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Abstract
The burden of adolescent depression is high in low- and middle-income countries (LMICs), yet research into prevention is 
lacking. Development and validation of models to predict individualized risk of depression among adolescents in LMICs is 
rare but crucial to ensure appropriate targeting of preventive interventions. We assessed the ability of a model developed in 
Brazil, a middle-income country, to predict depression in an existing culturally different adolescent cohort from Nepal, a low-
income country with a large youth population with high rates of depression. Data were utilized from the longitudinal study of 
258 former child soldiers matched with 258 war-affected civilian adolescents in Nepal. Prediction modelling techniques were 
employed to predict individualized risk of depression at age 18 or older in the Nepali cohort using a penalized logistic regres-
sion model. Following a priori exclusions for prior depression and age, 55 child soldiers and 71 war-affected civilians were 
included in the final analysis. The model was well calibrated, had good overall performance, and achieved good discrimina-
tion between depressed and non-depressed individuals with an area under the curve (AUC) of 0.73 (bootstrap-corrected 95% 
confidence interval 0.62–0.83). The Brazilian model comprising seven matching sociodemographic predictors, was able to 
stratify individualized risk of depression in a Nepali adolescent cohort. Further testing of the model’s performance in larger 
socio-culturally diverse samples in other geographical regions should be attempted to test the model’s wider generalizability.
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Introduction

Major depressive disorder (MDD) is a leading underly-
ing cause of disability worldwide [1]. MDD increases the 
future risk of developing chronic diseases including diabe-
tes mellitus, cardiovascular disease, and stroke [2], and is 
a major contributor to death by suicide globally [1]. MDD 
commonly emerges during adolescence [3, 4], yet despite 
receiving treatment, many adolescents experience a relapse 
of depression [5]. Consequently, functional impairment and 

increased risk of suicide continue into adulthood [6]. Given 
that by age 18, lifetime prevalence of MDD is approximately 
11% [7, 8], this reinforces the need for research to prevent 
the onset of depression in the adolescent period to facilitate 
early intervention and avoid long-term health and socio-
economic disadvantage [9]. Therefore, it is important to 
ascertain which adolescents are most at risk of developing 
depression to effectively target interventions to prevent its 
onset [10].

Factors such as family psychiatric history [11], child-
hood maltreatment [12], female gender [13], chronic pain 
or illnesses [14], are associated with an increased risk of 
depression among adolescents. However, these risk factors 
have mainly been considered in isolation and knowledge 
about the combination of factors that best predicts the 
onset of depression in this critical developmental period 
is limited. One method for estimating combined risk of 
future events is prediction modelling. Advantages of 
this method over standard regression approaches include 
prediction of new or future risks of an outcome at the 
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individual rather than group level, while accounting for 
a wide combination of predictors simultaneously [15]. 
Examples of widely used prediction models include: the 
Framingham Risk Score which is utilized in primary care 
settings to predict individualized future risk of developing 
a first cardiovascular event in 10 years among individuals 
free of cardiovascular disease [16], and the Gail model 
used to predict 5-year and lifetime risk of invasive breast 
cancer in healthy women [17]. The development of models 
to predict individualized risk of future psychiatric health 
outcomes is expanding (though mainly limited to predict-
ing psychosis), but is still in its infancy for depression and 
other mental illnesses [18, 19].

Models that predict MDD have conventionally been 
derived in adult not adolescent populations [20–23], and 
limited to patients who have experienced chronic or life-
threatening medical conditions [24–27] or to predict recur-
rence of depression [28, 29]. The Chicago Adolescent Risk 
Assessment is one known model developed in a US ado-
lescent population to predict 1-year risk of depression in 
adolescents [30]. However, this model was not externally 
validated and overall few researchers have externally vali-
dated depression prediction models in relatively similar but 
socio-culturally or geographically diverse populations to test 
the model’s predictive accuracy [21, 22].

