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* badley.andrew@mayo.edu

Abstract

HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins

and are indistinguishable from uninfected cells. One approach to HIV cure suggests that

reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells

do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that

following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic

protein Casp8p41 which is produced by HIV protease cleaving procaspase 8. However, cell

death is prevented, possibly due to low procaspase 8 expression. Here, we tested whether

increasing procaspase 8 levels in CD4 T cells will produce more Casp8p41 following HIV

reactivation, causing more reactivated cells to die. Screening 1277 FDA approved drugs

identified 168 that increased procaspase 8 expression by at least 1.7-fold. Of these 30 were

tested for anti-HIV effects in an acute HIVIIIb infection model, and 9 drugs at physiologic rele-

vant levels significantly reduced cell-associated HIV DNA. Primary CD4 T cells from ART

suppressed HIV patients were treated with one of these 9 drugs and reactivated with αCD3/

αCD28. Four drugs significantly increased Casp8p41 levels following HIV reactivation, and

decreased total cell associated HIV DNA levels (flurbiprofen: p = 0.014; doxycycline: p =

0.044; indomethacin: p = 0.025; bezafibrate: P = 0.018) without effecting the viability of

uninfected cells. Thus procaspase 8 levels can be increased pharmacologically and, in the

context of HIV reactivation, increase Casp8p41 causing death of reactivating cells and

decreased HIV DNA levels. Future studies will be required to define the clinical utility of this

or similar approaches.

Introduction

There is no cure for HIV infection because no available therapy kills the reservoir of longlived,

latently infected, predominantly central memory CD4 T cells [1, 2] that are responsible for

viral rebound after combination antiretroviral therapy (cART) is discontinued. HIV persists in
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central memory CD4 T cells (TCM) that maintain a cell death resistant phenotype[3] which

facilitates their persistence as historical archives of past immune responses. Indeed, our recent

next-generation sequencing data in CD4 T cell subsets showed that, in contrast to effector

memory CD4 T cells (TEM), TCM upregulates 6 proliferation genes, and down regulates 46

cell death genes by at least 2 fold change respectively[4]. Other groups have similarly observed

lower levels of transcripts for 10 apoptosis regulatory genes including Caspase 8 and Caspase 3

in TCM from HIV-uninfected patients in comparison to TEM[5]. This reduction in proapop-

totic molecule expression in concert with upregulation of anti-apoptotic molecules such as

Bcl-xL or c-IAPs in TCM together prevents activation induced cell death (AICD)[6, 7]-one

mechanism of homeostatic control of an activated immune response. Thus, it is likely that

TCM resist apoptosis induced by a variety of death stimuli in comparison to TEM, including

activation of the intrinsic pathway of cell death and death receptor ligation [8–10]. Indeed

when TEM and TCM from the same donors are compared, TCM death in response to the Fas

receptor ligation or in response to chemotherapy is less than in TEM, indicating a general

death resistance[5, 11].

Death of HIV infected cells is induced by different pathways than uninfected (bystander)

cells [12]. In uninfected CD4 T cells, aberrant immune activation, bacterial translocation

across the gut epithelium and interaction with death inducing ligands (such as Fas Ligand or

TNF Related Apoptosis Inducing Ligand (TRAIL)) or soluble HIV proteins (e.g., gp120, Tat,

or Vpr) all contribute to cell loss [13–19]. In contrast, infected CD4 T cells can be killed by:

RIG-I mediated sensing of HIV RNA[20], IFI-16 sensing of unintegrated HIV DNA [21] and

DNA-PK-sensing of HIV integrase nicking of host DNA[22], all of which can induce apoptosis

(or pyroptosis) of the infected cell. Once HIV is integrated into the host DNA, it can remain in

a latent state for years, or may reactivate and produce progeny virions. With HIV replication,

HIV protease in the cytosol cleaves both viral and host substrates[23–27], also leading to apo-

ptosis. Since this pathway of HIV-infected cell killing occurs after integration in the HIV life

cycle, it is important when HIV is reactivated from latently infected T cells. We have shown

that HIV protease requires procaspase 8 to initiate apoptosis, and HIV protease cleavage of

procaspase 8 generates Casp8p41; this, in turn, unmasks a latent BH3-like domain within

Casp8p41 which binds to and activates Bak pore function causing increased mitochondrial

outer membrane permeability (MOMP) and apoptosis [23, 28, 29]. In cells from HIV viremic

patients, the presence of Casp8p41 predicts ongoing CD4 T cell loss [30], thereby attesting to

the clinical relevance of this molecule.

When latently HIV infected CD4 T cells reactivate HIV, very few cells die despite producing

progeny virions[31], suggesting that either Casp8p41 is not produced or that its apoptotic

properties are antagonized. Our intensive studies of the molecular mechanisms by which

Casp8p41 generated by HIV protease causes CD4 T cell death provides a conceptual frame-

work by which we can test why TCM do not die despite HIV reactivation. We have previously

shown that TCM from HIV-infected individuals in fact do generate Casp8p41 post reactiva-

tion, yet have a greater ratio of Bcl-2 to procaspase 8 than TEM, possibly explaining their resis-

tance to HIV reactivation induced apoptosis [32]. Consistent with that model, we further

showed that persistence of the latently infected cells can be reversed ex vivo by treating these

cells with a Bcl-2 inhibitor, venetoclax [32]. Another potential way to enhance apoptosis of

HIV infected CD4 T cells would be to increase generation of Casp8p41, which could be

achieved by increasing procaspase 8 levels in the infected T cells. In the current report we test

the hypothesis that increasing procaspase 8 increases the proportion of HIV infected cells that

die after reactivation.

