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Abstract: Protein solubility is an important thermodynamic parameter that is critical for the char-
acterization of a protein’s function, and a key determinant for the production yield of a protein in
both the research setting and within industrial (e.g., pharmaceutical) applications. Experimental
approaches to predict protein solubility are costly, time-consuming, and frequently offer only low
success rates. To reduce cost and expedite the development of therapeutic and industrially relevant
proteins, a highly accurate computational tool for predicting protein solubility from protein sequence
is sought. While a number of in silico prediction tools exist, they suffer from relatively low prediction
accuracy, bias toward the soluble proteins, and limited applicability for various classes of proteins. In
this study, we developed a novel deep learning sequence-based solubility predictor, DSResSol, that
takes advantage of the integration of squeeze excitation residual networks with dilated convolutional
neural networks and outperforms all existing protein solubility prediction models. This model
captures the frequently occurring amino acid k-mers and their local and global interactions and
highlights the importance of identifying long-range interaction information between amino acid
k-mers to achieve improved accuracy, using only protein sequence as input. DSResSol outperforms
all available sequence-based solubility predictors by at least 5% in terms of accuracy when evaluated
by two different independent test sets. Compared to existing predictors, DSResSol not only reduces
prediction bias for insoluble proteins but also predicts soluble proteins within the test sets with an
accuracy that is at least 13% higher than existing models. We derive the key amino acids, dipeptides,
and tripeptides contributing to protein solubility, identifying glutamic acid and serine as critical
amino acids for protein solubility prediction. Overall, DSResSol can be used for the fast, reliable, and
inexpensive prediction of a protein’s solubility to guide experimental design.

Keywords: deep learning; dilated convolutional neural network; DSResSol; protein solubility;
squeeze excitation residual network

1. Introduction

Solubility is a fundamental protein property, that can give useful insights into the
protein’s function or potential usability, for example, in foams, emulsions, and gels [1], and
therapeutics applications such as drug delivery [2,3]. In practice, the analysis of protein
solubility is the most important determinant of success (i.e., high yields) in therapeutic pro-
tein and protein-based drug production [4,5]. In the research setting, producing a soluble
recombinant protein is essential for investigating the functional and structural properties
of the molecule [6]. To improve yields experimentally, there exist certain refolding methods
that utilize weak promoters and fusion proteins or optimize expression conditions, e.g., by
using low temperatures [4,5]. However, these methods cannot ensure the production of
soluble proteins from a relatively small trial batch size as they are limited by production
cost and time. Given these concerns, reliable computational approaches for discovering

Int. J. Mol. Sci. 2021, 22, 13555. https://doi.org/10.3390/ijms222413555 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6093-031X
https://doi.org/10.3390/ijms222413555
https://doi.org/10.3390/ijms222413555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413555
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413555?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13555 2 of 20

potentially soluble protein targets for experimental testing can help to avoid expensive
experimental trial and error approaches.

A protein’s structure and sequence features such as the isoelectric point, polarity, hy-
drophobicity, turn-forming amino acids, etc., are crucial intrinsic factors in protein solubility
determination [7–9]. On this basis, several in silico approaches have been developed to pre-
dict protein solubility by using the protein sequence and its features. The majority of these
tools use traditional machine learning models such as support vector machines (SVM) [10]
and gradient boosting machines [11], employing pre-extracted features (i.e., features that
are extracted from the protein sequences via other bioinformatics tools before being fed
into machine learning models) as input for these models. For example, SOLpro employs
two-stage SVM models for training 23 extracted features from the protein sequences [5].
PROSO II utilizes a two-layered structure, including the Parzen window [12] and first level
logistic regression models as the first layer and a second-level logistic regression model
as the second layer [13]. In more recent models such as PaRSnIP [14], gradient boosting
machine models are used. This predictor utilizes the frequency of mono-, di-, and tripep-
tides from the protein sequence in addition to other biological features such as secondary
structure, and the fraction of exposed residues in different solvent accessibility cutoffs as
training features. SoluProt is the newest solubility predictor using a gradient boosting
machine for training [15]. To evaluate the performance of this tool, a new independent test
set was utilized. Notably, the frequency of important dimers extracted from the protein
sequences was used as an input feature of the SoluProt model [15]. All the aforementioned
models are two-stage models, with a first stage set up for extracting and selecting features
and a second stage employed for classification. Deep learning (DL) models circumvent the
need for a two-stage model. DeepSol is the first deep learning-based solubility predictor
proposed by Khurana and coworkers [16] built as a single stage predictor through the use
of parallel convolutional neural network layers [17] with different filter sizes to extract high
dimensional structures encoding frequent amino acid k-mers and their non-linear local
interactions from the protein sequence as distinguishable features for protein solubility
classification [16].

In this study, a novel deep learning architecture and framework is proposed to create a
sequence-based solubility predictor that outperforms all currently available state-of-the-art
predictors: Dilated Squeeze excitation Residual network Solubility predictor (DSResSol).
Specifically, we employ parallel Squeeze-and-Excitation residual network blocks that in-
clude dilated convolutional neural network layers (D-CNNs) [18], residual networks blocks
(ResNet) [19], and Squeeze-and-Excitation (SE) neural network blocks [20] to capture not
only extracted high dimensional amino acid k-mers from the input protein sequence but
also both local and long-range interactions between amino acid k-mers, thereby increas-
ing the information extracted by the model from the protein sequence. This framework
can capture independent, non-linear interactions between amino acid residues without
increasing the training parameters and run time and offers a significant improvement
in performance compared to other models. Our work is inspired by recent studies us-
ing dilated convolutional neural networks and SE-ResNet for protein sequence and text
classification [21,22].