Our group has recently developed a multivariable pre-
diction model to predict individualized risk of developing 
depression in late adolescence using data from the popula-
tion-based 1993 Pelotas Birth Cohort in south Brazil (Pelo-
tas model) [31]. Although the Pelotas model performed 
well in predicting depression in the cohort from Brazil, 
a middle-income country, its ability to accurately predict 
depression among adolescents in resource poor, low-income 
settings is unknown. Nepal presents an opportunity to test 
this because it is considered to be one of the least developed 
countries globally, with ~ 15% of the population below the 
income poverty line [32]. Additionally, Nepal has suffered 
an 11-year (1996–2006) Civil War (also known as the “Peo-
ple’s War”) between the Communist Party of Nepal (Mao-
ist) and the government of Nepal, resulting in the killings 
of over 17,000 people [33]. Nepal comprises a large youth 
population (> 50% of the population younger than age 25) 
transitioning into adulthood [34]. During the war, several 
thousand children were drafted by the Maoist People’s Army 
to be soldiers, sentries, spies, cooks, porters, and messen-
gers [35, 36]. Due to the negative impact to health, social 
well-being, and financial stability imposed during the war, 
one consequence has been a high prevalence of adolescent 
depression observed in Nepal [37], leading to poor quality of 
life [37], and high levels of suicidal ideation [38]. However, 
not all adolescents exposed to this environment developed 
depression, and we do not know which Nepali adolescents 
are at higher risk of developing depression in the future.

Therefore, we assessed the Pelotas model’s ability to pre-
dict depression in late adolescence in an existing adolescent 
cohort from Nepal, to evaluate the performance of the model 
in a socio-culturally different lower income setting.

Methods

Description of study setting and recruitment 
of study cohort

We used quantitative data from a longitudinal study of child 
soldiers and matched civilians in Nepal [38–41]. The study 
was conducted by Transcultural Psychosocial Organization 
Nepal (TPO Nepal). At the end of the war, some former 
child soldiers who returned home participated in reinte-
gration programs sponsored by UNICEF in eight districts 
(Dhankuta, Sindhuli, Makwanpur, Chitwan, Rupandehi, 
Kapilbastu, Dhading, and Dolakha) of Nepal [40]. The pro-
grams included formal education, vocational skill training, 
apprenticeships, or business development skill training to 
enhance their income-generating abilities [42]. This pro-
ject identified and recruited a Nepali cohort of former child 
soldiers, using lists of names of child soldiers provided by 
UNICEF-associated human rights organizations.

Former child soldiers were recruited into the study if they 
were younger than 18 years old at study enrolment, served 
as a soldier for at least 1 month during the war, and if con-
sent was granted by their caregiver and oral assent by the 
child. The first 30 names of former child soldiers enrolled 
in reintegration programs from each of the eight districts 
were invited to participate in the study. A cohort of war-
affected civilian children, matched on age, sex, ethnicity, 
and educational level, who were not associated with armed 
forces and groups (civilian children) were recruited from 
school records. Civilian status was confirmed via interviews 
and name checking on the child soldiers’ lists. None of the 
participants had previously received psychosocial support 
before joining the study.

The Nepali adolescent cohort was aged 11–18 years at 
baseline (wave 1) in 2007 (N = 516), comprising 258 former 
child soldiers who returned home from the war, matched 
with 258 war-affected civilian adolescents [40]. This cohort 
was followed up 1 year later in 2008 (wave 2: N = 456), and 
5 years later in 2012 (wave 3: N = 290) [39]. Due to the high 
illiteracy rate among the study population, trained research-
ers administered questionnaires to former child soldiers and 
civilian children to collect data on a range of characteristics 
during the child soldiers’ longitudinal research.
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Outcome assessment

The outcome in our analysis was of the presence of clini-
cally relevant depression at age 18 or older. Depression was 
assessed using the Nepali version of the Depression Self 
Rating Scale (DSRS) for children at all time points [43, 44]. 
This tool utilized self-reported ratings of ‘Mostly’, ‘Some-
times’, or ‘Never’ for 18 items used to measure depression 
symptoms in the past week. Scores can range from 0 to 36, 
with a cut-off score of 14 and above considered as indicating 
clinical depression in the Nepali population [area under the 
curve (AUC) = 0.82, sensitivity = 0.71, specificity = 0.81] 
[44].

