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Abstract: Gelatin is a natural biopolymer derived from collagen. Due to its many advantages,
such as swelling capacity, biodegradability, biocompatibility, and commercial availability, gelatin
is widely used in the field of pharmacy, medicine, and the food industry. Gelatin solutions easily
form hydrogels during cooling, however, the materials are mechanically poor. To improve their
properties, they are often chemically crosslinked. The cross-linking agents are divided into two
groups: Zero-length and non-zero-length cross-linkers. In this study, gelatin was cross-linked by
three different cross-linking agents: EDC-NHS, as a typically used cross-linker, and also squaric
acid (SQ) and dialdehyde starch (DAS), as representatives of a second group of cross-linkers. For
all prepared gelatin hydrogels, mechanical strength tests, thermal analysis, infrared spectroscopy,
swelling ability, and SEM images were performed. The results indicate that the dialdehyde starch is a
better cross-linking agent for gelatin than EDC-NHS. Meanwhile, the use of squaric acid does not
give beneficial changes to the properties of the hydrogel.

Keywords: gelatin hydrogels; cross-linking; EDC-NHS; squaric acid; dialdehyde starch

1. Introduction

Gelatin is a product of partial hydrolysis of collagen, the main structural protein of
connective tissues. The gelatin molecular weight and properties depend on collagen source
and method of its manufacturing-heat and enzymatic denaturation, or extraction in alkaline
(gelatin type B) or acidic (gelatin type A) conditions [1,2]. The triple helical structure of
collagen is irreversibly destroyed during this process, but molecular composition changes
slightly. The repeating sequence of amino acids -Gly-X-Y- and the relatively high content
of hydroxyproline and hydroxylysine typical for collagen remain as gelatin characteristic
features [3,4]. However, depending on the method of gelatin preparation, various amino
acids may be degraded. The most significant difference is the hydrolysis of asparagine
and glutamine amide groups, resulting in lowering of the isoelectric point of gelatin type
B [5–7].

Gelatin has a number of advantages that make it readily used in many areas such
as food industries, in drug and cell delivery, for tissue engineering applications targeting
several tissues such as bone, cartilage, and skin [8–11], and also in medicine as wound
dressing, plasma expander, adhesives, and absorbent pads for surgical use [12,13]. Gelatin
is water-soluble, easily commercially available, much cheaper than collagen, and at the
same time, it still contains binding moieties important for cell attachment. The wide
interest in gelatin is also caused by its non-toxicity, non-carcinogenicity, biocompatibility,
and biodegradability. However, the gelatin-based materials are characterized by poor
mechanical properties, thermal instability, and relatively short degradation time [7,14,15].
These disadvantages can be reduced by cross-linking the material.
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Gelatin materials may be modified by physical and chemical methods, e.g., the
use of plasma, UV radiation, and dehydrothermal treatment (DTH), combined freeze-
drying/leaching method [16,17], the use of chemical cross-linking agents [14,18,19], or
enzymes [5,8]. However, the chemical cross-linking method is still considered to be the
most effective and the most popular approach to cross-link gelatin. The chemical cross-
linking agents are usually divided into two groups. Non-zero-length cross-linkers react
with amino or carboxyl groups of amino acids and are incorporated into a gelatin net-
work structure. Several bi-functional or poly-functional cross-linking reagents have been
used including aldehydes (such as glutaraldehyde, glyceraldehyde, and formaldehyde),
polyepoxides, isocyanates, and natural products such as genipin [13–15,20]. Zero-length
cross-linking is another example of a chemical cross-linking method. In this technique,
carboxyl groups are activated by cross-linker to direct reaction with amino groups present
on the adjacent gelatin chain. The reagent is not built into the gelatin matrix. One of the
most well-used linkers of this type is 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hy-
drochloride (EDC). It can be combined with N-hydroxysuccinimide (NHS), which increases
the efficiency of the gelatin cross-linking reaction [8,13,15,16,19,20]. However, chemical
cross-linking also has some limitations. For example, glutaraldehyde is a very effective,
low-cost, and easy to use cross-linking agent, but its unreacted molecules remaining in the
material may cause cytotoxicity. On the other hand, genipin is a much safer and equally
effective cross-linker, but very expensive. Therefore, new, effective, safe, and economically
acceptable cross-linking methods are constantly being sought [7,14,15]. For this reason, in
our work, the gelatin was cross-linked with three different cross-linking agents: EDC-NHS,
squaric acid (SQ), and dialdehyde starch (DAS).

