple and

cost-effective through using
an inexpensive device

(agarose plate) for scRNA.

A simple method to profile thousands of single cells
utilizing an agarose-constructed microwell array and
barcoded beads to establish a convenient, simple, and

cost-effective single-cell technology. This method
combined existing methodologies.

2018 [53]

RamDA-seq
This method can detect a

full-length total RNA
expression in a single cell.

This method is highly sensitive to non-poly(A) RNAs
such as lncRNAs, covers near-complete full-length

transcripts, and profiles recursive splicing in >300-kb
intros, detects enhancer RNAs, and their cell type-specific

activity in single cells.

2018 [54]

C1 CAGE

This method is a 5′

RNA-sequencing using a C1
microfluidic system and cap

analysis gene expression
(CAGE) technique.

This method is an automated scRNA-seq platform using
the C1 system, which can quantitatively detect the 5′ end

of transcripts without bias.
2019 [55]

The fundamental idea for conducting a single-cell analysis is mainly to profile cellular
divergence, analyze a cell population, clarify heterogeneity of microenvironment, and map
the developmental landscape spatiotemporally [56–66]. Additionally, function-associated
methodologies such as Patch-seq, a technique that combines whole-cell patch-clamp record-
ing, immunohistochemistry, and scRNA-seq to improve classification of neural cell types as
well as functional characterization [67–69], and in situ hybridization for single-cell analysis
to reveal mRNA splicing variants have been reported [70].

3. Single-Cell mRNA Analysis Using Machine Learning

Currently, single-cell analysis contributes significantly to not only transcriptomic
analysis but also genomic analysis, such as in identifying single-nucleotide mutations in
cancer [71–74] and epigenomics such as DNA methylome [75–77], ChIP-seq analysis and
chromatin-accessibility [78–80] (Figure 1).
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Figure 1. Timeline of technical progress of single-cell analysis. Each method was divided into five categories (genome,
chromosomal conformation, DNA methylome, ChIP, and transcriptome) and identified by different colors.

In this section, we discuss the technical aspects of scRNA-seq with ML. scRNA data
can be obtained from whole cells or fractionated samples. Similar to the usual RNA-seq
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methods, we can analyze scRNA-seq data from whole cell samples either to classify cells
of origin or cell types [81]. For fractionated samples in particular, nuclear fractionation,
known as single-nucleus RNA-seq (snRNA-seq), has been reported [82,83]; moreover,
snRNA-seq is applicable even in frozen human tumor tissue samples [84]. Although
we do not discuss the details here, single-cell technology utilizes other omics data such
as single-cell DNA sequencing (scDNA-seq), which can detect copy number variations
(CNVs) as well as clonal populations [72]; additionally, it can be used for single-cell whole
genome analysis [85], DNA methylation [86], or in situ sequencing known as FISSEQ [87],
MERFISH [88], and seqFISH [89]. Moreover, scRNA-seq driven classification in metastatic
lung adenocarcinoma shows the feasibility of revealing cellular dynamics, tumor intrinsic
factors, and novel signatures that are associated with patient outcome [90].

Generally, scRNA-seq is performed with the aim of cell-type identification (classifica-
tion); it is important for metastatic tumors, cell state analysis to categorize immune cells,
tumor microenvironment to analyze heterogeneity, or can be performed for expression
subtype analysis (clustering). To achieve the aforementioned research purpose, scRNA
analysis is often performed using ML techniques. The general implementation of scRNA-
seq analysis is shown in Figure 2. Although scRNA-seq is a powerful tool to address many
scientific interests, technically, different batches of scRNA-seq data cause batch effects
that reflect different cell populations, protocols, or technical variations. To manage these
datasets for analysis, the mutual nearest neighbors (MNNs) batch-effect correction method,
deep transfer learning (BERMUDA) method, and another MNN-based method named
Scanorama that identifies datasets with the same cell types to cluster (not by different
batches) were reported to correct batch effects [91–93]. Additionally, an autoencoder is a
useful technique for extracting features that are associated with clinical outcomes from
a high dimensional dataset [12,19,94]. The unsupervised deep embedding algorithm ob-
tained the initial parameters from an autoencoder and learned non-linear mapping from
the original scRNA-seq data space to a low-dimensional space; it showed biological inter-
pretability through improving the clustering accuracy by removing batch effects [95]. In
addition to batch effects, scRNA-seq has certain limitations such as transcriptional noises,
including variability of gene expression and mRNA degradation. To overcome these prob-
lems, single-cell variational inference (scVI) based on a hierarchical Bayesian model using
stochastic optimization and deep neural networks for probabilistic representation and anal-
ysis of gene expression have been reported [96]. Another autoencoder-based algorithm, i.e.,
single-cell decomposition using a hierarchical autoencoder (scDHA), showed the visualiza-
tion of the transcriptome landscape as well as cell classification and pseudo-time inference
with the combination of a non-negative kernel autoencoder to remove insignificant features;
the second module of a stacked Bayesian autoencoder was used to compress data [97]. The
application of a sparsely connected autoencoder was used to query cell subpopulations to
investigate functional features rather than to classify cell subpopulations [98]; the single-
cell graph neural network (scGNN) comprised multiple autoencoders, such as feature,
graph, cluster, and imputation autoencoders; they successfully represented Alzheimer’s
disease-related neural development and mechanisms [99].