Data harmonization

For this analysis, an a priori decision was made to select 
predictors that most closely matched those in the existing 
prediction model derived in the 1993 Pelotas birth cohort 
in Brazil [31, 45]. The 11 predictors in the Pelotas model 
were ‘biological sex’, ‘skin colour’, ‘drug use’, ‘school 
failure’, ‘social isolation’, ‘fight involvement’, ‘relation-
ship with mother’, ‘relationship with father’, ‘relationship 
between parents’, ‘childhood maltreatment’, and ‘ran away 
from home’. For the ‘skin colour’ Pelotas variable, we used 
caste/ethnicity in Nepal, with low caste (Dalit) considered 
the at-risk group in comparison to high caste (Brahman/
Chhetri) and ethnic minority (Janajati) groups. This cat-
egorization was based on identification of low caste as a 
risk factor in multiple prior studies in Nepal [37, 46]. More 
details on the availability of matching predictors and how 
they were assessed in the Pelotas and Nepali samples are 
provided in Table S1.

Selection of Nepali sample to be included 
in prediction modelling analysis

Because the Nepali cohort was not a birth cohort and ado-
lescents were different ages (11–18 years) at baseline (wave 
1), we assessed exposure to potential risk factors if they 
occurred before age 18 and evaluated the outcome of depres-
sion at wave 3 when participants were aged 18 or older. 
Adolescents were, therefore, included in the analysis if they 
met the following criteria: younger than 18 at wave 1 or 2; 
did not have evidence of depression at wave 1 or 2; aged 18 
or older at wave 3; and assessed for depression at all waves. 
Adolescents were excluded if they were: lost-to-follow-up at 
waves 2 or 3; older than 18 at wave 1 or 2; younger than 18 
at wave 3; or had evidence of depression at waves 1 or 2 (see 
Fig. S1 for a flowchart explaining the selection of the final 
sample included in the analysis). The final sample included 
in the analysis comprised 126 adolescents (71 civilians and 
55 former child soldiers).

Data analysis

Data management was performed using STATA, version 
15.1 [47]. All models were implemented using the R Sta-
tistics software, version 3.5.3 [48]. The data analysis com-
prised several steps. First, the linear predictor from the 
penalized logistic regression model [which used penalized 
maximum likelihood estimation (PMLE)], developed in 
the Pelotas cohort (Pelotas model) was recalculated using 
only the same predictor variables that were also available 
in the Nepali dataset. This model was then applied in the 
Nepali dataset to assess the adequacy of its performance 
(standard external validation). Second, due to differences 
in the prevalence of depression in late adolescence between 
the Pelotas and Nepali cohorts, the model intercept became 
mis-calibrated. The Pelotas model intercept (baseline risk) 
was, therefore, adjusted through recalibration so that the 
average predicted probability was equal to the observed fre-
quency of depression in the Nepali cohort (adjusted external 
validation) [49]. Third, to account for different strengths of 
predictors between the Pelotas and the Nepali cohorts, the 
regression coefficients for the predictors were re-estimated 
in the Nepali dataset instead of the Pelotas dataset and a new 
refitted linear predictor was obtained (refitted model). This 
represents the performance of the model if the regression 
coefficients from the Pelotas cohort were the same as the 
regression coefficients in the Nepali cohort [50].

Sensitivity analyses

As a sensitivity analysis, we explored whether the Pelotas 
model’s ability to predict depression differed according to 
child soldier status, given that being a child soldier increased 
the risk of depression among Nepali youth [37]. To do so, 
we fitted a logistic regression model which comprised the 
linear predictor derived from the Pelotas model, the child 
soldier variable, and their interaction term.