1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrocholoride is the most popular
carbodiimide used for coupling biological substances containing carboxyl groups and
amines. This carbodiimide is known to be non-toxic and biocompatible [5,21]. EDC reacts
with a carboxyl group and forms an intermediate that reacts with primary amino groups.
The addition of NHS stabilizes the amine-reactive intermediate and significantly increases
the efficiency of EDC-mediated cross-linking reactions [8,16,21,22]. The cross-linking agent
rarely used is dialdehyde starch. DAS is obtained by selective periodate oxidative cleavage
of the C2-C3 bond in starch monomer followed by two aldehyde groups formation. DAS
is biodegradable and un-toxic, which makes it another class of valuable cross-linking
agent [23,24]. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a molecule with a
cyclic, symmetrical, planar, and rigid structure. Squaric acid is a highly acidic molecule that
exists in keto-enol balance [25]. Negative charges are evenly distributed in the molecule
between the oxygen atoms in a completely symmetrical dianion. Therefore, squaric acid
reacts readily with amino groups and may be incorporated into the polymer network.
Squaric acid derivatives are used as substitutes for reagents commonly used in biology,
which are among others monophosphates, other carboxylates, and diesters, used in many
medical aspects [26,27]. Our previous researches showed that DAS and SQ are effective
cross-linking agents for collagen hydrogels.

The aim of the study was to compare the properties of gelatin cross-linked by typically
used cross-linker EDC-NHS with the material modified by the addition of other cross-
linking agents: Squaric acid and dialdehyde starch.

2. Materials and Methods
2.1. Materials

Gelatin from porcine skin (type A, 300 Bloom), N-hydroxysuccinimide, 1-ethyl-3-(3-
dimethylamino propyl) carbodiimide hydrochloride, and 3,4-dihydroksy-3-cyklobuten
1,2-dion were obtained from Sigma-Aldrich, Steinheim, Germany. Dialdehyde starch was
purchased from CHEMOS GmbH, Altdorf, Germany. All the materials were used without
any further purification.
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2.2. Hydrogel Preparation

Forty percent aqueous solution of gelatin was prepared by mixing gelatin in the
distilled water with a magnetic stirrer at 50 ◦C for 30 min. The cross-linkers solutions
were prepared by dissolving a proper amount of EDC-NHS (in molar ratio 1:5) and SQ in
distilled water in separate beakers. Dialdehyde starch was stirred in the water at 60 ◦C
until the clear solution was obtained. After that, 15 cm3 of 40% aqueous solution of gelatin
was mixed with the desired amount of different cross-linkers and refilled to 30 cm3 of total
volume with distilled water to finally obtain a solution of 20% gelatin. One percent of DAS
and EDC-NHS (relative to protein dry weight), and 1% and 3% of SQ were added to gelatin
solution. Then, 25 cm3 of mixed solutions were poured on the bottom of levelled dishes
(1 mm thickness of the liquid layer) and left to gelation.

2.3. Thermal Analysis

The thermal properties of unmodified and cross-linked gelatin materials were studied
using the Simultaneous TGA-DTA NETZSCH Thermal Analysis TA Instruments type STA
449F5 Thermoanalyzer (NETZSCH, Selb, Germany) in the temperature range from 30 ◦C
to 650 ◦C. Samples weighing about 10 mg were tested. The measurement was performed
under a nitrogen atmosphere with a gas flow rate of about 50.0 mL/min. The heating
speed was 10 K/min. The research program that was used to determine the loss of mass
during material degradation and the temperature values at the maximum speed of the
entire process was the NETZSCH Proteus software (Version 6.1.0).

