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Abstract

Cell differentiation is a complex process orchestrated by sets of regulators precisely

appearing at certain time points, resulting in regulatory cascades that affect the expression

of broader sets of genes, ending up in the formation of different tissues and organ parts.

The identification of stage-specific master regulators and the mechanism by which they

activate each other is a key to understanding and controlling differentiation, particularly in

the fields of tissue regeneration and organoid engineering. Here we present a workflow

that combines a comprehensive general regulatory network based on binding site predic-

tions with user-provided temporal gene expression data, to generate a a temporally con-

nected series of stage-specific regulatory networks, which we call a temporal regulatory

cascade (TRC). A TRC identifies those regulators that are unique for each time point,

resulting in a cascade that shows the emergence of these regulators and regulatory inter-

actions across time. The model was implemented in the form of a user-friendly, visual web-

tool, that requires no expert knowledge in programming or statistics, making it directly

usable for life scientists. In addition to generating TRCs the tool links multiple interactive

visual workflows, in which a user can track and investigate further different regulators, tar-

get genes, and interactions, directing the tool along the way into biologically sensible

results based on the given dataset. We applied the TRC model on two different expression

datasets, one based on experiments conducted on human induced pluripotent stem cells

(hiPSCs) undergoing differentiation into mature cardiomyocytes and the other based on

the differentiation of H1-derived human neuronal precursor cells. The model was success-

ful in identifying previously known and new potential key regulators, in addition to the par-

ticular time points with which these regulators are associated, in cardiac and neural

development.
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M, Haubrock M (2020) Constructing temporal

regulatory cascades in the context of development

and cell differentiation. PLoS ONE 15(4):

e0231326. https://doi.org/10.1371/journal.

pone.0231326

Editor: Roberto Mantovani, Università degli Studi di

Milano, ITALY

Received: October 9, 2019

Accepted: March 20, 2020

Published: April 10, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0231326

Copyright: © 2020 Daou et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

http://orcid.org/0000-0003-1882-8415
https://doi.org/10.1371/journal.pone.0231326
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231326&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1371/journal.pone.0231326
https://doi.org/10.1371/journal.pone.0231326
https://doi.org/10.1371/journal.pone.0231326
http://creativecommons.org/licenses/by/4.0/


Introduction

Cell differentiation, the building block of development, is a strong representation of regulatory

precision. In stem cell differentiation, a handful of regulators kick off a regulatory mechanism

that leads to the activation or repression of other regulators and non-regulatory genes, through

consecutive waves, starting processes that are geared towards specification and giving rise to

different kinds of cells and tissues [1–5]. The discovery of induced pluripotent stem cells

(iPSCs) [6–8], opened the door to a rising number of cell differentiation experiments. Owing

to the decreasing prices of RNA-seq, these experiments generated a big and growing number

of time series datasets that aim to track a certain process of differentiation by taking snapshots

of the gene expression at different time points. These datasets could be further analyzed to

obtain a better extensive explanatory model of the regulatory processes and to identify new

important regulators that can be manipulated to enhance the process. Deriving as much infor-

mation as possible from such experiments is a crucial goal in the fields of medical and biologi-

cal research [9–13], yet there is still a need for computational methods that analyze such

unique models in a way tailored to their special properties.

One common challenge to the researchers in these fields is identifying a set of candidate

genes that are crucial for the study case, from the thousands of genes in the dataset, that if

manipulated can impact the quality and the outcome of the process under study. This candi-

date set has to be small enough to make the experimental validation of each candidate feasible.

One approach is constructing co-expression networks, clustering the genes into modules, usu-

ally large ones, then attempting to reduce these modules based on topological feautures [14].

Other approaches, like Short Time-series Expression Miner (STEM), find statistically signifi-

cant gene patterns and the genes associated with them [15]. Differential gene expression

(DEG) analysis is one of the most popular methods to create lists of genes that can be stage-

associated. DEG lists provide a good start but often are large in size, and the stage-specific reg-

ulators often get diluted in more general genes leading to rather general GO terms when

enriched. TFRank [16] is a popular network-based prioritization method, but it doesn’t inte-

grate time series expression data. There are other different approaches to prioritize genes and

reducing gene lists resulting from previous methods [17], yet none of these specifically take

into account the unique properties of cell differentiation.

