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a b s t r a c t 

Although urban areas negatively impact the environment, they supply a wide range of ecosystem 

services (ES), mainly cultural ones. Recreation near urban green areas is widespread, including 

fishing. In northern latitudes, during the winter, lakes are frozen, and several urban dwellers 

practice ice fishing. Although this activity is well known, no attempts were made to assess and 

map winter recreational fishery ES supply in lakes. In this work, we developed a methodology to 

map this ES, taking an urban lake in Vilnius (Lithuania) as an example. A standardized protocol 

was developed using an unmanned aerial vehicle (proximal sensing), further georeferencing and 

correcting the gathered images, vectorizing the fishing ice holes, and mapping them using two 

different methods: Kernel and Point Density. The method developed in this work can be applied 

in northern areas to identify recreational fishing ES during the winter. 

• A novel method was developed to map winter recreational fishery ES supply in lakes; 

• High-resolution images were taken from an unmanned aerial vehicle to identify fishing ice 

holes in an urban lake. 

• The method maps a cultural ES, which is trendy in northern latitudes. 
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Background 

Ecosystem Services (ES) are the benefits humans receive from nature and are classified as provisioning, regulating and cultural ES

[ 1 ]. In urban areas, ecosystems are strongly altered by human impact. Anthropogenic pressure is also responsible for the degradation

of ecosystem conditions (e.g., pollution) and their capacity to supply ES [ 2 , 3 ]. Urban ecosystems comprise several land use types, such

as build-up areas, forests, croplands, grasslands, wetlands, rivers and lakes [ 4 ]. They provide multiple regulating and provisioning

ES. However, in an urban context, they are crucial for cultural ES, such as recreation [ 5 , 6 ]. Among the different recreational activities

that urban ecosystems can supply, fishing in rivers or lakes is among the most important in some environments [ 7 , 8 ]. Due to the

negative temperatures, water bodies are frozen in northern latitudes, and people frequently fish in the middle of lakes and rivers

[ 9 , 10 ]. 

Mapping is key to understanding natural, social and economic phenomena [ 11 ] and has been recognized as a tool to identify ES

spatial patterns. For this reason, it became one of the main tools that brought forward ES research [ 12 ]. Technological development

contributed to the array of ES mapping and assessment options. Recently, remote sensing has been increasingly utilized to improve ES

mapping and assessment. At large scales (e.g., country, region), they are useful to assess ES proxies (e.g., indicators) or serving as input

data for ES models [ 13 ]. At small scales (e.g., urban parks, lakes), proximal sensing (e.g., unmanned aerial vehicle (UAV)) is adequate

to collect information at a higher resolution and identify small-scale patterns [ 14 ]. For instance, in some regions, winter recreational

activities are popular in urban areas, and people’s preferences can be identified by using UAVs [ 15 ]. In the case of winter recreational

fishing in lakes, fishers make holes in the ice through which they can reach liquid water. According to the Common International

Classification of Ecosystem Services (CICES) 1 5.1v this services ES is classified as “Direct, in-situ and outdoor interactions with living

systems that depend on presence in the environmental setting, i.e. broadly recreational activities ” (Code 3.1.1.1) at group level. The holes

can be identified through high-resolution UAV images. So far, a methodology has yet to be developed to map this recreational activity

in lakes, which is important in northern latitudes. This work aims to develop a simple methodology based on high-resolution imagery

taken using UAV to map lakes’ winter recreational fishing supply. 

Method details 

The method was applied in an urban artificial lake (17,527.11 m2 ) located in Vilnius, Lithuania ( Fig. 1 ), during the winter, when

it is frozen. An urban park surrounds the lake. We used the DJI Mavic 3 M drone with RGB and multispectral capabilities to map

winter recreational fishing in lakes. The drone specifications can be consulted on the DJI website. 2 The most relevant are shown in 

Fig. 1. Study area. 
1 https://cices.eu/ . 
2 https://enterprise.dji.com/mavic-3-m/specs . 
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Fig. 2. Framework applied in this study. 

 

 

 

 

Table S1. The methodological framework established in this work is shown in Fig. 2 . The drone flight was conducted on February

04, 2024. Before going to the field, a flight mission was planned and uploaded into the drone software. During this process, extending

the mission beyond the lake limits is important to ensure that the images taken cover the whole lake’s surface area. In this work, we

extended the mission 140 m further away from the lake shoreline. In total, 38,867.7 m2 were mapped. The ground sample distance 3 

(GSD) was 2.15 cm, and the flight lasted 18 min and 31 s. In total, 646 photos were taken at an altitude of 60 m ( Fig. 3 ). DJI Mavic
3 https://enterprise-insights.dji.com/blog/ground-sample-distance . 
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Fig. 3. Mission Snapshot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 M saved the images in a micro-SD card that were later downloaded to the computer for further treatment. In ArcGIS Pro (ver.