2.4. Infrared Spectroscopy

The thin slides of gelatin gels were dried in air. The FTIR-ATR spectra of samples were
recorded using a Thermo Fisher Scientific Nicolet iS10 FTIR spectrophotometer equipped
with a Ge single crystal attachment (Thermo Fisher Scientific, Waltham, MA, USA). The
spectra of all samples were recorded in the wavenumber range 4000–600 cm−1, with a
resolution equal to 4 cm−1. Sixty-four scans were performed for each of the samples. The
results were processed using the OMNIC program (Version 9.2.41).

2.5. SEM Images

The morphology images of lyophilized gelatin biomaterials were obtained with the
use of a scanning electron microscope manufactured by LEO Electron Microscopy Ltd.,
Cambridge, UK, 1430 VP model. The morphology images of lyophilized gelatin bioma-
terials were obtained with the use of a scanning electron microscope manufactured by
LEO Electron Microscopy Ltd., UK, 1430 VP model. The gelatin solutions with cross-linker
additions were poured into a 12-well plate and left to gelation. Then the material was
frozen at −20 ◦C and lyophilized. The small piece (3 mm × 3 mm) of the material was cut
from the middle of the sample and coated with gold. The cross-section of the hydrogel was
observed. The pore size was analyzed using a program provided by the SEM manufacturer.
The value was an average of at least ten measurements.

2.6. Mechanical Properties

The mechanical properties were determined using the Zwick & Roell Z 0.5 machine
(Zwick&Roell, Ulm, Germany) (Figure 1). The material was cut with a die into equal strips,
approx. 7.09 mm wide and 70 mm long. The thickness of each sample was measured
using a caliper, approx. 1.18 mm. The ends of each strip were taped with sandpaper before
measurement. The samples were placed between the metal clamps, carefully gripped, and
kept lightly taut. The sample was stretched at a speed of 10 mm/min. Tensile strength,
elongation at breaking point, and Young Modulus were determined. From each hydrogel,
7 strips were cut out, and the measurement was made for each until the sample was broken.
The final results are the mean of at least 5 measurements, excluding two extreme results.
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Figure 1. Photography of the Zwick & Roell Z 0.5 machine with measured hydrogel placed between
the metal clamps.

2.7. Swelling Ability

The swelling ability (Es) was measured by the conventional gravimetric method. The
dry sample was weighed and placed in 3 mL of 0.05 M phosphate buffer saline (PBS) at
pH 7.4, at room temperature. After the appropriate incubation time (1, 2, 4, 6, 24, 48, 72,
96 h), the excess of the phosphate buffer was removed with the use of absorbent paper,
and the wet material was weighed (Ws). The liquid content of the scaffolds was defined as
the ratio of weight increase (Ws − Wd) relative to the initial weight (Wd) of dry samples.
Each value was averaged from three parallel measurements. Es was calculated with the
following equation: Es = (Ws − Wd)/Wd where Ws and Wd denote the weights of swollen
and dry samples, respectively.

3. Results
3.1. Thermal Analysis

Generally, thermal stability is related to the cross-linking density of the polymeric
material. Therefore, the thermal analysis of the obtained gelatin hydrogels, unmodified
and cross-linked by various reagents, was carried out. All the hydrogels showed two
steps of weight loss during heating (Figure 2). The first stage of gelatin hydrogels thermal
decomposition occurred in the temperature range of 25–217 ◦C and was accompanied by
weight loss from 11% to 12%. This stage was attributed to the loss of water absorbed by
the hydrogel and water bound to gelatin. The second stage of hydrogel decomposition
took place in the temperature range of 240–500 ◦C, with a weight loss from 66% to 70%.
At this stage, the loss of innermost strongly bonded water molecules and protein chains
decomposition are observed. The recorded temperature ranges of individual stages of
thermal changes are consistent with the literature data [28–30].