If a cure for HIV infection is to be widely applicable it must be simple, safe and scalable [33,

34]. A simple way to upregulate procaspase 8 expression in a CD4 T cell involves induction of
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immune activation[35]; but in the context of HIV infection, polyclonal immune activation may

have negative untoward effects on HIV replication and immune function, including the induc-

tion of anergy. Instead, we have screened drugs already approved by the FDA for their ability to

induced procaspase 8 expression in CD4 T cells and, if they do, whether treatment with these

drugs results in an increased proportion of HIV infected cells dying after reactivation.

Materials and methods

Experimental design

The objective of this research was to determine if pharmacologic induction of procaspase 8

expression in latently HIV infected cells would increase cell death after viral reactivation and

thereby decrease residual HIV DNA. The experimental design consisted of controlled labora-

tory experiments with the indicated number of replicates.

Donors, reagents and CD4 cell isolation

Patient blood samples were approved through Mayo Clinic Institutional Review Board (IRB)-

and Hennepin County Medical Center Human Subjects Committee approved protocols (#13-

005646 and #1039-03), and written informed concent was obtained prior to study procedures.

HIV positive patient samples were obtained either from leukapheresis or peripheral phlebot-

omy, whereas uninfected controls were obtained through apheresis leukocyte reduction cones

[36]. All HIV positive donors were on combination antiretroviral therapy (cART) with HIV

viral load <48 copies/mL. CD4 cells were isolated using RosetteSep™ Human CD4+ T Cell

Enrichment Cocktail (negative selection) (Stemcell Technology Inc., Vancouver, CA) -per

manufacture protocol. Media used for all experiments was RPMI1640 medium with L-gluta-

mine (Gibco, Life Technologies) supplemented with 10% fetal bovine serum (FBS), penicillin

(100 IU/mL) and streptomycin (100 mcg/mL).

Drug screen to identify drugs that upregulate procaspase-8

CD4 T cells were isolated from HIV-uninfected donors by density gradient and negative selec-

tion as mentioned above. Cells are routinely>95% CD4 +. CD4 T cells (2x106 cells /well) were

cultured in 96-well plates pre-spotted with 50 nL of drug (10 mM stocks in neat DMSO) for

24 hours. Treated cells were harvested, lysed and cytoplasmic extracts assayed for procaspase8

by ELISA (Abcam) per manufacturer’s protocol. Fold change in procaspase 8 expression was

determined by dividing procaspase 8 concentrations in lysates from individual drug treatments

by the mean of untreated control wells. Drugs screened were from the Prestwich Chemical

Library1 (Illkirch-Graffenstaden, France) of 100% approved drugs (FDA, EMA and others).

HIV infection, p24 measurement and reactivation

Primary CD4 T cells were infected with HIV-1IIIb (NIH AIDS Reagent Program). Aliquots of

the same pooled infectious supernatant were used for all experiments to ensure consistent

MOIs across experiments. Primary CD4 cells were activated with IL-2 50 IU/mL and phyto-

haemagglutinin (PHA) 1 mcg/mL for 48hrs, then 100 x106 cells were infected with 20 mL of

viral stock for 6 hours with polybrene 10 mcg/mL. Infected cells were then washed twice and

recultured in complete medium.

Ex vivo reactivation experiments were performed as follows. 2 to 5 million primary HIV

patient bulk CD4 T cells were cultured in complete medium with or without procaspase-8

inducing drugs for 72 hours in the presence of tenofovir 10 micromolar and raltegravir 100

nM to prevent spreading infection. Cells were reactivated with plate bound αCD3 (clone
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OKT3) and soluble αCD28 (clone CD28.2) 1mcg/mL) for 48 hours prior to harvest. Drugs

used to prime CD4T cells were used at concentrations that reflected serum peak concentra-

tions in clinical studies as follows; carboplatin 39 mcg/mL[36], flurbiprofen 15.2 mcg/ml[37],

doxycycline 10 mcg/mL[38], cinnarazine 200 ng/mL[39], indomethacin 2.4 mcg/mL[40],

tenoxicam 2 mcg/mL[41], bezafibrate 14.3 mcg/mL[42], morantel 1.6 mcg/mL[43], retinoic

acid 0.347 mcg/mL[44], acetaminophen 17.6 mcg/mL[45], triprolidine 0.015 mcg/mL[46],

cholecalciferol 139 nM [47], ofloxacin 1.96 mcg/mL[48].

HIV P24 in the cell culture supernatant was measured by RETROTEK™ ELISA kits (Zepto-

metrix Corporation) according to manufacturer’s protocol.