Another challenge lies in identifying and understanding the important regulatory interac-

tions and programs that trigger and control the expression of different essential genes. One of

the most useful and general approaches to address these regulatory programs is via construct-

ing gene regulatory networks (GRNs), typically a directed graph with the genes as nodes and

the edges connecting the nodes usually indicating the regulatory interactions. In the past years,

many methods and models have been developed to construct GRNs based on either expression

data [18], Chip-seq, binding sites analysis, or other data types and models. Some of these mod-

els depend solely on one data type to build these networks while others more effectively com-

bine one or more data sources. Despite the general success of some methods which derive

GRNs from gene expression data, they have commonly known limitations, such as the inability

to deal with time series data in the case of Bayesian Networks (BNs), excessive computational

time in the case of Dynamic Baysian Networks (DBNs), and the fact that the number of genes

is mostly greater than the number of experimental conditions can cause problems when it

comes to methods like Graphical Gaussian Models (GGMs) and BNs [19, 20]. Another differ-

ent approach is using binding site analysis in the genome to predict the capability of transcrip-

tion factors (TFs) to regulate the expression of target genes. TFs have the potential to bind to a

DNA region via a binding site with a specific pattern of nucleotides that can be recognized by

the DNA-binding domain (DBD) associated with each TF. The challenge in this approach lies
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mainly in finding the proper library of positional weight matrices (PWMs), the ideal thresh-

olds, and cutoffs and defining the regions of search. The result is an extensive regulatory net-

work that covers a large number of potential regulatory interactions. While these regulatory

effects are potentially possible, only a subset of these interactions takes place in a specific con-

text and time. Finding these subsets and refining the global regulatory network according to

the biological context under study would result in a more meaningful and case-relevant

network.

To tackle these challenges, we constructed a novel workflow and a model of a regulatory

network that incorporates the element of time and temporal order, integrates the expression

levels of genes, is concise enough to be inspected visually, and identifies candidate regulators

efficiently. The method is time and memory efficient, yet it generates a model with a specific

architecture to display the primary transcriptional regulators, such as TF genes and miRNAs,

and regulatory events unfolding with time. It pre-computes an extensive gene regulatory net-

work that is based on binding site analysis, is independent of the expression data and is used as

a background regulatory network. The workflow then uses expression data to identify stage-

specific regulators based on their expression pattern. These regulators are finally organized in

a cascade architecture that we call a temporal regulatory cascade (TRC). In a TRC, master reg-

ulators specific for each stage are organized in ordered vertical columns, and potential regula-

tory interactions that are based on the background network are displayed as edges between

these regulators. To demonstrate this model, we developed an online tool aimed for experi-

mentalists as well as bioinformaticians interested in investigating the regulatory forces that

might explain the observed expression of genes in a particular time series dataset. Our novel

workflow offers the automatic generation of a TRC from an uploaded time series dataset and

visualizes it in an animated interactive manner. In order to facilitate direct interpretation, the

results at any stage of the workflow are distilled to an amount that can be handled and analyzed

visually, keeping the top significant genes, interactions, and information and discarding those

with lower significance and specificity.

In this manuscript, we describe the workflow in detail and report on its application to two

time series expression datasets. Both datasets characterize the differentiation of pluripotent

stem cells into mature cardiac myocytes and neural progenitors, and the corresponding TRC

was generated and analyzed in each case. The main aim was to analyze the specific regulatory

activity in each stage, identify and evaluate regulators specific for each time point in the differ-

entiation process, and to test the efficiency of the workflow in re-identifying some well-known

case-relevant regulators and regulatory interactions without prior knowledge.

Materials and methods

Background regulatory network

A library of position weight matrices (PWMs) from TRANSFAC1 [21] is used in combination

with the MATCH™ [22] program to predict transcription factor binding sites (TFBSs) in the

conserved promoter regions of the human genome as follows.

Based on 49,344 RefSeq-annotated human transcription units (UCSC track refGene, Jan.

22, 2014), the -1kb upstream region was selected as a proximal promoter. The transcription

start site (TSS) indicated in RefSeq was used as the reference point.