Net reclassification improvement (NRI) methods were 
also used to assess improvement in the model performance 
by assessing to what extent adolescents were correctly 
reclassified into high- and low-risk depression categories 
by the inclusion of child soldier status in the Pelotas model 
[51].

Evaluation of model performance

The predictive performance of the Pelotas prediction model 
externally validated in the Nepali dataset was evaluated by 
assessing: (1) calibration—the agreement between observed 
depression in the Nepali dataset and predicted probability 
of depression from the Pelotas model; and (2) discrimina-
tion—how well the prediction model can differentiate those 
with depression from those without depression [52]. Model 



216 European Child & Adolescent Psychiatry (2021) 30:213–223

1 3

calibration was evaluated visually via calibration plots. We 
referred to the values of (1) calibration-in-the-large—com-
parison of the average of all predicted probabilities with the 
average observed depression cases in the Nepali dataset, 
with values closer to zero indicating better model perfor-
mance; and (2) calibration slope—measure of agreement 
between observed depression and predicted risk of depres-
sion for all predictors in the Nepali dataset (a perfect model 
has a calibration slope of 1; [53]). A Chi-square test to 
measure unreliability of the calibration accuracy was per-
formed to assess whether there was a statistically significant 
difference between the model predictions and the 45° line 
[53]. We assessed discrimination using the receiver operator 
characteristic (ROC) curve. An area under the curve (AUC) 
value of 0.5 indicates that a model does not discriminate bet-
ter than chance, while 1 indicates that a model discriminates 
perfectly. Guidelines suggest AUC values over 0.7 represent 
a good model whereas values ≥ 0.8 indicate strong models 
[54]. Overall, model performance was assessed using the 
Brier score [52]. This calculates the average squared differ-
ence between the predicted probability of depression and the 
actual probability of depression [55]. A Brier score of 0% 
represents a perfect model.

Note, unlike traditional regression models, penalized 
regression models do not permit interpretation of coeffi-
cients for the individual predictors included in the model. 
This is because applying a penalty to reduce over-fitting to 
the data introduces bias into the regression estimates result-
ing in the coefficients no longer being reflective of true pop-
ulation-level associations with depression risk. Moreover, 
the purpose of prediction models is to identify the combina-
tion of predictor variables that together most accurately pre-
dict an individual’s risk of developing depression rather than 
considering the role of each predictor separately. Therefore, 
only the overall model performance statistics are provided 
in this paper.

Results

After the data harmonization, there was 13.2% of the origi-
nal Pelotas model’s information lost due to the unavailability 
of 4 of the 11 predictors in the Nepali dataset (see Table S1). 
All included participants had complete data on the outcome 
and all seven predictors included in the model (‘biological 
sex’, ‘caste/ethnicity’, ‘drug use’, ‘school failure’, ‘social iso-
lation’, ‘fight involvement’, and ‘childhood maltreatment’).

The sample included in the final analysis comprised 126 
Nepali adolescents. One third of the sample was female 
(34.1%), one-fifth was low caste (18.3%), and 43.7% were 
former child soldiers. A substantial proportion experienced 
probable childhood maltreatment (47.7%), while a smaller 
proportion experienced severe childhood maltreatment 

(27.8%). School failure was low (14.3%) among the Nepali 
adolescents and a smaller minority showed characteristics 
of being socially isolated (5.6%). No one admitted to using 
drugs, and behavioural problems such as getting into fights 
was reasonably uncommon (13.5%). The prevalence of 
depression at age 18 or older at wave 3 in the Nepali cohort 
was 19.8% (25/126 scored 14 or more on the DSRS, scores 
ranged from 0 to 22) comprising 18 (72%) women and 15 
(60%) former child soldiers, while in the Pelotas cohort, the 
point prevalence of depression at age 18 was 3.1%. There 
was no difference in the gender, caste/ethnicity, and child 
soldier status between participants included and excluded 
from the final analysis (see Table S2).