The temperature of the changes and weight losses for individual samples were an-
alyzed, and the results are presented in Table 1. The unmodified Gelatin 20% hydrogel
showed the lowest temperature and the highest weight loss in the first stage of thermal
degradation. The temperature of this step increased, and the amount of water loss decrease
after the material cross-linking using EDC-NHS, SQ, and DAS. The structure of cross-linked
hydrogel is more closed, therefore, it binds less water and the evaporation of water is more
difficult. Additionally, the temperature of the second degradation stage was the lowest
for Gelatin 20%, and the observed weight loss was 69%. It is well known that the thermal
stability of protein materials is related to the total number of hydrogen bonds, cross-linking
bonds, and other interactions between biopolymer chains [4]. Therefore, the increase in
degradation temperature observed for EDC-NHS, SQ 1%, SQ 3%, and DAS indicates the
cross-linking bond formation. Though somewhat surprising is the fact that the greater
amount of squaric acid (3%) improved the thermal stability of the gel to a lesser extent than
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the 1% addition, and at the same time, the lowest weight loss was observed for this sample.
Perhaps, due to the very polar nature of the SQ molecule and the ability to the formation
of hydrogen bonds to water molecules, the mobility of protein chains is modified, and
this may decrease the material thermal stability. Moreover, the electrostatic repulsion of
protein functional groups may be modified. Among the tested materials, DAS cross-linked
hydrogel showed the highest temperature of the second stage of thermal changes.

Figure 2. Thermograms of Gelatin 20%, as a model of mass change, and gelatin hydrogels cross-linked with EDC-NHS,
squaric acid (SQ), and dialdehyde starch (DAS).

Table 1. The parameters of the thermal decomposition of unmodified and cross-linked gelatin
hydrogels.

Sample
I Stage 240 ◦C II Stage From 240 ◦C to 500 ◦C

T [◦C] ∆m [%] T [◦C] ∆m [%]

Gelatin 20% 204 12.47 305 57.38
EDC-NHS 212 11.87 316 58.34

SQ 1% 214 11.65 316 56.03
SQ 3% 217 11.04 309 55.12
DAS 214 11.66 326 57.52

3.2. Infrared Spectroscopy

In an attempt to establish the influence of the crosslinking agent on the structure of
gelatin-based materials, the FTIR-ATR technique was applied. The FTIR spectra of pristine
gelatin and gelatin-based films are presented in Figures 3–5.

According to the published data, the obtained gelatin FTIR spectra indicate the pres-
ence of absorption bands characteristic of peptide bonds (Figure 3). In Table 2, the bands
have been assigned to the characteristic groups of atoms. One of the most important groups
in the structure of gelatin is the amide A with the band in the wavenumber range between
3500 and 3200 cm−1. Other characteristic groups present in the structure of gelatin include:
The amide B band visible at the 3080 cm−1 wavenumber amide I, amide II, and amide III
bands, that can be observed at the 1646 cm−1, 1550 cm−1, and 1239 cm−1 wavenumber,
respectively [31]. The amide I band is attributed to the CO- and CN- stretching vibrations.
The amide band II can be assigned to the deformation vibrations of the N-H group and
the stretching vibration of C-N bonds. Additionally, other bands corresponded to the
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vibration stretching of the C-N bonds and the vibration of bending N-H bonds, indicating
the presence of the amide III [4,10,15,25,32].

Table 2. The position of main bands [cm−1] in FTIR spectra of unmodified and cross-linked gelatin
hydrogels.

Sample Amide A Amide B CH3 Amide I Amide II Amide III

Gelatin 20% 3308 3080 2940 1644 1551 1239
EDC-NHS 3307 3079 2940 1645 1550 1239

SQ 1% 3307 3080 2941 1646 1550 1239
SQ 3% 3307 3079 2943 1646 1550 1239
DAS 3307 3079 2970 1646 1550 1238

Figure 3. The FTIR spectra of gelatin and gelatin crosslinked by EDC-NHS.