The traditional method to capture long-range interactions in data and to solve van-
ishing gradient problems is to use Bidirectional Long Short-Term (BLSTM) memory net-
works [23,24]. However, BLSTM implementation significantly increases the number of
parameters in the model. Thus, we use D-CNNs instead of BLSTM because D-CNNs
perform simple CNN operations, but over every nth element in the protein sequence, re-
sulting in captured long-range interactions between amino acid k-mers. ResNet is a recent
advance in neural networks that utilizes skip connections to jump over network layers to
avoid the vanishing gradient problem and gradually learns the feature vectors with many
fewer parameters [19]. The Squeeze-and-Excitation (SE) neural network explicitly blocks
model interdependencies between channels, thereby directing higher importance to specific
channels within the feature maps over others. Thus, by designing a novel architecture that
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combines these three neural networks in a specific manner together with parallel CNNs
layers, a highly accurate solubility predictor is built. In the first model instance, DSResSol
(1), we use only protein sequence as input and protein solubility as output. The second
model instance, DSResSol (2), includes pre-extracted biological features added to the model
as a hidden layer to improve the model’s performance. DSResSol is evaluated on two
different independent test sets and is the first protein solubility predictor outperforming
all existing tools on two distinct test sets, confirming its useability for different classes of
proteins expressed in various host cells. By contrast, all existing tools have been built to
work on a single test set for a specific class of proteins. DSResSol shows an improvement
in accuracy of up to 13% compared with existing tools. Additionally, DSResSol reduces
bias within the insoluble protein class compared to existing tools. We further investigate
the most important single amino acids, dipeptides, and tripeptides contributing to pro-
tein solubility, which are directly extracted from feature maps in layers of the DSResSol
architecture, with close alignment to experimental findings. We find that DSResSol is a
reliable predictive tool that can be used for possible soluble and insoluble protein targets,
achieving high accuracy, with improved relevance for guiding experimental studies.

2. Results
2.1. Model Performance

A 10-fold cross-validation is performed for the training process. In each cross-
validation step, the training set is divided into ten parts where nine parts are used for
training and one part is used for validation. The performance of the DSResSol model is
reported by using the ten models. To evaluate the stability in performance results, we use
four different metrics: accuracy, precision, recall, and F1-score. Figure 1 represents the box
plots of these metrics for all ten models obtained through 10-fold cross-validation for both
DSResSol (1) and DSResSol (2) on both independent test sets. Notably, the variance in box
plots corresponding to each metric for both DSResSol (1) and DSResSol (2) is very small,
highlighting the outstanding stability in the performance of the DSResSol predictor. For
example, for DSResSol (2), among 10 models, the best model has an accuracy of 79.2% and
the weakest model has an accuracy of 78.4%, with a variance of 0.8% (Tables S1 and S2).
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Figure 1. Box plot for 10 models obtained from 10-fold cross-validation for both DSResSol (1) and DSResSol (2) considering
four metrics: ACC (accuracy), Per (precision), Rec (recall), and F-1 (f-1 score) for (A) Chang et al. test set [25], (B) NESG test
set. Note: blue and green box plots represent the score distribution for DSResSol (1) and DSResSol (2), respectively.

It is worth noting that the reason for significant differences between the performance
of the model on the first and second test sets is not due to overfitting or overtraining. The
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difference between accuracy in training and validation for both DSResSol 1 and DSResSol
(2) is less than 1.5% (Tables S1 and S2), suggesting that neither model has an overfitting
problem. Therefore, we conclude that the difference between the performance in different
test sets originates from the nature of the test sets. Specifically, the protein sequences within
the second test set are expressed in E. coli. while, for the training process, we used a training
set that includes mixed proteins (expressed in E. coli or other host cells) to achieve a more
comprehensive model (Table 1).

Table 1. Performance of DSResSol in comparison with known existing models on first independent test set [25]. Note: Best performing
method is in bold.

Model ACC MMC Selectivity
(Soluble)

Selectivity
(Insoluble)

Sensitivity
(Soluble)

Sensitivity
(Insoluble)

Gain
(Soluble)

Gain
(Insoluble)

DSResSol (2) 0.796 0.589 0.817 0.782 0.769 0.823 1.634 1.564

DSResSol (1) 0.751 0.508 0.786 0.722 0.691 0.813 1.572 1.445

SoluProt 0.682 0.382 0.701 0.670 0.722 0.643 1.403 1.342

DeepSol S2 0.762 0.546 0.821 0.721 0.681 0.843 1.642 1.442

DeepSol S3 0.760 0.543 0.801 0.725 0.707 0.822 1.602 1.451

PaRSnIP 0.720 0.472 0.761 0.723 0.698 0.743 1.522 1.446

DeepSol S1 0.720 0.471 0.752 0.706 0.691 0.749 1.504 1.412

PROSSO II 0.638 0.345 0.671 0.682 0.693 0.662 1.342 1.365

SCM 0.600 0.214 0.650 0.572 0.422 0.773 1.301 1.145

PROSO 0.581 0.161 0.582 0.575 0.541 0.622 1.164 1.151

CCSOL 0.543 0.083 0.543 0.539 0.514 0.572 1.087 1.081

RPSP 0.520 0.032 0.522 0.517 0.447 0.588 1.044 1.035

To compare the performance of DSResSol with the best existing prediction tools, two
different testing sets are employed, the first one proposed by Chang et al. [25] and the sec-
ond one, NESG dataset, proposed by Price et al. [26] and refined by Hon et al. [15]. Tables 1
and 2 display the performance of eight solubility predictors on both test sets. DSResSol (2)
outperforms all available sequence-based predictor tools when the performance is assessed
by accuracy, MCC, sensitivity for soluble proteins, selectivity for insoluble proteins, and
gain for insoluble proteins.

Table 2. Performance of DSResSol in comparison with known existing models on NESG test set [15]. Note: Best performing method is
in bold.

Method ACC MCC Selectivity
(Soluble)

Selectivity
(Insoluble)

Sensitivity
(Soluble)

Sensitivity
(Insoluble)

Gain
(Soluble)

Gain
(Insoluble)