3.1.2) environment (Georeference Raster Tool 4 ), the RGB images were georeferenced and corrected to match the true limit of the

lake using the Second-order polynomial transformation ( Fig. 2 ). As a base map, we used the orthophoto map from the Spring of

2023. 5 To georeference the images correctly, many points are needed to ensure maximum accuracy and minimize error. During the

georeferencing process, more than 3000 control points were used to rectify the images. 

Once the images were prepared, we carefully vectorised the fishing ice holes ( Fig. 2 ). During this stage, it is crucial not to

misinterpret the holes with other features (e.g., steps in the ice, branches/vegetation, cracks in the ice, or different ice colouration).

Nevertheless, fish holes have a specific geometry (circular) ( Fig. 2 ) and are not difficult to identify. In any case, paying attention to

the potentially disturbing elements and noise that can affect their identification is crucial. Subsequently, we created a point shapefile 6 

in ArcGIS Pro (ver. 3.1.2) to vectorise the fishing ice holes. An extremely laborious work was conducted to identify the fish holes

in the georeferenced RGB images accurately. We identified 3268 fishing ice holes, representing the areas where recreational fishers 

go ( Figs. 2 and 4 ). This is also an indicatior of the high supply. Once all the fish holes were vectorised, we mapped the data using

1) Kernel Density and 2) Point Density. Kernel Density is a widely applied method to identify the density of occurrences in different

domains, such as ecological corridors [ 16 ], traffic violations [ 17 ], cigarette littering [ 18 ] and COVID-19 outbreak [ 19 ]. We calculated

it using ArcGIS Pro (ver. 3.1.2) Kernel Density tool, 7 which uses the following formula developed by Silverman [ 20 ] 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1 
( 𝑟𝑎𝑑𝑖𝑢𝑠 ) 2 

𝑛 ∑
𝑖 =1 

[ 
3 
𝜋
. 𝑝𝑜𝑝𝑖 

( 

1 −
( 

𝑑𝑖𝑠𝑡𝑖 

𝑟𝑎𝑑𝑖𝑢𝑠 

) ) ] 
(1) 

Where: i = 1,…,n are the input points. Only include points in the sum if they are within the radius distance of the (x,y) location. popi

is the population field value of point i, which is an optional parameter , and disti is the distance between point i and the (x,y) location . 8 As

bandwidth, we applied the standard distance method. 9 The Bandwidth was calculated using the formula: 

𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑎𝑑𝑖𝑢𝑠 = 0 . 9 ∗ min 
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Where: “Dm 

is the (weighted) median distance from the (weighted) mean centre. n is the number of points if no population field is used,

or if a population field is supplied, n is the sum of the population field values, and SD is the standard distance ”7 . 

In this work, the Standard distance was calculated using the unweighted distance using the following formula: 

𝑆𝐷 =
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(3) 
4 https://pro.arcgis.com/en/pro-app/3.1/help/data/imagery/georeferencing-a-raster-to-a-referenced-layer.htm . 
5 https://www.maps.lt/ . 
6 https://pro.arcgis.com/en/pro-app/latest/help/data/shapefiles/working-with-shapefiles-in-arcgis-pro.htm . 
7 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/kernel-density.htm . 
8 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm . 
9 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/standard-distance.htm . 
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Fig. 4. Vectorized fishing holes ( N = 3268). 

 

 

 

 

 

 

 

 

 

Where: “𝑥𝑖 , 𝑦𝑖 and 𝑧𝑖 are the coordinates for feature i, �̄� , 𝑌 and �̄� represent the mean center for the features and n is equal to the total

number of features ”. 10 

Before applying the tool, we defined the different parameters. Area units, we defined as “square map units, ” output cell values

as “densities, ” and the method as “planar ”. We selected the planar option because it “is appropriate if the analysis is to be performed

at a local scale with a projection that accurately maintains the correct distance and area ”. As input barrier features, we used the “lake

shapefile ”. Since the lake shape is not quadrangular, the distance between the points is likely affected by the lake morphology. 11 

Point Density “Calculates a magnitude-per-unit area from point features that fall within a neighbourhood around each cell. 12 ” In this 

work as “Neighbourhood", we selected a circle with a “Ratio ” of 20 m and a “unit type ” map. Point density has been applied in several

domains, such as the COVID-19 outbreak [ 21 ] and water pollution [ 22 ]. 

The Kernel and Point Density maps’ resolution was 1 cm, and the output density was m2 . To visually represent the results, we used

the stretch 13 symbology, and as a stretch type, the minimum-maximum value. The difference between Point and Kernel density is that

meanwhile, in point density, “a neighbourhood is specified that calculates the density of the population around each output cell ”, while in

Kernel Density “spreads the known quantity of the population for each point out from the point location. The resulting surfaces surrounding
10 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm . 
11 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kernel-density-works.htm . 
12 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-density-tools.htm . 
13 https://pro.arcgis.com/en/pro-app/latest/help/analysis/raster-functions/stretch-function.htm . 
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Table 1 

Descriptive Statistics. 