From the aspect of multi-omics analysis, scRNA-seq can be combined with other NGS
methods such as DNA methylation or FISH [100,101]. Seurat was initially developed to
profile scRNA-seq datasets of different cell conditions (i.e., either resting or stimulated),
and beyond species (either humans or mice) [102]. Later, integrated analysis with other
omics data—RNA-seq, single-cell protein, and spatial analysis—was reported for a compre-
hensive understanding of cellular events using the advanced R tool Seurat version 3 [103].
The linked inference of genomic experimental relationships (LIGER) algorithm leveraging
integrated non-negative matrix factorization (NMF) described common and uncommon
features of cell identity. The use of scRNA-seq and DNA methylation data revealed the
mechanisms of cell-type-specific epigenomic regulation [104]. Additionally, single-cell
molecular epigenomics with ML has the potential to reveal a cutting-edge field, i.e., typi-
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cally highly heterogenous cancer tissues and cancer-associated fibroblasts, which are major
constituents and significantly heterogeneous to decode a tumor microenvironment [66,105].
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Figure 2. Schematic diagram of pipeline of scRNA-seq analysis. NGS data (input data or big data) is converted to actionable
data using ML. Although each scRNA-seq technology has its own optimized protocol, in general, tissues or cells are first
dissociated to disaggregated into single cells. At this point, high cell viability (>70%) and less than 30 µm of cell size in
diameter are required from fresh samples to extract RNA. Then, using isolated RNA, cDNA is synthesized for NGS. NGS
data (input data or big data) is converted to actionable data using ML such as cell type identification (classification) or
subtypes identification (clustering). The obtained results (output) should be carefully reviewed if they support the research
hypothesis. Besides, it is also possible to come up with new ideas with obtained scRNA-seq results.

On top of that, scRNA and chromatin accessibility (single-cell assay for transposase-
accessible chromatin sequencing; scATAC-seq), have been reported to identify transcrip-
tional and functional differences between hematopoietic stem cells from liver and bone
marrow [106]. Thus, this topic is discussed in the next section.

4. Single-Cell ATAC-seq and ChIP-seq Analysis Using Machine Learning

During the last decade, analyses of chromatin accessibility have become essential
methods to investigate the epigenetic profiles of various cell types. DNase-seq [107] and
FAIRE-seq [108] are pioneering technologies for analyzing chromatin accessibility; however,
the requirement of a large amount of starting material limits its wide clinical application.
Subsequently, ATAC-seq [109] was introduced in 2013 and has rapidly expanded its ap-
plication, taking advantage of simple protocol involving Tn5 insertion followed by PCR
and less requirements of sample volume. The notable advantage is its success in single-
cell analysis, which was reported by two independent research groups as “scATAC-seq”
and “sciATAC-seq” in 2015 [79,80]. Furthermore, the recently developed droplet-based
single-cell combinatorial indexing for ATAC-seq (dsciATAC-seq) enabled large-scale and
high-throughput profiling of single-cell epigenomes [110].