DSResSol (2) 0.629 0.273 0.606 0.663 0.73 0.53 1.212 1.326

DSResSol (1) 0.557 0.169 0.558 0.555 0.54 0.58 1.117 1.11

SoluProt 0.578 0.189 0.575 0.581 0.6 0.56 1.15 1.162

PROSSO II 0.565 0.143 0.578 0.555 0.48 0.66 1.157 1.11

SWI 0.558 0.142 0.545 0.58 0.7 0.42 1.09 1.16

CamSol 0.535 0.115 0.548 0.527 0.39 0.68 1.097 1.054

ESPRESSO 0.493 0.093 0.493 0.492 0.55 0.44 0.987 0.984

rWH 0.519 0.133 0.532 0.513 0.31 0.73 1.065 1.026

DeepSol S2 0.546 0.132 0.894 0.56 0.22 0.88 1.788 1.12

SOLpro 0.5 0.089 0.5 0.5 0.48 0.52 1 1
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For the first test set, we find that only the sensitivity value for the insoluble class,
and the selectivity value for the soluble class were slightly inferior to the close competitor,
DeepSol S2 [16]. The accuracy and MCC of DSResSol (2) are higher compared to DeepSol
by at least 4% and 7%, respectively (Table 1). In addition, the sensitivity of DSResSol (2)
for both soluble and insoluble proteins is close in value, suggesting that the DSResSol
(2) model can predict both soluble and insoluble protein sequences with high accuracy
and minimal bias. This consistency is missing in DeepSol S2 and DeepSol S3, the most
accurate predictors to date. The sensitivity of DSResSol (2) for insoluble protein is about
83% which is comparable to the current best predictor (DeepSol S2 = 85%). On the other
hand, DSResSol (2) can identify soluble proteins with higher predictive accuracy (77%)
than all existing models, including DeepSol S2 (68%), DeepSol S3 (70%), and PaRSnIP
(70%). There is a 16.2% and 12.7% difference in sensitivity between soluble and insoluble
classes, for DeepSol S2 and DeepSol S3, respectively, where the insoluble class is predicted
with higher accuracy. By contrast, the difference for the DSResSol (2) model is less than 6%,
representing the outstanding capability of DSResSol (2) for identifying both soluble and
insoluble classes and thereby reducing prediction bias.

The DSResSol (1) model performs comparably to DeepSol S2 and DeepSol S3 models
and outperforms other models such as PaRSnIP and DeepSol S1. The performance of
DSResSol (1) is competitive with DeepSol S2 and DeepSol S3; notably, however, in con-
trast to DeepSol S2 and DeepSol S3, DSResSol (1) obtains a similar performance without
additional biological features as complimentary information in the training process. The
accuracy of DSResSol (1) is only 1% lower than DeepSol S2, and higher by at least 4% in
accuracy and 7% in MCC than DeepSol S1, suggesting that our proposed model architecture
can capture more meaningful information from the protein sequence than DeepSol S1 by
using only protein sequence as input for the training process.

Figure 2A,B show the Receiver Operating Characteristic (ROC) curve and the recall
vs. precision curve for seven different solubility predictors, using the first independent
test set [25]. The area under curve (AUC) and area under precision recall curve (AUPR)
for DSResSol (2) are 0.871 and 0.872, respectively, which is at least 2% higher than other
models confirming that the DSResSol (2) model outperforms other state-of-the-art available
predictors. Figure 2C shows the accuracy of models in different probability threshold
cutoffs. The highest accuracy for DSResSol (2) and DSResSol (1) is achieved at the proba-
bility thresholds equal to 0.5. This achieved result is due to using a balanced training and
testing set.
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Figure 2. Comparison of the performance of DSResSol models with DeepSol [16] and PaRSnIP [14] models. (A) Receiver
operating curve (ROC), (B) recall-precision curve, (C) accuracy-threshold cutoffs curve. The cutoff threshold discriminates
between the soluble and the insoluble proteins. The curve for PROSSO II is obtained with permission from Bioinformat-
ics [16].

For the second test set, (the newest test set to date), the performances of both models
are evaluated and compared with eight different available sequence-based tools. Table 2
represents the performance of the DSResSol models on the NESG test set. Evaluation
metrics include both threshold-dependent metrics such as accuracy and MCC as well as
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threshold-independent metrics such as area under ROC curve value. The results represent
that the accuracy and MCC of DSResSol (2) is at least 5% and 50% more than SoluProt tools,
respectively. Furthermore, DSResSol (2) achieves the highest AUC value (0.68) among other
tested solubility predictors on the second independent test set. The DSResSol (1) model,
using only protein sequences for training, achieves comparable results with other tools such
as SoluProt [15] and PROSSO II [13]. The accuracy value for DSResSol (1) only is 2% lower
than the best competitor (SoluProt). This demonstrates an outstanding performance of the
DSResSol (1) model which does not take advantage of using additional biological features
for training, confirming that DSResSol (1) indeed captures the most meaningful features
from the protein sequence to distinguish soluble proteins from insoluble ones. Furthermore,
the sensitivity of DSResSol (2) for soluble proteins is 73% which is significantly higher than
SoluProt (at 13%). Figure 3A, B displays the threshold-independent evaluation metrics to
show the performance of our models in comparison to three different existing models for
the second independent test set (NESG) [26]. The area under ROC curve (AUC) and area
under precision-accuracy curve (AUPR) are 0.683 and 0.678, respectively, which is at least
8% higher than the best existing competitor, SoluProt. Figure 3C shows the accuracy of the
tested models at different solubility thresholds. The highest accuracy (62%) for DSResSol
models is obtained at the solubility threshold equal to 0.5.
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We also use the probability score distribution to evaluate DSResSol on both test sets.
For the first test set, we consider the probability score distribution of DSResSol and close
competitors (PaRSnIP [14] and DeepSol [16]) in violin plots (Figure 4) for both soluble and
insoluble proteins. The distribution of scores for the four models shown in Figure 4 does
not follow a normal distribution. For soluble and insoluble proteins, the score distribution
plot shows that although DeepSol S2 like DSResSol (1) and DSResSol (2) gives more than a
99% level of confidence for the solubility prediction, the density of scores for DSResSol (2)
in soluble proteins (values near score = 1) and for insoluble proteins (values near score = 0)
is much higher than for DeepSol S2, confirming the better performance of DSResSol over
DeepSol S2. In contrast to DSResSol and DeepSol S2, the score distribution for the PaRSnIP
model does not reach a score = 1 for soluble and 0 for insoluble proteins, suggesting
poor performance for PaRSnIP. To compare the score distribution of DSResSol (1) and
DeepSol S2, we can see that near the probability score cutoff = 0.5, DSResSol (1) has greater
density scores than DeepSol S2, suggesting lower accuracy in comparison to DeepSol
S2. The mean score for each model is also computed. For the insoluble class, the mean
score of DSResSol (2) (0.12) is significantly lower than DeepSol S2 (0.26) and PaRSnIP
(0.37). For the soluble class, the mean score for DSResSol (2) (0.81) is much higher than
DeepSol S2 (0.62) and PaRSnIP (0.61), suggesting the improved performance of DSResSol
(2) over close competitors. In other words, a lower mean score value for the insoluble
class and a higher mean score value for the soluble class represent higher confidence in
the model. Finally, we note that the density of scores in the DSResSol (1) model beyond
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a score of 0.5 is higher and lower for the insoluble and soluble classes, respectively, than
DSResSol (2), suggesting lower accuracy (Figure 4). This result suggests that DSResSol (1)
wrongly predicts more solubility values than DSResSol (2). This result can be understood
considering that DSResSol (2) takes advantage of 85 additional biological features to
establish a more accurate predictive model. For the second test set, a similar analysis is
performed.
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Figure 4. Violin plots represent the probability score distribution of DSResSol (1) and (2), DeepSol S2 [16], and PaRSnIP [14]
for (A) insoluble and (B) soluble classes in the first test set [25].