Cell associated HIV-1 DNA was measured as follows—total DNA was extracted using the

Qiagen DNeasy Blood and Tissue kit (Hilden, Germany) and analyzed by a real-time polymer-

ase chain reaction (PCR) assay specific for HIV-LTR and β-globin primers. A standard curve

of pNL4-3 plasmid from 106 to 10 copies was used as an internal control. Briefly, 300 nM of

the sense primer RU5-F 50-TTAAGCCTCAATAAAGCTTGCC-30 and the antisense primer

RU5-R 50- GTTCGGGCGCCACTGCTAGA -30 were used in conjunction with 300 nM of the

dual-labeled fluorogenic TaqMan probe 50-FAM-CCAGAGTCACACAACAGACGGGCACA-TA
MRA-30. For a 20 microliter reaction, 10 microliters of gene expression master mix (Applied

Biosystems) was used with 5 microliters of genomic DNA. PCR conditions consisted of one

cycle of 95˚C for 3 min followed by 45 cycles of 95˚C for 15 s and 60˚C for 1 min. Total HIV-1

DNA was compared and normalized with genomic DNA, determined by beta-globin detection

using the Applied Biosystems (Carlsbad, CA). HIV-1 proviral DNA levels are expressed as

HIV-1 copies/beta-globin genomic equivalent of 106 cells.

Procaspase 8 Western blots

Ten million cells were lysed in 100 microliter of lysis buffer (20 mM Tris-HCl [pH 7.5], 150

mM NaCl, 0.1% Triton X-100 [TX-100], 2 mcg/mL aprotinin, 10 mcg/mL leupeptin, 2 mcg/

mL pepstatin, and1 mM phenylmethylsulfonyl fluoride [PMSF]) for 10 min on ice. For cell

fractionation, the lysate was then further centrifuged at 15,000 × g for 5 min at 4˚C, resulting

in a pellet and cytosolic supernatant.

For Western blot analysis, 20 mcg of cell lysate was run on 10% polyacrylamide gels and then

transferred onto polyvinylidene difluoride (PVDF) membranes for 2 h at 1,200 mA in transfer

buffer (24 mM Tris, 192 mM glycine). The membranes were then blocked in Tris-buffered

saline-Tween (TBST) (20 mM Tris, 150 mM NaCl, 0.05% Tween 20) with 2% bovine serum

albumin (BSA) (Sigma, St. Louis, MO) overnight at 4˚C. Membranes were blotted with the fol-

lowing primary antibodies: anti-actin (Sigma, St. Louis, MO), and monoclonal anti-caspase 8

(Biosource International, Camarillo, CA). Membranes were then washed three times with

TBST, and a horseradish peroxidase-linked secondary antibody was used when necessary. All

blots were developed by using a detection kit from Thermo Fisher Scientific (Waltham, MA).

Flow cytometry

Flow cytometric measurement of intracellular Casp8p41 expression was performed as previ-

ously described using a neo-epitope specific antibody [32, 49]. Cell death was measured using

LIVE/DEAD1 fixable aqua dead cell stain (Invitrogen). Surface expression of CD25 and

CD38 was determined by staining 1x106 CD4 T cells with anti-CD25-PE (Becton Dickenson

CAT 341010) and anti-CD38-PE (IMMUNOTECH CAT PNIM2371). Cells were washed and

then resuspended in 200 microliters of PBS. Cells were then incubated at 4˚C for 30min with

the above antibodies, unstained control and isotype after which time they were washed and

fixed with 2% paraformaldehyde. Proliferation was measured by staining with Ki67 per
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manufacturer’s protocol (BD Biosciences CAT 556026). FACS analysis was performed on

either a FACScan or LSRII flow cytometer (BD Biosciences) based on multiparameter needs.

FACS data was analyzed using FlowJo software (Tree Star Inc.).

pGL4-Casp8 -luc reporter expression in primary CD4 T cells

For construction of caspase 8 promoter fragment (0.5 kB) luciferase-reporter plasmids we

amplified using genomic DNA from jurkat cells as template by PCR approach and oligonucle-

otides that are flanked by KpnI and HindIII restriction sites. The resulting fragments were

then cloned into the KpnI and HindIII sites of the pGL4-Basic vector (Promega). Promoter

sequences amplified by PCR were confirmed by DNA sequencing using Mayo sequencing

core lab. The TK-Renilla expression vector purchased from Promega (Madison, WI), was used

as an internal control for transfections. Primary CD4 cells were transfected with 10 ug plasmid

(9.5 mcg Casp8-luc and 0.5 mcg TK-renilla luc/106 cells using an Electro Square Porator T820

(BTX, San Diego, CA) electroporator. Cells were then primed with Flurbiprofen, Indometha-

cin, Doxycycline, Bezafibrate, DMSO or PHA (positive control). Results are expressed as ratio

of casp8-luc/Renilla expression at 24hours[50].

Statistical analysis

Mean values of replicates were compared to control samples by unpaired t-tests, unless other-

wise described. Figures depict mean (standard deviation) unless stated otherwise. An un-

corrected alpha<0.1 was considered significant for advancement through drug screening

procedures. For the final determination of select drug effect on HIV DNA, median values were

compared using Kruskall-Wallis test with Dunn’s multiple comparison test, with corrected

P values <0.05 considered statistically significant. Statistical analysis was performed using

GraphPad Prism Version 6.