On the basis of pre-calculated whole genome alignments provided by the UCSC (46_

WAY_MULTIZ_hg19) these promoter definitions were utilized to retrieve the sequence con-

served regulatory regions between human (hg19), mouse (mm9), dog (canFam2) and cow

(bosTau4). Afterwards, gaps resulting from the multiple genome alignment were removed.
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MATCH was used to predict potential TFBSs in the previously identified conserved pro-

moter regions, based on all vertebrate defined matrices using the PWM library from TRANS-

FAC (release 2013.1, 1446 vertebrate matrices). All matrices with default minFN threshold

(minimize false negatives) were used in order to predict potential TFBSs that have at least the

quality of an annotated TFBS in TRANSFAC. 1360 out of 1446 TRANSFAC-PWMs had a

sequence-conserved TFBS prediction. We ranked all predicted TFBSs associated with each

PWM, according to their MATCH score. We chose the best 5% predicted binding sites for

each PWM and constructed the background transcriptional regulatory network accordingly.

The PWMs are translated to human TF-gene names (HGNC-defined) using the TRANSFAC

database. Each TF-gene, identified by its official HGNC-defined gene name, was represented

as a node, with a directed edge connecting it with its target gene node. Further information

about the construction of the regulatory network can be found in our previous manuscript

[23].

The core network included 829 TFs and their 16354 targets, summing up to 749949 interac-

tions. Another expanded network, which includes microRNA binding predictions, was con-

structed and contained 2239 regulators and 20160 targets. This network was computed once

and is independent in the process of its derivation from the expression data, making it usable

with every human expression dataset.

While the tool offers the user the option to upload a custom regulatory network to be used

for the analysis, we recommend the built-in network just described. The conservation property

of these sites makes the prediction ideal for the differentiation context since several pieces of

research have shown that conserved regions in the DNA are critical binding sites for develop-

ment and differentiation [24–27].

Temporal regulatory cascades (TRCs)

The method utilizes the concept of constructing template expression patterns that represent an

expression behaviour of interest, then attracting genes that behave similarly to these patterns

using correlation. The template patterns we used were stage-specific patterns, peaking at one

time point only, and denoted by template peak patterns (TPPs). While different kinds of tem-

plate patterns can be used, we chose the single-peak TPPs, as a default for its ability to attract

stage-specific regulators that are unique to each time point. Regulatory interactions are queried

from the background regulatory network and form the edges between the genes in the cascade

accordingly.

TRC construction steps.

Step 1: Create a library of TPPs, one TPP for each time point in the dataset. For each time

point the corresponding TPP has an expression level of 100 percent at that time point and

zero every other time point(Fig 1A).

Step 2: For each TPP, calculate the top n correlated regulators to this reference pattern (Fig

1B). These genes are said to be the stage-specific regulators of stage s and are displayed in

the same column (Fig 2). If a time point has no correlated regulators, no column is created

for this stage in the TRC.

Step 3: All regulatory interactions between the regulators of the same stage are mapped,

according to their connections in the background regulatory network, and represented in

the form of directed edges.

Step 4: All regulatory interactions between the regulators of stage s and the next stage are

mapped according to their connections in the background regulatory network and
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represented by directed edges, linking each stage to the next and tying the cascade together

(Fig 2).

Parameters. To adjust the temporal regulatory cascade, we use three primary parameters:

minE: A threshold for gene expression levels. A gene that does not have an expression level

higher than this threshold in any of the replicates or time points is eliminated and omitted

from the calculation that leads to the TRC. This eliminates peaking genes that are lowly

expressed even at their peak.

minC: A minimum correlation threshold. Regulatory genes that have a correlation above this

threshold to the TPP of a stage are kept as the initial set of regulators associated with that

stage.

maxS: The maximum number of genes that can be associated with a specific time point. The

initial regulators associated with a time point based on minC are sorted by their correlation

to the TPP of that stage, and the top n (maxS) regulators are picked to be in the column

associated with the stage. If the initial regulators set has less than maxS genes, then the

whole set is taken. The max number of nodes in the cascade is maxS multiplied by the num-

ber of time points.