For the second test set, the probability score distribution with two competitors,
SoluProt [15] and DeepSol [16], is compared. Figure 5 shows this analysis for the sec-
ond test set in two violin plots. The density score distribution near the probability value
0 for the DeepSol S2 model is higher than DSResSol (2) and DSResSol (1), indicating that
DeepSol S2 works better than DSResSol (2) for insoluble protein prediction. Furthermore,
the density of score distribution near the value = 0.5 for DSResSol is higher than DeepSol S2,
confirming the slightly better performance of DeepSol S2 on insoluble protein prediction
in comparison to DSResSol (2). Furthermore, the mean score distribution of the SoluProt
model is 0.63 for insoluble proteins, representing its relatively poor performance on insol-
uble proteins. However, based on Figure 5B, DSResSol (2) outperforms DeepSol S2 and
SoluProt for the soluble class. The mean of scores distribution on soluble proteins is 0.72
for DSResSol (2) while this value for DeepSol S2 and SoluProt is 0.42 and 0.66, respectively,
confirming DSResSol (2) is the best candidate tool for soluble proteins prediction. Further-
more, the density of scores distribution for the soluble class in DSResSol (2) is higher than
both DeepSol S2 and SoluProt (e.g., close to value = 1 in the violin plot), which further
validates the outstanding performance of DSResSol (2) on the soluble class.
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2.2. Effect of Sequence Length on Solubility Prediction

To illustrate the effect of protein sequence length on protein solubility prediction,
we divide both test sets into five separate sets of different sequence length, in the range:
{[0, 100], [100, 200], [200, 300], [300, 400], [400, ∞]}. To evaluate how sequence length
affects the solubility score, the score distribution is shown for proteins predicted to be
soluble and insoluble in five different sequence length ranges (Figure 6). True Positive
(TP) and True Negative (TN) predictions correspond to the soluble and insoluble classes
predicted correctly. False Positive (FP) and False Negative (FN) predictions correspond to
the insoluble and soluble classes predicted incorrectly. Figure 6A shows that the median
decreases monotonically as sequence length increases, suggesting that longer sequence
length results in reduced solubility. In other words, the shorter protein sequences are
more soluble as proposed by Kramer et al. [27]. The median scores for TP sets for five
sequence length ranges are 0.93, 0.92, 0.90, 0.86, and 0.83, respectively. These values
highlight the outstanding performance of DSResSol on the soluble class (a value of 1
corresponds to soluble protein). From Figure 6B, we observe that an increase in sequence
length in the TN sets yields a decrease in the score distribution for insoluble proteins,
suggesting that DSResSol can more easily predict insoluble proteins having longer than
shorter sequences. The median of TN sets for five sequence length ranges is 0.21, 0.18, 0.16,
0.08, and 0.05, respectively, showing good performance of the DSResSol predictor (a value
of 0 corresponds to insoluble protein). Furthermore, the difference between median TN and
FN (Median (FN) -Median (TN)) for the insoluble class as well as the difference between
the median of TP and FP (Median (TP)—Median (FP)) is calculated for the soluble class
(Table 3). Proteins in the soluble class in the sequence length range (0, 100) and proteins
in the insoluble class in the sequence length range (400 < L < ∞) have maximum values
(0.29 for soluble and 0.34 for insoluble), confirming that the DSResSol model can predict
proteins in these sequence length ranges with higher relative confidence than proteins with
other sequence length ranges.
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Table 3. Difference between the median of True Positive and False Positive (TP, FP) soluble proteins
as well as False Negative and True Negative (FN, TN) for insoluble proteins for different sequence
length ranges. M = Median. Median of each category showed as horizontal blue line in box plots in
Figure 6.

Sequence Length Range M(TP)—M(FP) M(FN)—M(TN)