Simultaneously, various analytical tools have been developed to investigate single-cell
epigenomes using single-cell ATAC-seq data. Because of the high dimensionality and
sparsity of the data, the computational analysis of single-cell ATAC-seq is more challenging
than that of single-cell RNA-seq. To overcome this difficulty, several unsupervised ML
algorithms have been proposed. First, the chromVAR utilized transcription factor (TF) motif
occurrence in the open chromatin regions to project the vector of bias-corrected deviations
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from individual cells onto two dimensions using t-SNE. The advantage of chromVAR is
that it can be used to compute the TF binding profiles associated with significant chromatin
accessibility. Furthermore, chromVAR can be applied to a collection of k-mers, enabling de
novo discovery of previously unannotated motifs [111]. A related approach of chromVAR
is seen in BROCKMAN, where k-mer factorization is applied [112]. SCRAT uses a number
of predefined features, such as TF motif, ENCODE cluster, and MSigDB gene sets [113].
By contrast, scABC relies solely on the patterns of read counts within genomic regions to
cluster cells by using unsupervised k-medoids clustering [114].

Second, natural language processing techniques have been applied to cluster cells
based on similarities in chromatin accessibility. A large-scale study for constructing a
single-cell atlas of in vivo mouse organs by Cusanovich et al. used latent semantic analysis
(LSA) to identify cell clusters [115]. Another example is cisTopic, a probabilistic framework
to discover co-accessible enhancers and stable cell states, which utilizes latent Dirichlet
allocation (LDA) with a collapsed Gibbs sampler to infer “cis-regulatory topics” [116].

Third, Cicero presents an ML framework to predict cis-regulatory DNA interactions
using graphical lasso [117]. Cicero uses sampling and aggregation of groups of similar cells
to quantify correlations between putative regulatory elements and links these regulatory
elements to target genes using unsupervised ML. Interestingly, these predicted interactions
are compatible with other chromatin 3D structure data such as ChIA-PET and Hi-C [117].
Cicero is potentially focused on predicting gene expression and chromatin 3D structure, as
well as chromatin accessibility from single-cell ATAC-seq data [117,118].

Finally, comprehensive pipelines of single-cell ATAC-seq such as Scasat [119] and Sna-
pATAC [120] were recently implemented; they could make single-cell ATAC-seq analysis
easier to access for every researcher regardless of their specialty.

Next, we will describe some research examples of single-cell ATAC-seq using an un-
supervised ML algorithm. Cusanovich et al. constructed a single-cell atlas of adult mouse
tissues and characterized 85 distinct chromatin patterns across 13 different tissues [115].
After combining various ML algorithms (e.g., LSA, Cicero, and Basset) [121], they anno-
tated key regulatory sequences and TFs in diverse mammalian cell types. Moreover, it
is anticipated that this dataset can be utilized to investigate common human traits and
diseases through comparing human genome with mouse genome (Figure 3).

Ranzoni et al. performed an integrative analysis of single-cell RNA-seq and ATAC-seq
of human developmental hematopoiesis, revealing that there are multiple subpopulations
that differ in their overall chromatin accessibility as well as lineage-specific TF activity
within transcriptionally homogeneous cell clusters. They also supported the view that
regulatory programming for future differentiation is primed at the chromatin level within
the same cell cluster defined by scRNA-seq [106].

In conclusion, through combining single-cell ATAC-seq with other sequencing tech-
niques and ML algorithms, it is possible to extensively define cell types and their key
regulatory elements of every species, including humans. These findings provide use-
ful resources in clinical research to investigate human disease traits and refine precision
medicine.
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Figure 3. Schematic diagram of single-cell ATAC-seq analysis effectively leveraging ML. Basset is a deep convolutional
neural network method to learn the functional activity of DNA sequences from genomics data. In particular, Basset allows
us to simultaneously learn that cell’s chromatin accessibility code and annotate every mutation in the genome with its
influence on present accessibility and latent potential for accessibility. Latent semantic indexing cluster analysis uses
dimensional compression to normalize and cluster the data. Cicero uses a graphical lasso model to assign a regularized
joint accessibility score, penalized by genomic distance, to each pair of “open” sites in each cluster. Hence, it is possible
to find sites that were co-accessible in aggregated groups of cells within each cluster. By effectively using ML techniques
in this way, we are able to predict cell clusters, transcription factors binding profiles, and cis-regulatory DNA elements
(Reference [115]).