Results

We sought to determine whether increasing procaspase 8 expression in CD4 T cells prior to

reactivation would increase Casp8p41 production and death of HIV infected cells, resulting in

reduced residual HIV cell associated DNA. To accomplish this, we adopted a three-phase

screening approach. In the first phase, we screened a panel of FDA-approved drugs for the

ability to increase procaspase 8 expression. In the second phase, we determined whether pro-

caspase 8-inducing drugs decreased HIV DNA and/or replication in an acute, in vitro infection

model using laboratory adapted HIV and primary CD4 T cells. Emphasis was placed on reduc-

tions in HIV DNA as opposed to viral replication as downstream assays and clinical applica-

tions would occur in the absence of active viral replication. In the final phase, we tested the

effects of selected agents from the first two screens on ex vivo CD4 T cells from ART-sup-

pressed, HIV positive patients, thereby determining the reproducibility of the results using

multiple clinical isolates of HIV. At each screening step, drugs were advanced based on a

reproducible biologic effect; plausible mechanism of action; anticipated drug safety, tolerability

and clinical availability. Finally, mechanistic investigations confirmed upregulation of Casp8p41

expression associated with reduced HIV DNA after viral reactivation.

Step 1: Screening for FDA approved drugs that upregulate procaspase 8

in primary CD4 T cells in vitro

According to Michalis–Menten enzyme kinetics [51], an increase in the procaspase 8 substrate

concentration in the presence of catalytically active HIV protease will lead to a saturable
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increase in its Casp8p41 product concentration. A small molecule drug whose mechanism of

action is upregulation of procaspase 8 expression would therefore lead to increased Casp8p41.

However, we were unaware of any such drug and therefore, we screened 1277 FDA-approved

drugs collection for the ability to increase procaspase 8 protein expression in primary CD4 T

cells. CD4 T cells from HIV-uninfected donors were cultured in 96-well plates pre-spotted

with 50 nL of drug (10 mM in DMSO) for 24 hours. Treated cells were harvested, lysed and

cytoplasmic extracts assayed for procaspase 8 expression using a commercial ELISA and nor-

malized to the mean of the untreated controls for the same plate (Fig 1A). Phorbol 12-myris-

tate 13-acetate (PMA) was used as a positive control for increasing procaspase8 expression

(Fig 1B)[52]. 168 (13%) drugs increased procaspase 8 expression in CD4 T cells by at least 1.7

fold, which represented the lower end of the 90% confidence interval of the geometric mean

Fig 1. Select FDA approved drugs increase procaspase 8 expression. A) CD4 T cells were isolated from HIV-uninfected donors (9 total) and cultured

in 96 well plates preloaded with 50 nL of drug (10mM in DMSO) for 24 hours. 1277 drugs from the Prestwick Chemical Library® collection of approved

drugs were screened. Treated cells were assayed for procaspase8 by ELISA. B) PMA was used as a positive control for procaspase 8 induction. C)

Primary uninfected CD4 cells from 5–6 different donors were transfected with pGL4-Casp8 -luc reporter and renilla then incubated for 24 hours with

procaspase 8 inducing drugs. Luc/renilla ratios were measured and normalized to DMSO control. D) CD4 T cells from uninfected donors were primed with

Flurbiprofen and cells were harvested at 24, 48 and 72 hours procaspase 8 measurement by western blot. PHA was used as a positive control.

https://doi.org/10.1371/journal.pone.0179327.g001
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fold-induction in the PMA treated controls, and thus considered a biologically relevant induc-

tion. These drugs clustered in several therapeutic classes, including antimicrobials, non-steroi-

dal anti-inflammatories (NSAID), histamine antagonists, and anti-neoplastic agents, among

others. We next used an orthogonal (non-ELISA) and mechanistically independent (transcrip-

tional reporter) secondary screen to validate the ELISA drug screen results. Primary CD4 T

cells were transfected with a procaspase 8 promoter construct linked to luciferase, and these

cells were treated with selected drugs that increased procaspase 8 by ELISA. Induction of pro-

caspase 8 gene expression was then confirmed at the transcriptional level, in a subset of drugs

identified in the ELISA screen to upregulate procaspase 8 protein expression, again using PHA

as a positive control. Notably, both flurbiprofen and indomethacin (NSAIDs) significantly

increased procaspase 8 gene expression compared to vehicle treated controls (p = 0.03 and

0.006, respectively), Fig 1C) consistent with previous reports with other NSAIDS [53–55]. In

addition, resting primary CD4 T cells treated with flurbiprofen increased procaspase 8 protein

expression compared to vehicle treated cells in a time dependent manner (Fig 1D), as assessed

by western blotting. In summary, these results demonstrate that a significant number of FDA-

approved drugs increase procaspase 8 gene and/or protein expression in CD4 T lymphocytes.

Thirty of the 168 (17.8%, or 2.3% of the total collection) drugs were then selected for secondary

screening for anti-HIV effects based on favorable side effect profiles and potentially plausible

mechanisms of action.

Step 2: Selected procaspase 8 inducing drugs decrease HIV DNA

following acute primary CD4 T cell HIV infection in vitro

Casp8p41 is produced during acute HIV infection in vitro [56], and procaspase 8 expression is

necessary for the death of HIV infected cells [23]. Furthermore, we have previously shown that

induction of apoptosis in HIV infected cells reduces residual HIV virus and decreases HIV

replication [57]. Therefore, we questioned whether increased procaspase 8 expression during

acute HIV infection in vitro would alter and possibly decrease HIV replication and the number

of cells containing cell associated HIV DNA.