The spectra of unmodified gelatin and gelatin cross-linked using EDC-NHS are shown
in Figure 3. EDC-NHS is a zero-length cross-linker, therefore the obtained results do not
reveal changes in the structure of the obtained material. This suggests that the structure of
the formed cross-linked gelatin-based film has not undergone any notable changes. The
same tendency was observed in the publication by Dae Hoon Lee et al. [33]. A comparison
of FTIR spectra of the pure gelatin and gelatin crosslinked by means of dialdehyde starch
(DAS) (Figure 4) revealed certain differences in the regions that correspond to CH vibration
stretching (2850–2950 cm−1) [23]. The presence of the band at 1032 cm−1 suggests that
hydrogen bonds between gelatin chains and dialdehyde starch are created. When assessing
the changes in the FTIR-ATR spectrum mentioned above, we have to bear in mind that the
studied material contains as little 1% of DAS. Moreover, it has to be taken into account
that gelatin and dialdehyde starch possess a large number of similar functional groups.
Consequently, the otherwise simple observation of the crosslinking effect can be impeded
by overlapping of the recorded bands [24,32]. In the case of materials consisting of gelatin
and squaric acid (SQ), films with two different concentrations of the cross-linking agent
were analyzed. The FITR-ATR spectra of pure hydrogel and gelatin containing 1 and



Materials 2021, 14, 396 7 of 15

3% of squaric acid can be seen in Figure 5. The most significant changes between the
crosslinked and non-crosslinked materials have been observed at the 1530–1480 cm−1 as
well as the 650 cm−1 wavelength, which corresponds to the C=O stretching and C=O
wagging vibrations present in the structure of the squaric acid [34].

Figure 4. The FTIR spectra of gelatin and gelatin crosslinked by DAS.

Figure 5. The FTIR spectra of gelatin and gelatin crosslinked by means of squaric acid.
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3.3. SEM Images

The porosity of hydrogel depends on the presence of cross-linking bonds. This param-
eter influences mechanical properties, swelling ability, and transport of active molecules
across the gel structure. The SEM images of lyophilized gelatin hydrogels, unmodified and
cross-linked with EDC-NHS, SQ, and DAS, are seen in Figure 6. All the materials possess a
3-D porous structure. The pores have an irregular shape and heterogenic size. However, it
is seen that the pore size decreases after the use of cross-linking agents. The mean pore
size in an unmodified gelatin gel is 244 µm (Table 3), while the smallest pores, about 73 µm
in diameter, were observed in the gels EDC-NHS and SQ 1% hydrogels. Similarly to the
thermal stability study, it was observed that the greater the addition of SQ resulted in less
change of material properties. SQ 3% gel possess pores with an average size of 152 µm. We
noted a similar effect when we investigated the cross-linking of collagen-elastin materials
using different amounts of SQ. When a limit concentration of the cross-linking agent is
exceeded, the size of pores present in the material increases [4,25,32]. The addition of DAS
also causes a relatively small reduction in pore size, possibly due to the polymeric character
of the cross-linker molecules.

Figure 6. SEM images of lyophilized gelatin hydrogels: (a) Gelatin 20%, (b) EDC-NHS, (c) SQ 1%,
(d) SQ3%, (e) DAS.



Materials 2021, 14, 396 9 of 15

Table 3. The pore size of Gelatin 20% and gelatin hydrogels cross-linked with EDC-NHS, SQ, and
DAS.

Sample Pore Size (µm)

Gelatin 20% 243.63±35.98
EDC-NHS 73.35±5.64

SQ 1% 73.49±4.38
SQ 3% 151.72±26.70
DAS 130.08±16.44

3.4. Mechanical Properties

Hydrogels are a particular group of materials composed of two phases: A small
amount of a porous polymer network constituting a solid phase, and a large amount of
a liquid phase. These make the mechanical properties of hydrogels usually quite poor
and limit the materials applications. These also make it difficult to test the mechanical
properties of these materials and force a different approach to the analysis than in the case
of classic polymer materials. The strength and flexibility of gels depend on the polymers’
composition and structure, cross-linking density, porosity, and water content. Despite
many studies, researchers are still looking for better, more efficient, and biologically safe
methods of cross-linking.