External validation in Nepali cohort

When applied to the Nepali cohort, the predictive model 
showed reasonable capacity to discriminate between indi-
viduals who developed depression in late adolescence and 
those who did not (AUC = 0.73; Bootstrap-corrected 95% 
CI 0.62–0.83; Fig. 1a). Initially, the model was not well 
calibrated, but this improved when the intercept was cor-
rected (calibration-in-the-large reduced from 2.44 to 0.00) 
(Table 1) (Fig. 2a, b). The p value from the Chi-square test 
for unreliability of the calibration accuracy was not sig-
nificant (χ2 = 0.2702, p = 0.874). This affirms the model 
achieved good calibration since there was no statistically 
significant difference between the model predictions and 
the ideal 45° line. The overall performance of the model 
also improved slightly after adjustment of the intercept as 
indicated by a reduction in the Brier score from 0.18 to 0.14 
(Table 1). The final refitted model’s discriminative capac-
ity AUC was 0.83; bootstrap-corrected 95% CI 0.74–0.91 
(Fig. 1b). Its overall performance, as expected, was also bet-
ter (Brier score reduced to 0.12) (Table 1).

Sensitivity analysis findings

There was no statistically significant interaction observed 
between child soldier status and the linear predictor derived 
from the Pelotas model in predicting depression in the 
Nepali cohort (p value = 0.802). The overall NRI result was 
also not significant for inclusion of child soldier status in the 
model (NRI = 0.0205, lower CI − 0.0829, upper CI 0.1519; 
standard error = 0.0603). Moreover, there was only a negli-
gible change in the AUC value (0.01) between the Pelotas 
model in the Nepal cohort (AUC = 0.73) and the model with 
child soldier status included (AUC = 0.74). This indicates 
that the new model containing child soldier status as a pre-
dictor did not improve the overall Pelotas model’s predictive 
capacity to estimate those at higher risk of future depression. 
The proportion of depressed cases that moved up through the 
categories from low risk to high risk when the new model 
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with child soldier status included was used was not signifi-
cant (NRI+  = 0.0800, lower CI 0.0000, upper CI 0.2083; 
standard error = 0.0534). However, the proportion of non-
depressed cases that moved down the categories from high 
risk to low risk was significant (NRI− = − 0.0594, lower CI 
− 0.1100, upper CI − 0.0098). This implies that including 
child soldier status in the model may be better at reducing 
false positives for future risk of depression in Nepal, but not 
false negatives.

Discussion

Summary of the main findings

The novel predictive model developed in an adolescent 
cohort in Pelotas, Brazil, comprising seven individual and 
social predictors (gender, caste/ethnicity, childhood mal-
treatment, school failure, fights, drug use, and social iso-
lation) was able to acceptably predict clinically relevant 

depression in late adolescence in a Nepali adolescent cohort 
free of depression. The model demonstrated a good abil-
ity to differentiate adolescents who did and did not develop 
depression. This means that a randomly selected adolescent 
with depression had a higher risk prediction score than a 
randomly selected adolescent without depression. After 
adjustment, the model predictions were better aligned with 
the observed prevalence of depression in Nepal. There was 
also good overall performance despite the small sample size, 
and how socio-culturally divergent the Nepali adolescent 
population was compared to the Brazilian cohort. Moreo-
ver, the model was able to predict depression similarly for 
both child soldiers and war-affected civilian adolescents in 
Nepal inferring its ability to predict future risk of depression 
amongst individuals without evidence of previous depres-
sion from somewhat different backgrounds.