Activated primary CD4 T cells from 3 uninfected donors were infected with HIV IIIb in
vitro, then cultured in the presence of one of the procaspase 8 inducing drugs identified above

(or DMSO control), along with raltegravir (RAL) and tenofovir (TDF) to prevent spreading

reinfection cycles (Fig 2A). Cell associated HIV DNA was measured by qRT-PCR (Fig 2B),

and HIV p24 measured in cell culture supernatant by ELISA (Fig 2C) at 48 hours post infec-

tion. Nine of the procaspase 8 inducing drugs significantly decreased total HIV DNA levels

compared to vehicle control treated cells: tiprolidine (-49%, P = 0.009), indomethacin (-48%,

P = 0.0003), acetaminophen (-35%, P = 0.006), isoxicam (-34%, P = 0.01), ofloxacin(-33%,

P = 0.02), tenoxicam(-32%, P = 0.0001), amiprilose (-31%, P = 0.03), disulfiram(-27%, P =

0.0009), mebhydroline(-27%, P = 0.02), hycanthone(-25%, P = 0.0001). In addition, the magni-

tude of change in HIV DNA in this model was associated with the degree of procaspase 8

induction. The fifteen drugs with the greatest reductions in HIV DNA had a higher procaspase

8 effect on the drug screen compared to the 15 drugs with the lowest reductions in HIV DNA

(median [IQR] caspase 8 induction of 5.5 [4.2, 8.9] vs 3.2 [2.5, 4.9] fold respectively, P = 0.049

by Mann-Whitney test, Fig 2C).

Eight drugs also significantly decreased supernatant HIV p24 compared to vehicle control

treated cells: indomethacin (-16%, P = 0.04), flurbiprofen (-16%, P = 0.001), amiprilose (-17%,

P = 0.02), mebhydroline (-23%, P = 0.04), methapyriline (-14%, P = 0.03), hycanthone (-7%,

P = 0.03), suramine (P = 0.02) and Piracetam (-12%, P = 0.02). This data suggests that some

drugs which induce procaspase 8 expression reduce cell associated HIV DNA as well as HIV
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replication in an in vitro acute infection model, potentially through increasing apoptosis of

HIV infected cells. In fact, there was a modest correlation between reductions in HIV DNA

and supernatant p24 (r = 0.348, Fig 2E), although this did not reach statistical significance (P-

0.059). Notably, total cell viability was not significantly reduced by any of the drugs tested.

This is consistent with specificity of cell death to infected cells, as only a small percentage of all

cells will contain HIV virus in this acute in vitro infection model [58].

Step 3: Procaspase 8 inducing drugs which reduce HIV DNA following

acute HIV infection reduce total HIV DNA following ex vivo HIV reactivation

A treatment that reduces HIV DNA following HIV reactivation may be of use in contributing

to a cure for HIV. We therefore used cells from cART suppressed HIV patients which will

Fig 2. Procaspase 8 inducing drugs in acute in vitro HIV infection model. A) Primary uninfected CD4 cells from 3 donors were

infected with HIV IIIB and then incubated with procaspase 8 inducing drugs for 48hours with RAL and TDF. ATP, HIV DNA by qPCR (B),

and supernatant P24 (D) were assessed. C) The degree of procaspase 8 expression induction by ELISA was compared between drugs

which reduced HIV DNA or did not reduce HIV DNA in panel (B). Depicted are means (SD). E) Pearson correlation coefficient between

the change in cell associated HIV DNA and change in supernatant p24 was assessed.

https://doi.org/10.1371/journal.pone.0179327.g002
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include a number of latently infected cells [59–64], and measured cell associated HIV DNA as

a surrogate for HIV reservoir size, after treating these cells ex vivo with procaspase 8 inducing

drugs followed by a reactivation stimulus. We assessed the effects of 13 drugs on HIV reservoir

size using primary CD4 T cells (obtained by leukapheresis) from 5 HIV-infected patients who

have had suppressed viral replication, following HIV reactivation. Bulk CD4 T cells, which

comprise a mix of resting and activated cells at baseline, and T cell subsets, some of which

would be latently infected, were isolated and cultured for 72 hours in the presence or absence

of the above drugs, along with RAL/TFV to prevent spreading infection, then reactivated with

antiCD3/CD28, and cell associated HIV DNA and supernatant HIV p24 levels were measured

after 48h (Fig 3A). Five of the 13 drugs decreased cell associated HIV DNA significantly: Car-

boplatin (-37%; P = 0.008), Flurbiprofen (-27%; P = 0.01), Doxycycline (-26%; P = 0.01), Indo-

methacin (-23%; P = 0.0001), and Benzafibrate (-20%; P = 0.001) (Fig 3B). Supernatant HIV

p24 was undetectable in all samples, consistent with the low frequency of infected cells in

patients on suppressive ART, and the use of ART in the assay to prevent spreading infection.

Due to potential toxicities of clinical use of carboplatin, this drug was not further evaluated.