The obtained unmodified gelatin gels, and cross-linked by EDC-NHS, SQ, and DAS,
were tested for tensile strength and elongation at breaking point, and then Young’s Modulus
was calculated. The typical stress–strain curves of the cross-linked gelatin hydrogels
are shown in Figure 7, and the calculated parameters are summarized in the diagrams
presented in Table 4. Cross-linking with EDC significantly improves the mechanical
properties of gelatin gels. The values of tensile strength and elongation at breaking point
are twice as high as for unmodified gels. The stiffness of the material also increases (Young’s
Modulus for EDC-NHS 99.43 kPa). A similar tendency is reported in the literature, though
the results of mechanical tests cover a wide range of values. However, please note that the
properties of gelatin materials depend on the gelatin type, its hardness, the procedure of the
material formation (gel/film/fiber), and finally, the cross-linking degree [35–39]. Among
the tested materials, the gelatin hydrogels cross-linked by DAS demonstrated the highest
tensile strength. The value of elongation at breaking point comparable to Gelatin 20% and
high Young’s Modulus proves the significant stiffness of the material. The results obtained
for hydrogels with the addition of SQ were not as we expected. Our previous experiments
showed a significant increase in the elastic modulus of collagen/elastin hydrogels cross-
linked with SQ [25]. However, the tensile strength and elongation at breaking point
decreased for both types of gelatin gels cross-linked by SQ. Only Young’s modulus slightly
increased in case SQ 1%.

Table 4. Mechanical parameters of the measured unmodified and cross-linked gelatin hydrogels.

Sample Tensile Strength
[kPa] Elongation [%] Young’s Modulus

[kPa]

Gelatin 20% 31.68 ± 9.66 39.23 ± 2.98 37.60 ± 5.00
EDC-NHS 67.91 ± 7.13 74.77 ± 11.71 99.43 ± 11.83

SQ 1% 22.41 ± 6.30 40.54 ± 8.27 53.96 ± 4.34
SQ 3% 10.21 ± 1.60 37.71 ± 5.07 25.00 ± 3.39
DAS 111.91 ± 12.04 25.40 ± 2.84 168.00 ± 40.00
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Figure 7. Stress-strain curve of gelatin hydrogel cross-linked with 1% SQ.

3.5. Swelling Ability

A, high water absorption capacity of hydrogels is desirable due to the good perme-
ability of such gels and their biocompatibility. The swelling curves of gelatin hydrogels
cross-linked by various cross-linking agents are presented in Figure 8. Initially, the swelling
degree of all the tested hydrogels increased rapidly, and then, after about 6 hours, it sta-
bilized. Interestingly, the cross-linking did not cut the swelling capacity of hydrogels.
A comparable swelling degree for Gelatin 20% and EDC-NHS gels was observed. The
introduction of polar dialdehyde starch macromolecules and highly polar squaric acid into
the hydrogel structure increased the swelling degree of the materials.
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Figure 8. The swelling ratio Es [%] of unmodified gelatin gels and cross-linked by EDC-NHS, SQ, and DAS.

4. Discussion

The gelation of gelatin is a result of the conformational changes (coil-to-helix transition)
and aggregation of the protein chains. The new structure, created during the cooling of
the solution, is stabilized mainly by hydrogen bonds [3]. As a result, the gels have poor
mechanical properties. Moreover, the hydrogen bonds can be easily broken on heating,
making the gelatin gels thermally reversible. The material structure may be stabilized by
introducing additional intermolecular covalent bonds by the cross-linking process.

EDC-NHS is a classical zero-length cross-linking agent. It mediates the formation of
bonds between the amino and carboxyl groups, which makes the structure more rigid and
close. Our experiments are consistent with previous results and prove that the cross-linking
of the gelatin gel with EDC-NHS increases its thermal stability, rigidity, and mechanical
strength of the material. As expected, the sizes of pores presented in the material were
reduced threefold. The swelling capacity is comparable to the observed for Gelatin 20%,
but this may be due to leaching unbound gelatin chains from the non-cross-linked gel
structure [35–39].