Implementation

This workflow was implemented in the form of a web service with an interactive visual web

interface, which eliminates then the need to install any additional software. The algorithm to

generate the TRCs was implemented using Java. In order to display the resulting TRC, a visual-

izer was implemented using JavaScript, utilizing, and extending the Cytoscape library cy.js. The

framework used PHP to manage the files and sessions. The visualizer was embedded in an inter-

active webpage that includes helpful information such as graphs of the expression levels of the

genes in the cascade, tables, and metrics, in addition to direct links to perform GO enrichment

and other workflows in the platform. The web tool is a part of a more comprehensive web service

that revolves around gene regulation and expression data analysis that is under construction.

Data

While any formatted time series data can be used as input, this model performs the best with

RNA-Seq data over other sources of inferior quality and less variability such as microarray

Fig 1. Indetifying stage-specific regulators. (A) The TPP of T2: The template peaking pattern is calculated where the expression is at 100 percent T2

and zero every other timepoint. One TPP for each time point is calculated similarly and the collection of these TPPs form the TPP library. (B) Top 10

regulators that are highly correlated with the previous TPP of T2 and their noticeable T2-specific peaking pattern, these regulators will form nodes in

the T2 column in the TRC, the same is done for every TPP in the library.

https://doi.org/10.1371/journal.pone.0231326.g001
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data. Normalized input data provides a better quality TRC, nevertheless even using the

raw counts leads to reasonably significant TRCs. As study cases to demonstrate the TRC

model, two time series gene expression datasets were used and denoted Dataset1 and

Dataset2.

Fig 2. The TRC workflow. Regulators specific for each time point are grouped in the same column with the same color and sorted by their correlation

to the TPP of that stage. The edges between the two stages and within the same stage are retrieved and mapped from the regulatory network.

https://doi.org/10.1371/journal.pone.0231326.g002
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Dataset1 was assembled using public RNA-Seq data that is captured during the differentia-

tion of H1 derived human neuronal precursor cells (NPCs) across the days 0,1,2,4,5,11, and 18

after induction of neuronal differentiation. Publicly available DEG and GO enrichment analy-

sis on the same dataset was used for comparison. The dataset and the analysis results could be

found in the expression Atlas under the accession E-GEOD-56785. The assembled and format-

ted data can be found in S1 File.

Dataset2 was derived from the normalized expression datasets from the previously pub-

lished study by Qing Liu et al [28], publicly available in the GEO repository under the acces-

sion number GSE85332. We chose one of the four expression datasets available, the RNA-Seq

profiling of the differentiation of C20 derived cardiomyocytes at four stages: pluripotent stem

cells (day 0), mesoderm (day 2), cardiac mesoderm (day 4), and differentiated cardiomyocytes

(day 30). The assembled and formatted data can be found in S2 File.

GO enrichment

To evaluate the relevance of the gene sets in each stage, Gene Ontology (GO) enrichment anal-

ysis using the biological processes and a Fisher’s Exact test on each column in these cascades

was applied using one set at a time as an input. Terms that have a pvalue less than 0.05 after

the Bonferroni correction are sorted by their fold enrichment and the top terms were exam-

ined. These terms were evaluated based on their consistency with the differentiation stage

under observation at that time point.

Results

We applied the TRC workflow to Dataset1 and Dataset2 and generated a cascade for each

study case. In addition to the GO enrichment, detailed literature research was performed,

investigating the roles of the different regulators predicted by the cascade.

Neural differentiation cascade

Upon the visual inspection of the cascade, we observe a missing time point that is day 2, indi-

cating that this time point does not have any peak strength or any genes that exceed the corre-

lation threshold to the TPP, suggesting that day 2 might be a time point that doesn’t underly

any unique stage-specific activity (Fig 3).

Examining the GO enrichment of each time point reveals high enrichment of relevant

terms in day 1 and day 11. Regulators of day 1 showed enrichment for specific terms such as

cell and neuron fate commitment, neuron differentiation, and cell differentiation in the spinal

cord. Regulators of day 11 showed high enrichment of even more specific terms such as spinal

cord association neuron differentiation, dorsal spinal cord development, cell fate determina-

tion, cell differentiation in the spinal cord, hindbrain development. On the other hand, exam-

ining the GO enrichment based on the DEG analysis publicly available for the same dataset,

differentially expressed genes in day 0 vs. day 1 and day 0 vs. day 11 showed no significant

enrichment of specific terms associated with neural development but rather more general

terms.