Ex vivo CD4 T cells from an additional 10 freshly obtained HIV infected patient samples

were treated with flurbiprofen, doxycycline, bezafibrate, indomethacin or vehicle control, reac-

tivated as above, and total cell associated HIV DNA measured by qPCR after 48 hrs. We have

previously shown interpatient variability in response to Casp8p41-targeting treatments in ex
vivo cells [32]; specifically 8 of 11 patients’ cells treated with a Bcl-2 antagonist followed by

reactivation responded with decreased HIV DNA. Anticipating similar variability in response

to inducing procaspase 8 expression, we reasoned that mechanistically, if cells from an individ-

ual patient respond to procaspase 8 induction prior to reactivation by reducing HIV DNA,

then similar effects should be seen across samples treated with the four drugs from distinct

drug classes. Therefore, we first examined response to procaspase 8 induction for significant

heterogeneity. Using a combination of principal component analysis [65, 66](Fig 3C) and

unsupervised hierarchical clustering [67, 68](Fig 3D), patient samples 2, 6 and 9 were deter-

mined to be outliers in response to the procaspase-8 inducing agents, confirming our previous

observations of variability in response to targeting Casp8p41-induced cell death. In the

remaining 7 patient samples in which a consistent response was seen, cell associated HIV

DNA was reduced significantly compared to control by flurbiprofen (adjusted p = 0.015),

doxycycline (adjusted p = 0.045), bezafibrate (adjusted p = 0.019) and indomethacin (adjusted

p = 0.026) (Fig 3E). Importantly, overall cell viability was not affected by treatment with pro-

caspase-8 inducing drugs, consistent with selective death of a proportion of HIV-infected cells,

which represent a small fraction of the total cell population. These data are consistent with a

model wherein increasing procaspase 8 expression in all cells, yet generating Casp8p41 only in

HIV infected cells which produce HIV protease, will result in the selective death of the HIV

infected cells, leaving the non-HIV infected cells alive.

Procaspase 8 activators which favor reduced HIV DNA following

reactivation do not induce activation or proliferation

One proposed pathway inducing immune dysfunction in HIV disease is immune activation

which negatively affects CD4 T cell homeostasis, effector immune mechanisms, viral replica-

tion and HIV associated disease complications [69–71]. Indeed, as was demonstrated in large

clinical trials of IL2 therapy in HIV infected patients (ESPRIT, SILCAAT and STALWART tri-

als), immune activation does not achieve the ultimate goals of viral control and clinically

meaningful immune reconstitution [72–74]. Consequently, any therapies which are being con-

sidered for adjunctive treatment in HIV should neither induce excessive immune activation,
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nor impair physiologic activation with immune mediated viral clearance. Procaspase-8 is a

critical signaling molecule in the induction of NF-kB dependent T cell activation via cell sur-

face receptors [75]. Therefore, we assessed whether flurbiprofen and indomethacin, which

increase procaspase-8 expression (Fig 1C) and cause reductions in HIV DNA following reacti-

vation (Fig 3B and 3E) also effect immune activation. Primary uninfected CD4 T cells from 3

donors were treated with flurbiprofen, indomethacin, metformin (as a negative control since it

decreased procaspase 8 in the drug screen) or control (DMSO) with or without stimulation

with phytohemagglutinin (PHA). Cell activation was measured by surface staining for expres-

sion of CD25 and CD38 (3 donors), and proliferation assessed by intracellular expression on

Ki67 stains (2 donors) after 48h. As expected, PHA treatment resulted in increased expression

of CD25 (Fig 4A and 4B), CD38 (Fig 4C and 4D) and Ki67 (Fig 4E and 4F) compared to con-

trol cells. Treatment with flurbiprofen or indomethacin did not affect baseline, or change in

response to PHA treatment, in CD25, CD38 or Ki67 expression in any subject. This in vitro
data suggests that neither flurbiprofen nor indomethacin seem likely to abnormally modulate

immune activation of CD4 T cells.

Fig 3. Procaspase 8 inducing drugs decrease total HIV DNA ex vivo. A) Primary CD4 cells from 5 HIV infected, virologically suppressed donors, on

cART were obtained via leukapheresis and were primed for 72 hours with the indicated drugs, then reactivated with antiCD3/CD28. B) Cell associated HIV

DNA was assessed by qPCR and normalized to DMSO treated control in the leukapheresis samples. Depicted are means (SD). C/D/E) 4 drugs—

Flurbiprofen, Doxycycline, Indomethacin, and Bezafibrate—were selected to prime freshly obtained CD4 T cells from 10 HIV-infected patients for 72 h.

These cells were then reactivated with antiCD3/CD28 and cell associated HIV DNA was assessed by qPCR. C) Principal component analysis of residual HIV

DNA across the samples identified Patients 2, 6 and 9 as outliers. D) Hierarchical clustering of the same data confirmed Patients 2, 6 and 9 as outliers. E)

Cell associated HIV DNA was compared between the indicated drugs and DMSO control for the remaining 7 treatment responders.