5. Discussion

Recent advances in single-cell epigenomic technologies have enabled the study of
genomic regulation and dynamics with unprecedented resolution. In this review, we
introduced some of these innovative technologies and how they can identify the trajectory
and state while taking advantage of various ML techniques. In particular, scRNA-seq is
a rapidly developing technology, with several protocols published in the last few years.
As previously mentioned, the most widely used methods are microwell- and droplet-
based. These technologies differ in the way they tag cell-derived transcripts and how
they generate libraries for sequencing. The choice of which method to use depends on the
scientific question, the number of obtained cells, the depth of required information, as well
as the cost. For example, droplet-based methods are best suited for characterizing tissue
composition because they can handle large numbers of cells. Conversely, if only cells with
known surface markers are to be analyzed, it is best to sequence a small number of cells
after enrichment using flow cytometry.

Single-cell analysis allows for pseudotime analysis, which makes it possible to trace
the developmental trajectory of a single cell. This indicates that single-cell epigenomic
technology plays an important role in understanding cellular diversity and discovering
gene regulatory mechanisms. Specifically, gene activation and cell identity are regulated
by TFs, chromatin regulators, non-coding RNAs, and factors that control the chromatin 3D
structure. Furthermore, the importance of cell-to-cell variability in tumor tissues is now
being recognized, and single-cell epigenomic methods will be even more powerful in the
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future to elucidate the mechanisms of gene regulation in diverse cellular environments
regarding development and disease [122].

With the growing number of single-cell epigenomic methods, a key challenge in
this field is the computational combination of various single-cell “omics” methods to en-
able integrated cellular regulatory models. Further advanced ML is required to decode
high-dimensional single-cell data [123]. In this context, previously unknown intermediate
cellular states may become apparent. Indeed, several reports have evaluated intermediate
states that cannot be adequately identified using known cellular markers [124,125]. Al-
though completely reconstructing the identity of a cell may be difficult with the existing
pipeline, careful construction using high-precision ML is feasible.

Furthermore, tumor immunity has been attracting attention in the field of oncology
due to the recent successful clinical application of immune checkpoint inhibitors. In this
context, single-cell analysis has been actively introduced to analyze the heterogeneity of
immune system cells, the diversity of T and B cell repertoires, and antigen specificity. For
example, to assess the breadth of T-cell activation, Want et al. profiled the TCR repertoire by
single-cell sequencing when stimulated with neoantigens and identified sequence motifs
that define an oligoclonal and autologous T cell response [126]. It has also been reported that
accumulation of cytotoxic T cells and NK cells and increase in effector function are observed
when WHSC1 is pharmacologically inhibited by single-cell analysis of immunokinetics
in tumors in an experimental system using mice grafted with prostate tumor cells [127].
Importantly, the ability of ML algorithms to learn complex patterns in data is expected to
be utilized in the analysis of the complex immune system. In fact, a suit of unsupervised
and supervised deep learning methods, called DeepTCR, have also been proposed that
can model highly complex TCR sequencing data by learning a joint representation of a
TCR by CDR3 sequences and V/D/J gene usage [128]. The use of DeepTCR improved
the featurization of TCRs and demonstrated its usefulness in classifying antigen-specific
TCRs and extracting antigen-specific TCRs from noisy scRNA-seq and T-cell culture-based
assays [128]. These results demonstrate the flexibility and capability of ML technology in
analyzing the complex immune system, and further research is expected in the future.

6. Conclusions

As highlighted in this review, ML techniques are currently being applied to single-cell
analysis in various ways, and important knowledge has been accumulated. One of the
weaknesses of single-cell analysis has been the “problem of spatial information”; however,
this problem is now being solved with the release of Visium, a kit for spatial transcriptome
analysis from 10× Genomics, after a study using mouse brain and human breast cancer
that was published by Stahl et al. in 2016 [129–131]. We believe that spatial transcriptome
analysis is an important area in single-cell analysis where ML technology should be actively
introduced in the future. In addition, ML technology plays a central role in the current
development of AI. Its importance in medical AI is widely recognized, and many AI-
equipped medical devices are widely used in actual clinical settings [24,132]. In fact,
single-cell analysis is also expected to contribute to the realization of precision medicine
by revealing gene expression profiles that lead to the prediction of patient prognosis
and stratification of molecular pathologies; clinical applications of single-cell analysis are
expected to progress steadily in the future through the effective use of ML technology.
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