Kernel density (m2 ) Point density (m2 ) 

Mean 0.0588281873 0.0568670299 

Median 0.0309792105 0.0310352147 

Standard Deviation 0.0605282967 0.0537388281 

Minimum 0.0000072915 0 

Maximum 0.3770553172 0.309556365 

Skewness 1.856100958 1.4990275906 

Kurtosis 6.6325054858 4.8552579798 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each point in kernel density are based on a quadratic formula with the highest value at the centre of the surface (the point location) and

tapering to zero at the search radius distance 14 ”. 

The final result of the Kernel and Point Density maps is shown in Fig. 5 . In both maps, it is visible that the area where recreational

fishers go is in the eastern part of the lake (high density). The statistical results are similar as well. On average, the Kernel Density of

fish holes in the lake was 0.058 m2 , and the Point Density was 0.056 m2 ( Table 1 ; Fig. 5 ). In both cases, the distribution was majorly

located in the low values (positive Kurtosis). This shows that only a few areas had a high accumulation of fish holes, with a high winter

recreational fishery supply. Comparing both density methods, the Kernel Density results had a higher positive Skewness and Kurtosis

distribution than the Point Density method. This shows that the Kernel Density method distribution had a higher heterogeneity than

Point Density. This is also observed in the Standard Deviation results ( Table 1 ; Fig. 5 ). Although the statistical analysis results are

similar, the application of Kernel Density is more appropriate than Point Density because it produces maps with smoother surfaces

and is less biased. Nevertheless, it is important to assess case by case depending on the phenomena in the study. Further studies need

to be conducted, considering Kernel Density and Point Density. In other circumstances, Point Density can perform better than Kernel

Density. 

Method limitations and implications 

The method developed is novel, simple to apply and is non-destructive. In addition, doing this assessment on the ice is dangerous

since the ice can crack. This may pose some challenges when validating the model results. Although we may assume that the ice is

thick enough because recreational fishers are going there, this depends significantly on the air temperature in the previous weeks.

For safety reasons, we did not walk on ice because the ice was unstable on the day of the UAV flight. Validation may be possible in

other conditions (prolonged periods of below-zero temperatures), and it is encouraged to conduct. UAV proximal sensing is a safe and

accurate method to identify fish holes. Since they have small dimensions, using a UAV to take high-resolution photos is important.

Applying this method in urban areas may pose significant challenges, such as restrictions in flying zones, which must be considered

before establishing the mission. Also, treating this data is crucial for powerful computers with high RAM. In this case, the data was

treated using a Dell with Intel(R) Core (TM) i9–10900X CPU @ 3.70 GHz processor with 64.0 GB RAM (Table S2), which allowed

us to process the data quickly. The studied lake is small, and the method is easy to apply. It will be more challenging to apply it in

larger lakes since the number of photos needed to make a reasonable assessment will be very high, and the data processing (e.g.,

georeferencing, identifying fish holes, Kernel and Point Density mapping) is lengthy. Another important aspect is that larger lakes

require a longer flight time. Using a UAV like ours, we have one battery and approximately 37 to 43 min of flight time ( Table S1 ). In

conditions with strong wind, the flight time and capacity to complete the mission in a large lake can be reduced. Therefore, having

more than one battery to field the mission in large lakes is important, especially in strong wind conditions. This may impose some

challenges and limitations if applied to large lakes. Another limitation of the method is that it is only applied in areas where the

temperature drops below 0 °C during a sustained period. This allows recreational fishers to walk on the ice in the middle of the lakes.

Therefore, the method cannot be applied in areas with warm climates. 

Although the method has some limitations, it is crucial to map recreational fisheries in lakes during winter, an activity very

popular in northern latitudes. Kernel and Point Density are well-known tools; however, the method of fish hole identification is new.

The method developed in this work could be helpful in mapping and assessing freshwater cultural ES in urban environments. It can

be applied in freshwater/marine environments that freeze seasonally and ensure a safe assessment of the fishing recreation ES. In

our case, we could identify the areas preferred (high number of holes) by the recreational fishers connected with the areas with reed.

Reed areas are known as essential for fish nurseries [ 23 ]. Therefore, the abundance of fish in these places is likely to be high. The

results obtained can contribute to a better management of this lake. For instance, it is crucial to maintain the lake in good ecological

conditions and protect the vegetation to maintain good ecological conditions for the fish nursery. This will be key to maintaining the

lake’s value for recreation fishers and developing sustainable recreation/tourism practices in this area. From a governance point of

view, integrating ES mapping and assessment in planning and management is essential to improve decision-making and understanding 

of the ES supplied in different environments. This has been substantially highlighted in previous works [24–26] . 
14 https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/differences-between-point-line-and-kernel-density.htm . 
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Fig. 5. Kernel (A) and Point (B) density results. 
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