https://doi.org/10.1371/journal.pone.0179327.g003
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Fig 4. Procaspase 8 inducing drugs do not induce nonspecific activation. Primary uninfected CD4 cells were incubated with 2 drugs

that induce procaspase 8 (flurbiprofen, and indomethacin), 1 drug that decreases procaspase 8 (metformin) or control (DMSO) with and
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Procaspase 8 activators which favor reduced HIV DNA following

reactivation act by increasing Casp8p41 production following HIV

reactivation

The premise of our investigation was to induce procaspase 8 expression in CD4 T cells, posit-

ing that once that were achieved, when HIV is reactivated, Casp8p41 would be produced

which would lead to increased apoptosis among the HIV reactivating cells (but not uninfected

cells that do not contain HIV protease). Having identified treatments that can both induce

procaspase 8 levels and decrease total cell associated HIV DNA levels post reactivation, we

then assessed whether those treatments were associated with increased expression of Casp8p41

after reactivation. First, we confirmed the specificity of our neo-epitope specific antibody [56]

against Casp8p41 (Fig 5A). Next, ex vivo HIV patient CD4 T cells were primed with vehicle

control or caspase 8 inducing drugs, then reactivated with αCD3/αCD28 stimulation, and

assessed for intracellular Casp8p41 expression using (N = 2 patients per time point). Casp8p41

expression, after HIV reactivation, was increased by caspase 8 inducing drugs compared to

vehicle control, albeit to different degrees and at different time points between fluriprofen,

indomethacin, bezafibrate and doxycycline (representative flow data Fig 5B). Casp8p41

expression was compared with caspase-8 inducing drugs and vehicle control two ways. First,

the percentage of Casp8p41 positive cells over time by area under the curve analysis, showed a

significant increase in Casp8p41expression with caspase-8 inducing drugs compared to vehicle

control (Fig 5C, P = 0.0001). However, the second comparison, of the median fluorescence

intensity (MFI) of Casp8p41+ cells after treatment with caspase-8 inducing, showed no differ-

ence in per-cell Casp8p41 expression level (Fig 5D, p = 0.29). This suggests that a minimal

threshold of procaspase 8 expression is required for the generation of Casp8p41 by HIV prote-

ase activity, and that caspase-8 inducing drugs cause an increase in Casp8p41 expression after

viral reactivation by raising the substrate level above that critical threshold.

Discussion

HIV is currently effectively managed with cART, often with one pill daily, which results in sup-

pressed viral replication, improved measures of immune function and improved life expec-

tancy[76–79]. However it still remains desirable to develop a cure for HIV as even on cART,

life expectancy for HIV infected patients is not completely normalized[80], comorbidities and

accelerated rates of disease normally associated with ageing persist[81, 82], and the risk of

transmission of HIV in the setting of detectable viral loads [82]. However given the global bur-

den of HIV and its prevalence in resource limited settings, any curative treatment will need to

be simple safe and scalable to be widely applicable [33]. Therefore, even if successful, the cur-

rently experimental treatments such as chimeric antigen receptor (CAR) T cells[83], CRISPR/

Cas genome editing[84–87], or aggressive treatment of acute infection, are likely to have lim-

ited uptake in global clinical practice.

Drug repurposing involves studying drugs that are approved for one or more indications to

see if they are safe and effective for other indications. A particular benefit of this approach is

that much information exists on their pharmacology, toxicity and drug: drug interaction pro-

file[88]. Moreover drug repurposing costs on average about $300 million and takes 6.5 years

until FDA approval, as opposed to conventional drug development that takes twice the time

and costs on average five times more[89]. A good example of this is with plerixafor, a drug

without PHA stimulation. CD25 (A, B), CD38 (C, D) and KI67 (E, F) expression levels were measured after incubation with the drugs for 48

h FACS. Black lines represent unstimulated samples, and shaded gray areas represent PHA-stimulated samples.

https://doi.org/10.1371/journal.pone.0179327.g004
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initially developed as a CXCR4 antagonist to block HIV entry into CD4 T cells. During its

development, treatment with this drug was noted to induce leukocytosis and increase the

number of CD34 positive cells in the peripheral circulation. This drug has since been repur-

posed to mobilize stem cells prior to autologous stem cell transplants [90, 91].

For the past decade our group has studied HIV protease killing of infected CD4 T cells

because very early in the HIV epidemic it was shown to be cytotoxic to both eukaryotic and

prokaryotic cells–a fact that was exploited to screen for putative HIV protease inhibitors[26,

Fig 5. Procaspase 8 inducing drugs increase Casp8p41 expression ex vivo. A) 293T cells transfected with HA-Casp8p41

(red) or HA-empty vector (blue) were stained with Casp8p41 mAb. Depicted is an overlay dot plot. B) Ex vivo patient cells

were primed with control and drugs for 72 hr, then reactivated with antiCD3/CD28, and harvested at time points thereafter (N = 2

per time point). These cells were then stained with Casp8p41 mAb and analyzed by FACS. A) Representative flow data for

flurbiprofen and indomethacin treated samples at each time point. B) Area under the curve analysis for percent of CD4 T cells

positive for Casp8p41 combining procaspase 8 inducing drugs versus vehicle treated controls. C) AUC analysis of MFI of

Casp8p41 positive cells combining procaspase 8 inducing drugs versus vehicle treated controls.

https://doi.org/10.1371/journal.pone.0179327.g005
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92–94]. Over that time, we discovered that HIV protease induced cytotoxicity is mediated by

HIV protease cleavage of Procaspase 8 to generate a novel fragment Casp8p41[56]. Casp8p41

kills cells by virtue of the cleavage event unmasking a BH3 domain which binds a BH3 binding

groove in Bak, to cause the activation of Bak, leading to loss of mitochondrial transmembrane

potential and apoptosis[95]. Because Casp8p41 is formed by the action of HIV protease,

Casp8p41 killing is specific to HIV infected, but not uninfected cells. Most recently we have

discovered that Casp8p41 can bind other BH3 groove containing proteins such as Bcl-2,

thereby providing a level of regulation of this death pathway[32]. Thus in cells with low Bcl-2,

binding of Bak is favored resulting in cell death, whereas in cells with high Bcl-2, Casp8p41

binds Bcl-2, and cell death is averted.