A deeper look into the identity of the regulators in the cascade shows that OLIG1 and

OLIG3, which are known for their importance in neural and spinal development [29–31], are

active in day 1, suggesting that their importance lies in the earlier part of the differentiation. A

microRNA MIR3659 peaking at day 1 with a high indegree raises the question on the nature of

its involvement in neural differentiation, which needs to be further investigated. PAX2 on day

11, with the highest outdegree, regulates 13 different regulators in the same and next time

point which hints that its known essential role in neural development [32–34] is due to its
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regulatory impact on a big set of neural regulators. KLF2 in day 5 stands out as a potential sig-

nificant regulator of the day 11 regulatory wave due to its potential ability to regulate a big por-

tion of day 11 regulators. The TRC shows an overall same-stage presence of certain TFs that

belong to the same family or subfamily according to the classification experimental conditions

TFs in TFClass [35, 36], such as OLIG1, OLIG3 and BHLHE23 in day 1, STAT1 and STAT6 in

day 5, the LHX1 and LHX5 in day 11, DBX1 and DBX2 in day 18. A hypothesis can be made

that these TFs are part of the redundancy that leads to the robustness of such regulatory pro-

grams, or that these families and subfamilies of TFs collaborate in certain regulatory stages.

Cardiac differentiation cascade

Regulators of the first time point show enrichment of terms related to stem cell maintenance,

which is coherent with the biological context since the process of differentiation has not started

yet, and the cells are still in the induced stem cell state (Fig 4). These regulators could be

Fig 3. Neural differentiation cascade. The TRC generated for the differentiation of neural proginators based on dataset 1 and the following

parameters: minC = 0.6, minE = 4, and maxS = 10.

https://doi.org/10.1371/journal.pone.0231326.g003
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essential for maintaining the pluripotency state and also could be repressing differentiation.

Regulators of day 2 show enrichment of terms associated with mesenchymal and mesoderm

morphogenesis, which give rise to cardiac cells. Regulators of the last stage the cardiomyocyte

(CM) stage show high enrichment of heart-specific terms such as cardiac ventricle and cham-

ber formation, ventricular cardiac muscle differentiation, heart looping, and outflow tract

morphogenesis. These terms show a high consistency with the underlying stage of differentia-

tion reported by the experiment.

Fig 4. Cardiac differentiation cascade. The TRC generated for the differentiation of cardiomyocytes based on

dataset2 and the following parameters: minC = 0.6, minE = 30, and maxS = 12.

https://doi.org/10.1371/journal.pone.0231326.g004
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In the first time point TFs associated with maintanining the pluripotency state like NANOG
[37], PARP1 [38], SOX2 [39], MYC [40, 41], ETV4 and ETV5 [42] appear. CDX1 and CDX2
[43] which are known to modulate early cardiogenesis peak at day 2, alongside some poten-

tially important early cardiac regulators such as TCF4 and LEF1. On day 4, MYCN stands out

with a high outdegree and indegree confirming its known role in heart development [44]

along side with some potential candidate regulators such as LHX1, OTX2, NR2C1, MIR548Y.

The last stage where the cardiomyocytes have already matured, features core regulators essen-

tial for cardiac development such as MEF2C [45], HAND2 [46], NKX2-5 [47], MEIS2 [48],

MITF [49], FOXP1 [50] and some new candidate regulators that could be significant in the

cardiac maturation such as MEF2A and BHLHE40. Like in the previous dataset, a strong

same-stage presence of certain TF family members is observed, such as the members of the

HOX family CDX1, CDX2, HOXA1 and HOXB1 in day 2.

Discussion

Unlike some of the classic regulatory models such as BNs, the TRC model takes advantage of

the sequential order of the time series data to allow more intricate interpretations of regulatory

interactions. It takes advantage of the emerging property from the peaking patterns, that is:

each node in the cascade is positively correlated in its expression pattern to the other nodes in

the same stage (Fig 5A), and correlated via a time-lagged correlation to the nodes in the other

stages (Fig 5C). Thus each edge in the cascade is always coupled with a correlation between the

expression pattern of the regulator and its target. This coupling can be viewed as a reinforce-

ment of the regulatory interaction predictive quality and gives it an edge over interactions

based solely on the binding site analysis or solely derived from gene expression data. From

another view, the binding site prediction behind the edge can explain the perceived correlation

in the expression patterns between the target and the source. Fig 5 summarizes the five com-

mon types of regulatory interactions displayed within the cascade through edge patterns. Fig