(0, 100) 0.29 0.23

(100, 200) 0.24 0.22

(200, 300) 0.24 0.26

(300, 400) 0.22 0.31

(400, ∞) 0.22 0.34

2.3. Key Amino Acids, Dipeptides, and Tripeptides for Protein Solubility

To investigate the most important amino acids and di- and tripeptides contributing to
protein solubility, these are directly extracted from the DSResSol model. As discussed, nine
initial CNNs in DSResSol are responsible for capturing amino acid k-mers from k = 1 to
9. The feature maps obtained from each initial CNN, having dimensions 1200 × 32, are
associated with amino acid k-mers for the corresponding protein sequence. To extract key
amino acids associated with protein solubility, the feature vector, called activation vector,
is needed for each protein sequence. These feature vectors for each protein sequence in
our training set are extracted as follows. First, we pass the feature maps, which we receive
from the CNN layer having a filter size of 1, through a reshape layer to assign features
maps with dimension 32 × 1200. Then, these feature vectors are fed to a Global Average
Pooling layer to obtain the feature vectors of length 1200 for each protein sequence, which
represents the activation vector for that protein sequence. Each value in the activation
vector, called activation value, is associated with a corresponding amino acid within the
original protein sequence. Hence, higher activation values suggest a larger contribution
to the classification results and protein solubility. The amino acids corresponding to the
top 20 activation values for each protein sequence in the training dataset are counted.
The total number of each amino acid corresponding to the top 20 activation values for
all protein sequences in the training dataset represents the importance of that amino
acid in protein solubility classification. The same process is applied for feature maps
obtained from initial CNN layers with a filter size of 2 and 3 and the total number of
pairs and triplets are counted, corresponding to the top 20 activation values across all
protein sequences, to gain insight into the contribution of di- and tripeptides in protein
solubility prediction. Figure 7 depicts the most important amino acids, dipeptides, and
tripeptides contributing to protein solubility. We found that glutamic acid, serine, aspartic
acid, asparagine, histidine, and glutamine are key amino acids contributing to protein
solubility. Glutamic acid, aspartic acid, and histidine are amino acids with electrically
charged side chains, while serine, asparagine, and glutamine have polar uncharged side
chains. Interestingly, in one experimental study reported by Trevino et al., glutamine,
glutamic acid, serine, and aspartic acid contribute most favorably to protein solubility [28].
Figure 7B,C shows that two and three consecutive glutamine amino acids (EE and EEE)
are the most important dipeptides and tripeptides contributing to protein solubility. These
results are consistent with experimental data proposed by Islam et al. [29]. Additionally,
polar residues and residues that have negatively charged side chains such as glutamic acid
and aspartic acid are, in general, more likely to be solvent-exposed than other residues [28]
and can bind water better than other residues [30]. These observations are well-correlated
with protein solubility and consistent with our analysis that identifies these as key amino
acids for protein solubility prediction. In another investigation, Chan et al. demonstrated
that positively charged amino acids are correlated with protein insolubility [31], consistent
with our findings that histidine in the single, dipeptide, and tripeptide state strongly
impacts protein solubility prediction. Moreover, Nguyen et al. found negatively charged
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fusion tags as another way to improve protein solubility [32,33], consistent with our
findings.
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2.4. Effect of Additional Biological Features on DSResSol Performance

To evaluate the effect of each additional biological feature group on DSResSol per-
formance, we consider each feature group independently in the DSResSol (1) model
(Tables 4 and 5). When only solvent accessibility-related features are added to DSResSol
(1), the accuracy of the model on the first test set increases from 0.751 to 0.782, and the
accuracy of the model on the second test improves from 0.557 to 0.618. Adding secondary
structure-related features to DSResSol (1) improves the accuracy for the first test set from
0.751 to 0.763 and for the second test set from 0.557 to 0.582. We also consider the fraction
of exposed residues and secondary structure content for soluble and insoluble proteins
in the training data. We identify that the soluble protein class has 61.2% helix and beta
strand content. In total, 68.7% of the residues are exposed residues with relative solvent
accessibility cutoff higher than 65%. On the other hand, for the insoluble proteins in
the training set, 81% of the secondary structure content is random coils. Further, 78% of
residues are buried with relative solvent accessibility less than 35%, suggesting that the
proteins having highly ordered structure and solvent-exposed residues with larger relative
solvent accessibility cutoffs have a greater tendency to be soluble. By contrast, proteins
with a higher degree of disordered secondary structure, such as random coil, and buried
residues are predominantly insoluble. These results represent the influence on protein
solubility propensity by solvent accessibility and secondary structure and are supported
by experimental data. Kramer et al. have previously demonstrated the correlation be-
tween solvent accessibility and secondary structure content with protein solubility. They
proposed that soluble proteins have larger negatively-charged surface area and are thus
amenable to bind water [27]. Furthermore, Tan et al. identified the significant relationship
between protein solubility and ordered secondary structure content such as helix and
beta sheets [34]. They found large helix and beta sheet content within the most soluble
proteins [34]. Thus, our results, which suggest that ordered secondary structures such as
helix and beta sheets, as well as a larger fraction of solvent-exposed residues with higher
relative solvent accessibility cutoffs, contribute to protein solubility, correlate well with
experimental findings.
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Table 4. Performance of the DSResSol model after adding each biological feature group to the
DSResSol (1) model for the first test set. The accuracy of DSResSol (1) without biological features
is 0.751.

Model ACC DSResSol (1) after Adding the
Additional Biological Features

ACC
Improvement

DSResSol (1) + Solvent
accessibility related features 0.787 3.7%

DSResSol (1) + Secondary
structure related features 0.762 1.1%

DSResSol (1) + order/disorder
related features 0.757 0.6%

DSResSol (1) + global
sequence features 0.756 0.5%

Table 5. Performance of the DSResSol model after adding each biological feature group to the
DSResSol (1) model for the second test set. The accuracy of DSResSol (1) without biological features
is 0.557.

Model ACC DSResSol (1) after Adding the
Additional Biological Features

ACC
Improvement

DSResSol (1) + Solvent
accessibility related features 0.618 6.1%

DSResSol (1) + Secondary
structure related features 0.582 2.5%

DSResSol (1) + order/disorder
related features 0.564 0.7%

DSResSol (1) + global
sequence features 0.561 0.4%

2.5. Effect of Sequence Identity Cutoff on DSResSol Performance

To develop input datasets, we removed the redundant protein sequences in the
training set with sequence identity over 25%. Moreover, the protein sequences having more
than 15% sequence similarity with both test sets have been eliminated in the training set.
To analyze the impact of identity cutoff on DSResSol performance, we considered different
cutoffs to train DSResSol (Table 6 and Table 7). The results indicate that by changing the
sequence identity cutoffs, the performance of the DSResSol predictor improves to 75.1%
for the first test set and to 55.7% for the second test set, suggesting that the optimal identity
cutoff is 25% [16]. In fact, these results show that the existence of similar sequences within
the training set leads to overfitting or overtraining of the model, which results in a decrease
in model performance on the test sets.

Table 6. Performance comparison for DSResSol (1) on the first independent test set for different cutoff sequence identity.
Note: Best performing method is in bold.

Model ACC MMC Sensitivity (Soluble) Sensitivity (Insoluble)

DSResSol (1) Cutoff 25% 0.751 0.508 0.691 0.813

DSResSol (1) Cutoff 15% 0.744 0.491 0.686 0.805

DSResSol (1) Cutoff 20% 0.743 0.488 0.701 0.795

DSResSol (1) Cutoff 30% 0.744 0.492 0.688 0.801



Int. J. Mol. Sci. 2021, 22, 13555 12 of 20

Table 7. Performance comparison for DSResSol (1) on the second independent test set for different
cutoff sequence identity. Note: Best performing method in bold.