The Pelotas model’s ability to differentiate between ado-
lescents who did or did not develop depression in Nepal 
(AUC = 0.73) was comparable to the widely used Framing-
ham risk score which predicts whether men (AUC = 0.76) 

Fig. 1  ROC curve for a the 
Pelotas model externally 
validated in Nepal data [area 
under the curve (AUC) = 0.73; 
bootstrap-corrected 95% confi-
dence interval 0.62–0.83], and b 
the Pelotas model refitted in the 
Nepal data (AUC = 0.83; boot-
strap-corrected 95% confidence 
interval 0.74–0.91). The y-axis 
shows the true positive rate: 
the proportion of adolescents 
correctly identified with depres-
sion. The x-axis shows the false 
positive rate: the proportion of 
adolescents who were wrongly 
identified as having depression. 
The grey diagonal line repre-
sents a model that discriminates 
the same as chance
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and women (AUC = 0.79) will develop cardiovascular dis-
ease [16]. It is also similar to a model developed to predict 
onset of major depression among adults in the US general 
population (AUC = 0.75) [23]. The Pelotas model has previ-
ously been assessed in two independent cohorts from high-
income countries (the United Kingdom and New Zealand) 
with adolescents who had no evidence of previous depres-
sion [31]. The discriminative ability in the Nepali cohort 
was slightly better (AUC = 0.73) than its performance in 
the UK (AUC = 0.59) and New Zealand (AUC = 0.63) [31]; 
however, the 95% CI suggests the true area under the curve 
for the Nepali cohort can lie between 0.62 and 0.83. None-
theless, this suggests that the Pelotas adolescent depression 
risk model may work better in other LMIC contexts than 
in high-income countries. However, further testing with 
suitable adjustments in a range of other LMICs is required 
before it can be utilized on a global scale.

Limitations

When a model is externally validated in a different inde-
pendent cohort, one of the main challenges is data harmoni-
zation. Although, we were able to closely match 7 of the 11 
predictors in the Nepali dataset, differences in data collec-
tion instruments used in Nepal and Brazil resulted in imper-
fect harmonization. For instance, the Nepali childhood mal-
treatment composite variable lacked appropriate measures 

for ‘separation from family’, ‘feeling hated’ or ‘unwanted 
by close family members’ so we were not able to capture 
entirely the same construct. There were also differences in 
how depression was assessed, with a cut-off on a symptom 
measure (DSRS) being used to indicate clinically relevant 
depression in the Nepali cohort rather than a diagnosis of 
depression as was used in the Pelotas cohort. Nonetheless, 
this cut-off on the DSRS has been clinically validated in 
Nepal and shown to discriminate well between Nepali youth 
with and without a diagnosis of depression [44]. Further-
more, differences in the prevalence and reporting of risk 
factors may differ by context. For example, drug use was 
completely denied by Nepali adolescents (0% in Nepal vs 
62.4% in Pelotas). In Nepal, admitting to using drugs could 
have reduced the chance of child soldiers being enrolled into 
one of the UNICEF-sponsored reintegration programs and 
thus tends to be underreported. Additionally, the question 
used to measure ‘drug use’ did not elucidate the inclusion 
of alcohol, marijuana, or tablets. Hence respondents prob-
ably assumed it to mean illicit drugs only, leading to non-
disclosure of the use of legal substances. Moreover, we were 
unable to exclude individuals who had an IQ < 70 or who 
had not gone through puberty as was done in the original 
Pelotas analysis.

The Nepali adolescent cohort was not a birth cohort, 
hence it is unlikely to be representative of the entire Nepali 
adolescent population in 2007. The cohort also comprised 

Table 1  Comparison of performance metrics for the Pelotas model when externally validated in the Nepali cohort compared to its apparent and 
internal validation in the Pelotas cohort

86.8% of the original Pelotas’ model’s information was available for external validation due to the availability of only 7 of the 11 predictors in 
the Nepali dataset
Apparent validation: the performance of the Pelotas model in the development data (in the Pelotas cohort)
Internal validation: the performance in the Pelotas cohort after controlling for over-optimism, using bootstrapping techniques
External validation (standard): the performance when applied to the Nepali sample
External validation (adjusted): the performance in the Nepali sample after the intercept was corrected
Refitted model: regression coefficients for the Pelotas model re-estimated in the Nepali dataset
AUC: area under the curve of the receiver operating characteristic (presented as a proportion). The AUC is identical to the C-statistic for binary 
outcomes
Brier score: quadratic scoring rule that combines calibration and discrimination—a Brier score of 0 represents a perfect model
Calibration-in-the-large reflects the model intercept. Calibration slope of a perfect model is equal to 1
*Unable to derive 95% confidence interval for the internal validation model