5A is an example of a regulatory interaction coupled with high positive correlation indicating

that X is potentially one of the activators of Y and contributes to its peaking pattern. Y is inac-

tive where X is inactive and activated when X is activated (stage i), coupled with the fact that X

can bind to the promoter of Y, this hypothesis of the regulatory influence of X on Y is strongly

enforced. Fig 5A has a one-direction property that supports the causality, whereas cases such

as the double edge displayed in Fig 5B cannot decisively assert whether X is an activator of Y

or the other way around due to the non-causal nature of correlation and the double potential

of these regulators to bind to each other’s promoters. Fig 5C is an example of where a regulator

in a certain stage potentially needs more time to activate the target thus the target is activated

after a time delay and captured in the next stage. This kind of regulatory behavior has been

shown and captured using time-lagged correlation models. Another common hypothesis that

surrounds co-expressed genes is that they might be coregulated by a master regulator or a set

of master regulators. Some of these master regulators can be captured through configurations

in the cascade where a regulator emerging in a stage single-handedly has the potential to acti-

vate a wide set of correlated regulators, whether in the same stage as in the case of Fig 5D or a

set of targets in the next stage via a time-lagged regulation as shown in Fig 5E.

The previous analyses of the two datasets showed clear stage-specific regulatory waves and

a GO enrichment that is highly consistent with the biological context of the experiment and,

even more specifically, the context in the particular time points of the experiment. The ques-

tion arises whether these peaking profiles and case-specific GO enrichments are statistically

significant, and constitute a characteristic of developmental gene expression datasets in partic-

ular, or if they randomly occur in any dataset. While applying the TRC model to a sufficiently
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Fig 5. Different cases of regulatory interactions contained in the TRC model. (A) A one-way regulatory prediction within one stage

coupled with a high positive correlation. (B) A two-way regulatory prediction within one stage coupled with a high positive correlation.

(C) A regulatory interaction from one stage to the next, coupled with a high positive time-lagged correlation. (D) X a potential master

regulator of X, Y, and Z coupled with a high positive correlation to each of its targets. (E) X a potential master regulator activating X, Y

and Z coupled with a high positive time-lagged correlation to each of its targets.

https://doi.org/10.1371/journal.pone.0231326.g005
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large number of random and shuffled datasets and evaluating the resulting TRCs would be

optimal to proof the statistical significance of the results, it is merely unfeasible due to the

manual process of assessing the resulting TRCs. Alternatively, we applied the model to ran-

domly generated and shuffled gene expression datasets (see the supplementary files) aiming

towards a comparative analysis rather than a statistical proof of significance. We examined the

resulting TRCs in terms of the GO enrichment of the stages to evaluate their relevance com-

pared to a TRC generated from a real experimental dataset. The first test involved shuffling

dataset2 by re-assigning genes to other expression profiles (S3 File), to check whether any set

of peaking regulators will show a specific GO enrichment, and none of the stages did lead to

any relevant terms. The test was repeated by shuffling the regulator’s profiles only, and the

enrichment was again insignificant. The previous test showed that the identity of the peaking

genes is essential, precise, and specific. Moreover, the workflow was applied to dataset2 with-

out restricting the stage-specific sets to regulators only. Interestingly, the generated cascade

was overwhelmed by non-regulatory genes and the GO enrichment showed no significant

terms in any of the stages, with the exception of two terms related to cardiac muscle differenti-

ation in the last stage (S1 Fig). This observation supports the choice in the TRC model of limit-

ing the cascade to regulators where less relevant non-regulatory genes do not dilute the small

stage-specific gene sets. Next, dataset2 was shuffled by permuting all the values in the expres-

sion matrix (S4 File). The result was again a lack of significance in GO the enrichment terms.

The last test was applying the TRC workflow to a randomly generated gene expression dataset,

using the gene names and the time points from dataset2 combined with randomly generated

expression values (S5 File). The GO enrichment showed the absence of any relevant significant

terms again.

The default library used in this model is the one-stage peak pattern library, which works

optimally with development and differentiation. However this library can be changed, and

multiple libraries for different biological contexts such as diseases and immune responses can

be developed accordingly, which would require further research or alternatively allowing the

user to construct a custom library in the future.