Model ACC MCC Sensitivity
(Soluble)

Sensitivity
(Insoluble)

DSResSol (1)
Cutoff 25% 0.557 0.166 0.545 0.568

DSResSol (1)
Cutoff 15% 0.553 0.157 0.542 0.567

DSResSol (1)
Cutoff 20% 0.555 0.164 0.547 0.563

DSResSol (1)
Cutoff 30% 0.552 0.159 0.541 0.567

3. Discussion

In this study, we propose a novel sequence-based solubility predictor that uses a
SE-ResNet neural network. In the first model, DSResSol (1), only raw protein sequences are
used as input to distinguish soluble proteins from insoluble proteins. In the second model,
DSResSol (2), to improve the performance of the first proposed model, 85 pre-extracted
biological features are added as input. We observe that the performance of DSResSol (2) is
superior to existing state-of-the-art tools when the model performance is evaluated on two
distinct independent test sets. In particular, for the first test set, the accuracy of DSResSol
(2) is at least 3% higher over the best performing model to date, DeepSol S2 [16]. For the
second test set, the accuracy of DSResSol is more than 5% higher than SoluProt [15], the
top-performing existing tool on this test set.

The main reason for the improved performance of the DSResSol predictor in compari-
son to other existing models originates from the SE-ResNet architecture. DeepSol [16], a
close competitor, used only some parallel CNNs to extract feature maps from the input
protein sequence. In fact, the DeepSol model could only capture contextual features, and
amino acid k-mers of different lengths and their local non-linear interactions. By contrast,
the DSResSol model not only extracts amino acid k-mers and their local interactions but
also captures long-range interactions between amino acid k-mers with different lengths.
This is because DSResSol greatly benefits from the specific SE-ResNet architecture, includ-
ing dilated CNNs. SE-ResNet blocks in the DSResSol model are responsible for capturing
frequently occurring amino acid k-mers where k = {1, 2, . . . , 9}, and their local and global
interactions. Extracting these high order k-mers and their interactions gives valuable
structural information about features such as protein folds [35], which are discriminative
and important features for protein solubility prediction [14]. In the SE-ResNet block, the
dilated CNN efficiently extracts long-range interactions among k-mers, while preventing
over-fitting using dropout on the weights, which leads to good generalization performance.
Furthermore, SE-ResNet captures more information from the input feature maps related
to amino acid k-mers because it not only reduces gradient vanishing owing to feature
reusability but also highlights the most important information from feature maps, which
results in the capture of complex sequence–contact relationships while using fewer pa-
rameters than other methods [36]. In addition, by adding 85 biological features to the
DSResSol model, the performance of the predictor is significantly improved. This suggests
that these pre-extracted features are complementary to contextual features obtained from
the SE-ResNet model.

We employed the DSResSol model to identify a mechanistic understanding of the
relationship between sequence length and solubility propensity. For both insoluble and
soluble classes, we observed monotonically decreasing score distributions when sequence
length increases, suggesting that proteins with longer sequence length have a higher
tendency to be insoluble. Furthermore, by analyzing the DSResSol model results, we found
that glutamine, serine, and aspartic acid are key amino acids that favorably contribute to
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protein solubility. Interestingly, this result correlates with experimental studies reported
by Islam et al. and Trevino et al. [28,29]. We also found that secondary structure and
relative solvent accessibility features are determinative in protein solubility prediction. We
demonstrated that soluble proteins include a large number of exposed residues at relative
solvent accessibility cutoffs of more than 65% and residues having ordered secondary
structure content such as helix and beta sheets. On the other hand, for insoluble proteins,
a large number of residues is buried and disordered. These results are supported by
experimental findings proposed by Kramer et al. [27] and Tan et al. [34].

Overall, DSResSol presents an interpretable, predictive tool that effectively learns key
structural and biological features of protein sequences for predicting protein solubility,
with mechanistic implications that are highly correlated with experimental findings.

4. Materials and Methods
4.1. Data Preparation and Feature Engineering

To create the training set, we used the Target Track database [37]. Based on the methods
proposed in previous studies [5,13], the solubility value for each protein sequence within
the training set was inferred. A protein is labeled as insoluble if it cannot be expressed or
purified experimentally. On the other hand, a protein is considered soluble if it is realized
as soluble, purified, crystallized, etc., e.g., an experimental state requiring the protein to be
soluble. To maintain the generality of our training set, in contrast to previous studies such
as SoluProt [15], we did not impose a limitation on the expression system for selecting the
proteins included in our training set. To reduce the noise and redundancy from our training
set, the following tasks were performed: (1) removing the transmembrane proteins based
on the annotations from the Target Track database; (2) removing the proteins considered as
insoluble but associated with a PDB structure; (3) eliminating protein sequences from the
training set with a sequence identity of more than 25% via CD-HIT [38] to avoid any bias
because of homologous sequences within the training and testing sets. Finally, we used
a fairly balanced training set that included approximately the same number of proteins
within the soluble and insoluble classes. Thus, in total, our final training set contained
40,317 protein sequences including 19,718 soluble and 20,599 insoluble protein sequences.

For model evaluation, two different independent test sets were utilized. Both test sets
include proteins that have been expressed in E. coli:

1. The first test dataset was proposed by Chang et al. [25]. This dataset includes 2001
protein sequences and their corresponding solubility values;

2. The second test dataset, first proposed by Hon et al. [15], has been constructed from a
dataset generated by the North East Structural Consortium (NESG) [26] and includes
9644 proteins expressed in E. coli. The original dataset consists of integer values in the
range from 0 to 5 for levels of expression and soluble fraction recovery. We maintained
consistency between the procedure for constructing the training set and the test set.
Finally, similar to the SoluProt test set [15], the solubility level of each protein within
the NESG test set was transferred to a binary value. In the original NESG dataset,
the solubility values for protein sequences are an integer value in the range from 0
to 4. To transfer these values to binary values, similar to the SoluProt method, we
considered protein sequences having a solubility of value 0, 1, 2, as insoluble and
those sequences have solubility values of 3 or 4 as soluble proteins.

To decrease the overlap between sequences within both test sets and the training set, all
protein sequences in the training set which have a sequence identity of more than 15% with
protein sequences in both test sets were eliminated. This significantly reduces redundant
sequences in our training set. Table 8 catalogues the dataset construction/reduction process
for both the training set and both test sets in detail.
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Table 8. Construction steps for dataset preparation and number of sequences retained in each dataset construction step.
Note: final amount of data within training and testing sets after pre-processing are in bold.