Understanding this pathobiology of Casp8p41 allows testable hypotheses of how to modu-

late the pathway to favor death of HIV infected cells. For example the model presented sug-

gests that HIV reactivation in the presence of a Bcl-2 antagonist will enhance the likelihood

of HIV reactivating cells dying. Indeed, we observed that Bcl-2 inhibition with Venetoclax

primes CD4 T cells to die upon HIV reactivation with consequent reductions in cell associated

HIV DNA [32]. In this current report, we tested an alternate, but complementary hypothesis

that increasing procaspase 8 levels above a critical threshold would increase the amount of

Casp8p41 that is generated, resulting in death of the HIV reactivating cell. We observed that

several drugs successfully increased procaspase 8 levels, and therefore we selected a subset of

these drugs, which in our opinion might be used in HIV patients, based on their mechanisms

of action, side effect profiles and pharmacology. That subset of drugs was further evaluated in

models of HIV and we observed that anti-inflammatory agents and bezafibrate augment HIV

infected cell death in primary in vitro infection, and reduced total cell associated HIV DNA in

primary CD4 T cells from the majority, but not all, ART suppressed HIV patients sampled, fol-

lowing HIV reactivation, consistent with our previous data. It should be noted that additional

agents were identified that increase procaspase 8 expression, and reduce HIV DNA in acute

in vitro infection, such as amiprilose, mebhydroline, and hycathone (Fig 2), but were not fur-

ther investigated in ex vivo patient cells. These additional agents may also deserve further

investigation.

It is of interest to note that drugs from multiple classes and structures effect procaspase 8

levels. That these various drug types may impact HIV DNA levels may seem at first counterin-

tuitive. However, in a large unbiased screen of over 500,000 drug combinations seeking anti

HIV effects, multiple different Non-Steroidal anti-inflammatory drugs were identified to pos-

sess anti HIV properties [96], and in an unrelated study indomethacin decreased p24 produc-

tion from HIV infected MT-2 cells [97]; our data provide a putative mechanism for these

effects. Doxycycline is a tetracycline antibiotic that has anti-inflammatory properties[98], and

in our hands also increases procaspase 8 levels.

As procaspase 8 is a central regulator of programmed cell death, basal and inducible expres-

sion of this important protein is subject to complex regulation. Mutational analyses of the Pro-

caspase 8 promoter indicate that basal transcription is controlled by the transcription factor

SP1, whereas inducible activity is controlled by the tumor suppressor P53[99]. NSAIDs have

long been associated with tumor suppression and anticancer effects[100] including through

activation of p53 dependant pathways [101]. Thus one potential mechanism by which NSAIDS

might induce Procaspase 8 in T cells is through activation of p53 dependant procaspase 8 tran-

scription. By contrast, Bezafibrate, via inhibition of proliferator-activated receptors (PPARα),

was seen to significantly increase interferon-γ in patient with chronic hepatitis C after 4

months of therapy[102]. Because interferon gamma independently induces SP1 [103], Bezafi-

brate induced increases of procaspase 8 are likely to be mediated through SP1 upregulation

acting upon the procaspase 8 promoter to increase basal transcription. Therefore, it is possible
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that the diverse procaspase 8-inducing drugs described herein exert their anti-HIV effect in

diverse ways upstream of procaspase 8, but converging on a common final pathway of Casp8-

p41-induced, mitochondrial dependent apoptosis in infected cells.

Curing HIV will likely require a combinatorial approach that involves inhibiting HIV re-

plication and homeostatic proliferation, boosting anti-HIV immune responses, reactivating

HIV from latency, and promoting an apoptosis prone phenotype of the reactivating cell. It is

unlikely that any one intervention could accomplish such a formidable task. Here, we have

successfully identified an potential approach to the latter. We propose that further studies of

repurposed drugs that increase procaspase 8 expression are warranted in other in vitro models

and preclinical, in vivo models of HIV infection and latency that could be safely combined

with other strategies to reduce HIV reservoir size. Further studies are also needed combining

induced procaspase 8 expression and other latency reversal agents that may be more clinically

relevant that T cell receptor stimulation.
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100. Rüegg C, Zaric J, Stupp R. Non steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer

therapeutics: hypes, hopes and reality. Annals of medicine. 2003; 35(7):476–87. PMID: 14649330

101. Zhang Y-J, Dai Q, Wu S-M, Zhu H-Y, Shen G-F, Li E-L, et al. Susceptibility for NSAIDs-induced apo-

ptosis correlates to p53 gene status in gastric cancer cells. Cancer investigation. 2008; 26(9):868–77.

https://doi.org/10.1080/07357900801944872 PMID: 18798056

102. Knop V, Bergk A, Schlosser B, Thieringer J, van Bömmel F, Frost N, et al. Bezafibrate maintenance
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