Model assessment Performance meas-
ures

Pelotas cohort Nepali cohort

Apparent validation Internal validation Standard external 
validation

Adjusted external 
validation

Refitted model

Overall perfor-
mance or model 
fit

Brier score 0.03 0.03 0.18 0.14 0.12

Discrimination AUC (95% CI) 0.78 (0.73–0.82) 0.71 (*) 0.73 (0.62–0.83) 0.73 (0.62–0.83) 0.83 (0.74–0.91)
Calibration Calibration-in-the-

large
0.00 0.02 2.24 0.00 0.00

Calibration slope 1.26 1.00 1.18 1.18 1.50
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a sample of former child soldiers of the Maoist army who 
voluntarily returned home after the war matched with civil-
ian children. Hence, those who did not return home or child 
soldiers elsewhere may have different risks for depression 
[37]. The Pelotas sample was a birth cohort and risk fac-
tors were assessed if they occurred at age 15. Conversely, 
the cross-sectional cohort design in Nepal, meant that not 
all adolescents in Nepal had the same assessment age for 
some predictors. This along with the reasonably high loss-
to-follow-up rate (43.8% at wave 3) created challenges in 
determining the ‘at risk’ period. Finally, the performance 
of the model should be interpreted with caution due to the 

potential for estimates to be imprecise due to the relatively 
small sample size.

Implications

In Nepal, less than 1% of the Nepal government’s health-
care budget is spent on mental health and > 90% of the 
population in need of mental health services have no 
access to treatment [56]. Identification and early inter-
vention for adolescents at higher risk of depression could 
potentially reduce the high suicide rates [57] and prevent 
morbidity [58] in this country. Using a tool comprising 

Fig. 2  Calibration plot for a the Pelotas model externally validated in 
the Nepal dataset, and b when the intercept of the Pelotas model was 
adjusted. Graphical display of model predictions (as depicted by the 
black flexible calibration line with 95% confidence limits around the 
model predictions as dashed lines) on the x-axis and observed propor-

tion of depression in the Nepali cohort on the y-axis. The calibration 
plots show how well the model predictions align with the observed 
rate of depression in Nepal. Perfect agreement between the predic-
tions and the observed rate are indicated by perfect alignment on the 
ideal line
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relatively easy-to-obtain factors to predict which adoles-
cents are most at risk of developing depression could help 
target prevention initiatives.

It is also essential to conduct qualitative research with key 
stakeholders to gather perspectives about the feasibility and 
acceptability of using a depression prediction tool in Nepal. 
We need to advance our understanding of ways to embark 
upon predicting risk of depression within a culture where 
mental illness and experience of traumatic events are stig-
matized [59]. New educational and awareness interventions 
that challenge social stigma towards mental health problems 
should thus also be considered prior to any future imple-
mentation of a risk screening tool in Nepal [60]. Moreover, 
careful consideration of the ethical issues surrounding the 
identification of adolescents at high risk of depression in 
low-resource settings where provision of effective interven-
tions to prevent depression is limited is also required [61, 
62].

Conclusion

A model comprising seven demographic and social pre-
dictors developed in a middle-income country was able to 
reasonably predict depression among adolescents in a socio-
culturally diverse, low-income country that was afflicted by 
humanitarian crises. We recommend testing the performance 
of the model in other adolescent cohorts from diverse con-
texts and geographical regions and with larger sample sizes 
before it is used in health, educational or social services’ 
contexts. Further exploratory research on the inclusion of 
more context-specific factors in the predictive model would 
bring added information to its replicability and generaliz-
ability across settings.
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