Construction Step Training
Set Soluble Insoluble Test Set 1 Soluble Insoluble Test Set 2 Soluble Insoluble

Input 129,593 - - 2001 1000 1001 9703 - -

Pre-processing and solubility
assignment 109,648 - - 2001 1000 1001 - - -

Redundancy removal 87,969 40,905 14,064 2001 1000 1001 9423 5718 3705

Removal of short sequences and
sequences with unknown

residues
82,902 50,004 32,898 2001 1000 1001 9420 5715 3705

Removal of transmembrane
proteins 76,274 45,603 30,671 2001 1000 1001 8769 5421 3348

Removal of insoluble sequences
with available PDB structure 72,756 42,530 30,226 2001 1000 1001 8754 5421 3333

Clustering to 25% identity 49,369 26,422 22,947 2001 1000 1001 3945 2078 1867

Overlap removal with test sets
15% identity 46,028 24,920 21,108 2001 1000 1001 3945 2078 1867

Class and length balancing 40,317 19,718 20,599 2001 1000 1001 3729 1864 1865

4.2. Model Architecture

Protein solubility prediction is a binary classification problem. Within the datasets,
each protein sequence is assigned a solubility value equal to 0 or 1. Thus, the solubility
propensity for each sequence evaluated by our model is assigned a score in the range from
0 to 1. The DSResSol (1) model includes 5 architectural units, including a single embedding
layer, nine parallel initial CNNs with different filter sizes, nine parallel SE-ResNet blocks,
three parallel CNNs, and fully connected layers, sequentially (Figure 8). The architecture
of DSResSol (2) is equivalent to DSResSol (1). DSResSol (2) has an additional input layer to
receive 85 additional biological features.

To use protein sequences as inputs of the DSResSol model, we employed two major
preprocessing approaches. First, protein sequences were parameterized to the vectors
X = {x0, x1, x2, . . . , xL} where xi ∈ {0, 1, 2, . . . , 20}. The numbers from 1 to 20 represent
amino acid residues, and 0 indicates a gap [39]. Second, each sequence was padded to
the fixed-length vector having length L = 1200 to generate same-sized vectors. Input
features were converted to embedded vectors via the embedding layer, which is a lookup
table for mapping and transforming the discrete input into continuous fixed-sized vectors.
Thus, during the training process, a continuous feature was learned from each amino
acid. The embedding layer transformed the input sequence vector x ∈ R1200×21 to a dense
continuous feature representation via the embedding weight matrix We ∈ R50×21. The
output of the embedding layer, i.e., the feature map, was E = x ×We. The embedding
dimension was 50. Note that training the We happens along the whole network. After
this layer, the embedded vectors were fed to nine CNN layers with different filter sizes
k from 1 to 9: k ∈ {0, 1, 2, . . . , 9}. (Figure 8A, Block (1)). Different filter sizes in the
CNNs were employed to extract amino acid k-mers, i.e., “biological words,” with different
sizes between one (monopeptide) to nine (nonapeptide) from the input sequences. This
component of the model was inspired by DeepSol [16]. In fact, the filter size in the CNN is
equal to the convolutional window size along the characters of the sequence. Produced
feature maps from each CNN layer were received by a Squeeze-and-Excitation residual
network (SE-ResNet) block consisting of two main parts: a residual network part and a
Squeeze-and-Excitation block, linked via a residual connection (Figure 8A, Block (2)).

Residual neural networks (ResNet) [19] are an outstanding new discovery for neural
networks making neural networks deeper, by resolving the gradient vanishing problem
with fewer parameters than traditional neural networks such as CNNs. In ResNet, the
gradients can flow directly through the skip connections backwards from later layers to
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initial filters [19,36]. ResNets are utilized in a wide range of applications including natural
language processing [40] and image classification [19].
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The architecture of ResNet in the DSResSol model contains two CNNs, a dilated
CNN [41] and a bottlenecked CNN [22], followed by batch normalization and a rectified
linear unit as the activation function [42]. Figure 8B shows the ResNet block within the
SE-ResNet module. Using a bottlenecked convolution layer speeds up the computation
and increases the ResNet block’s depth by using fewer parameters and a thinner ResNet
block [43]. An n-dilated convolution captures local and global information about amino
acid k-mers without significantly increasing the model parameters because it behaves like
a simple convolution operation over every nth element in a sequence [22]. In fact, this type
of convolution enables the model to capture long-range interactions across the sequence.
The dilated convolution utilizes kernels that have holes. In this way, not only is the overall
receptive field of convolution wider but also the complexity and number of parameters are
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reduced [18,22]. The utilization of n-dilated convolution was inspired by a recent study for
protein family classification from protein sequence [22].

In addition to ResNet, each SE-ResNet block consists of a single Squeeze-and-Excitation
(SE) block. The SE block focuses on more important channels within the feature maps. In
other words, the Squeeze-and-Excitation blocks can recalibrate the channels in the learned
feature maps, which results in stimulating more important channels and hindering weak
channels within the feature maps [44,45]. The feature input of the SE block was passed
through the Global Max Pooling layer. This layer reduces each channel in the input feature
map to a single value, which is the maximum value within each channel. Suppose the
input tensor of the SE block has the shape of L × C, where C is the number of channels
within the feature map and L is the feature dimension. After passing this tensor through
the Global Max Pooling operator, the shape of the output will be reduced to C × 1. To map
adaptive scaling weights for the output of the Global Max Pooling layer, we employed two
fully connected (FC) layers. In the first FC layer, the number of units was set to C/8, and
the activation function was the rectified linear unit (ReLU) [42]. In the second FC layer,
the number of units was set to C to project back the first FC layer’s output to the same
dimensional space as the input, returning to C neurons. In summary, the C × 1 tensor
input was passed through the first FC layer. Next, a weighted tensor of the same shape
was obtained from the second FC layer as output. The sigmoid was utilized as the second
FC activation function to scale the value to a range from 0 to 1. Using a simple broadcasted
element-wise multiplication, the second FC layer’s output was applied to the SE block’s
initial input [44]. To complete the SE-ResNet block, the SE block’s output was concatenated
with the ResNet block’s input (Figure 8A). These processes are the same for each SE-ResNet
block. The feature maps derived from each SE-ResNet block were fed to the Max Pooling
layer to accumulate feature maps by taking maximum values over the sub-region along
with the feature map. The output Max Pooling layers were merged to generate feature
maps for the next stage of the model which included three convolution layers with a filter
size of 11, 13, and 15, respectively, followed by three Max Pooling layers (Figure 8A, Block
(3)). This stage is responsible for extracting more contextual features from the merged
outputs of the SE-ResNet module. Finally, all three feature maps obtained from this stage
were concatenated. The output of the previous stage was flattened to a 1D array, then fed
into a single FC layer with hidden neurons of size 128 and ReLU as the activation function.
The final FC layer with sigmoid as the activation function generated the probability score
for solubility propensity.