SQ is a representative of non-zero-length cross-linkers. It can form covalent bonds with
amino groups of proteins and hydrogen bonds with carboxyl groups (Figure 9) [27,40]. The
increase of thermal stability and additional bands observed in FTIR spectra indicates the
formation of the cross-linking bonds. Moreover, the reduction of pore size in the material
structure was also observed. However, in contrast to our earlier findings, which showed
that higher SQ addition better improved the properties of collagen/elastin hydrogels, a
larger SQ quantity changed the gelatin material properties to a lesser extent [25]. Interest-
ingly, the addition of SQ increases the degree of hydrogel swelling. This phenomenon may
be due to the very polar nature of SQ molecules, which can form hydrogen bonds with
water molecules. Moreover, negatively charged squaric acid molecules can electrostatically
repel charged areas of gelatin chains, and this promotes swelling. The most surprising
was the significant deterioration in mechanical properties, especially with 3% SQ addition.
It would be related to a very unusual phenomenon which we observed. Initially, all gels
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were light yellow, but after cutting strips for the mechanical test, the gels containing SQ
3% turned purple (Figure 10). Probably the cause of the color change was the contact with
a metal punch. Cutting the hydrogel with other metal blades also caused similar color
changes. Squaric acid is a substrate for the preparation of squaraine dyes [41,42]. Perhaps
the contact with the metal initiated the reaction with electron-rich aromatic rings present in
gelatin chains, and this led to the deterioration of the hydrogel mechanical properties.

Figure 9. A scheme of the cross-linking bond between SQ and amino groups of a protein.

Figure 10. A comparison of color of the obtained gelatin hydrogels cross-linked by EDC-NHS, DAS,
and SQ.

Dialdehyde starch is a macromolecular cross-linking agent with numerous aldehyde
groups that can react with amino groups of gelatin (Figure 11). The cross-linking gelatin gel
by DAS improves its thermal stability, as it was previously shown for collagen materials
modified with DAS [32,43–47]. The tensile strength and stiffness of the materials signifi-
cantly increase. Dou et al. have studied feather keratin films, and Martucci et al. gelatin
films cross-linked by DAS [48,49]. They both observed a reduction of tensile strength value
and an increase in the stiffness of the materials. Even though our results differ from these
studies, they are consistent with those of Kaczmarek et al., who also observed strengthening
and stiffening of lyophilized gelatin scaffolds cross-linked with DAS [24]. Although the
structure of the gel cross-linked with dialdehyde starch is more rigid, we have observed an
increase in the swelling capacity of materials containing DAS, similar to previous studies. It
could be caused by the presence of numerous hydroxyl groups and the hydrophilic nature
of DAS structure [24,32]. However, we have to bear in mind that various types of materials
(films, porous scaffolds, gels) were tested, and various types and ratios of DAS were used
as modifying agents. Therefore, it is difficult to directly compare the obtained results with
the literature data [24,43,46,48,49].
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Figure 11. A scheme of the cross-linking bond between DAS and amino groups of a protein.

5. Conclusions

In this paper, we examined the influence of three various cross-linking agents on
gelatin hydrogel properties. The classical compound zero-length EDC-NHS, non-zero-
length stearic acid, and macromolecular dialdehyde starch were tested. We have confirmed
that EDC-NHS is an efficient cross-linking agent, which improves the mechanical properties
and thermal stability of the protein gels. Contrary to expectations, SQ showed up as an
ineffective cross-linking agent for gelatin-based gels. The reason for mechanical properties
deterioration is probably the SQ transformation into squaraine dyes due to contact with
a metal blade. Our results indicate that dialdehyde starch is the best cross-linking agent
among tested compounds. It increases strength, stiffness, thermal stability, and interestingly,
also the swelling capacity of gelatin hydrogels.
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