One drawback of this model is the fact that it does not capture every important regulator,

particularly those regulators that are expressed in multiple consecutive or non-consecutive

time points. However, we argue that the sets of regulators identified by the cascade contain a

large percentage of essential stage-specific regulators which is supported by the GO enrich-

ment. On the other hand, the regulatory network might not cover every TF due to missing

PWM information or lack of conservation. Another more general drawback is the fact that the

model relies on transcript levels which do not translate directly into protein levels, but relative

measures [51] [52] can be a potential method for further analysis whenever protein data is not

available. Moreover, the candidate regulators can provide a small concise set for a proteomic

investigation as a next step in the experiment. The captured regulators can also provide a start-

ing point for further analysis such as target set enrichment analysis, pathway analysis, and

investigating the potential collaboration of regulators using tools such as PC-Traff [53]. The

TRC model merely lays down, in place, some important starting pieces that can be built on to

complete the biological puzzle of developmental regulatory programs.

The unique type of the output of the TRC makes it difficult to accurately compare it to

other existing methods, as no other method has the same definition of a regulatory cascade.

However, we utilized the context-relevance of the GO enrichment of the gene sets predicted by

other methods as a basis for the comparison. We first applied the STEM in order to predict the

top 10 significant gene expression patterns in the cardiac differentiation dataset and evaluated

the GO enrichment of the genes set associated with each of these profiles. The GO enrichment

of these sets showed very general terms not specific to the cardiac differentiation context.
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Next, we applied iDREM [54], which we consider the closest method to the TRC in terms of

inputs and aims, using the cardiac differentiation dataset and the regulatory network provided

by iDREM (human_predicted_1000), to generate a dynamic regulatory network. The resulting

model was in the form of a dynamic regulatory map that highlights major bifurcation events,

each of which has a list of associated regulatory genes. The GO enrichment of these gene lists

showed a mild enrichment of developmental GO terms in some bifurcation points and no

enrichment in most of the others. However, proving the validity of a generated network or cas-

cade requires an actual experimental validation of the predicted regulatory interactions in the

particular cellular context, which is currently unpractical.

This workflow is built within a broader framework dedicated to studying regulation from

different points of view. It blends expression data and a regulatory network and links concepts

such as coexpression and coregulation forming a more extensive tool. Users can interactively

investigate different hypothesis and track different genes and regulators of interest exploring

the regulatory forces governing the time series data, the timing of such forces and the impact

of such regulatory interactions on the expression of genes and regulators.

Conclusion

We developed a workflow to analyze and represent regulatory cascades and a web tool based

on the corresponding model. It takes time series expression data as an input, generates and

visualizes an interactive cascade that identifies relevant and stage-specific regulators associated

with each time point and the interactions between these regulators. The workflow was applied

to multiple datasets that revolved around cell differentiation and was successful in identifying

previously-known TFs relevant to the time points and the cell types, in addition to some new

candidate regulators, as well as pinpointing the time points were unique regulation activities

are emerging. A demo of the web tool is available under TF-investigator.sybig.de/TRC.

Supporting information

S1 File. NPC differentiation (Dataset1). The formatted data expression file based on human

H1-derived NPC differentiation differentiation. This format is ready for upload via the webt-

ool.

(CSV)

S2 File. Cardiac differentiation (Dataset2). The formatted data expression file based on C20

derived cardiomyocyte differentiation. This format is ready for upload via the webtool.

(CSV)

S3 File. Shuffled profile assignment of dataset2. A version of dataset2 where gene profiles

are randomly re-assigned. This format is ready for upload via the webtool.

(CSV)

S4 File. Shuffled dataset2 by permuting the matrix. A version of dataset2 where cells in the

expression matrix are permuted across columns and rows. This format is ready for upload via

the webtool.

(CSV)

S5 File. Random expression values with dataset2 time points and gene names. Random

expression values with time points and gene names taken from dataset2. This format is ready

for upload via the webtool.

(CSV)
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S1 Fig. TRC based on dataset2 where regulatory and non-regulatory genes are included.

Stage-specific gene sets are not restricted to regulators in this example. This allows the TRC to

include peaking non regulatory genes as well.

(TIF)
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