4.3. Additional Features

Similar to PaRSnIP [14], secondary structure, solvent accessibility, structural or-
der/disorder, and global sequence features were employed as additional biological features.
Secondary structure (SS) and relative solvent accessibility (RSA) features were obtained
through the SCRATCH webserver [46], order/disorder (O/D) information from the ESpritz
webserver [47], and global sequence features from the python package modLAMP [48]. To
calculate features from the SS and RSA, we employed the PaRSnIP procedure [14]. The
fraction content of SS for 3- and 8-state SS was calculated. In addition, the fraction of
exposed residues at different cutoffs (FER-RSA) from 0% to 95% with 5% intervals was
obtained. The FER-RSA values were multiplied by the hydrophobicity of exposed residues
to extract another RSA-based feature group. We introduced additional O/D-related fea-
tures to our biological features set, augmenting the original features used in PaRSnIP. For
O/D-related features, the number of disordered regions limited to fewer than 5 amino acids,
sized between 5 and 10 amino acids, and sized larger than 10 amino acids, as well as the
frequency of each amino acid in disordered regions was calculated. In total, 85 biological
features were extracted from the protein sequence. A summary of all biological features
used in our model is presented in Figure 9. These 85 pre-extracted biological features were
concatenated to the feature maps derived from the flattening layer before fully connected
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layers in DSResSol (2). To feed these additional features to DSResSol (2) as input features,
we normalized them to values between 0 and 1.
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4.4. Training and Hyperparameter Tuning

The DSResSol model utilizes a binary cross-entropy [49] objective function to classify
the protein sequence into two classes. Both models DSResSol (1) and (2) are fit for a
different number of training epochs with the Adam optimizer [50]. Performance of the
models depends on different hyperparameters such as: learning rate—the step size in
which the optimizer receives the parameter space and updates the parameters; number
of epochs—the number of iterations for training the model; batch size—the number of
training examples that should be received before updating the parameters; size and number
of filters in each convolution layer; embedding dimension; the number of units in FC layers,
etc. We have performed hyperparameter tuning by employing a grid search on 10-fold
cross-validation similar to DeepSol [16]. Table 9 represents the tuned hyperparameters for
both DSResSol (1) and DSResSol (2) models. After identifying optimal hyperparameters,
10-fold cross-validation was performed to train the models. We also used the early stopping
approach during the training to avoid overfitting [16].

4.5. Evaluation Metrics

To evaluate the performance of the DSResSol predictor in comparison with other pre-
dictors, we used accuracy, Matthew’s correlation coefficient (MCC), sensitivity, selectivity,
and gain metrics as described in PaRSnIP [14]. The sensitivity for a class is the ratio of
correctly classified instances of that class to the total number of instances of that class, in a
dataset. Selectivity for a class is the ratio of accurately classified instances of a class to the
total number of instances predicted to be in a class. The gain value for a class represents
the ratio of selectivity of a class to the proportion of those instances in the complete dataset.
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Table 9. Tested hyperparameters in network layers and optimal values generated via the Grid Search Method [51].

Layers Number of Tested
Units or Filters

Optimal
Value Filter Size Parameters Tested Values Optimal

Value

Embedding layer (50, 100, 150) 50 - Epochs 50 50

Initial CNNs (32, 64, 128, 256) 32 {1, 2, . . . , 9} Learning rate (0.005, 0.008, 0.01,
0.02) 0.008

Dilated CNN (32, 64, 128, 256) 32 3 Batch size (32, 64, 128, 256) 64

Bottlenecked CNN (32, 64, 128, 256) 32 1 Decay rate
(
10−7, 10−8, 10−9 ) 10−7

Final CNNs (32, 64, 128, 256) 32 {11, 13, 15} Early stopping
value (3, 4, 5, 6) 5

FC (64, 128, 256, 512) 128 - - - -

MaxPooling (2, 3, 5, 7) 3 - - - -

5. Conclusions

In this study, we introduce the sequence-based protein solubility predictor, Dilated
Squeeze excitation Residual network Solubility predictor (DSResSol), that outperforms all
available bioinformatic tools for solubility prediction when the performance is assessed by
different evaluation metrics such as accuracy and MCC. DSResSol improves accuracy for
protein solubility prediction up to 5% for all proteins and up to 13% for soluble proteins
in comparison with close competitors. In contrast to other existing models, DSResSol
accurately identifies both soluble and insoluble proteins (assessed by close sensitivity
values for soluble and insoluble classes), suggesting that the superior accuracy of DSResSol
originates from good and balanced performance on both classes. The parallel SE-ResNet
blocks with dilated CNNs comprehensively captures long-range non-linear interactions
between amino acid k-mers in addition to local interactions, which facilitates the extraction
of more meaningful features from protein sequences to improve model accuracy. The
model’s robustness originates not only from its novel deep learning architecture but also
from its comprehensive training dataset. We have employed a novel training set that is
cleaned from the noisy Target Track data via multiple steps for removing redundant protein
sequences and evaluated the performance of the DSResSol tool with two independent
test sets. Further analysis of DSResSol feature maps suggests that glutamine, serine, and
aspartic acid are key amino acids that favorably contribute to protein solubility, a result
correlated with experimental studies. Notably, the framework for generating compre-
hensive feature maps developed as part of this tool can be utilized independently as a
feature extraction tool to prepare meaningful input features for other predictors, as well
as for the prediction of other protein properties. In its present form, DSResSol can be
effectively used as a predictive tool for evaluating solubility for designed proteins or for
detecting changes in solubility and degradation upon mutation. Overall, the model can
help avoid time-consuming trial-and-error approaches in experimental designs to facilitate
the identification and prioritization of possible soluble targets.
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