
Advances in colon cancer research: in vitro and animal
models
Tamsin RM Lannagan1, Rene Jackstadt2,3, Simon J Leedham4 and
Owen J Sansom1,5

Available online at www.sciencedirect.com

ScienceDirect
Modelling human colon cancer has long been the ambition of

researchers and oncologists with the aim to better replicate

disease progression and treatment response. Advances in our

understanding of genetics, stem cell biology, tumour

microenvironment and immunology have prepared the

groundwork for recent major advances. In the last two years the

field has seen the progression of: using patient derived

organoids (alone and in co-culture) as predictors of treatment

response; molecular stratification of tumours that predict

outcome and treatment response; mouse models of metastatic

disease; and transplant models that can be used to de-risk

clinical trials. We will discuss these advances in this review.
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Introduction
Colorectal cancer (CRC) with �800 000 deaths per year

globally is still one of the most common cancers in men

and women [1]. This heavy public health burden is

predicted to increase if no improvement in early detec-

tion and effective interventions for late stage CRC are

discovered. Currently routine colonoscopic imaging fol-

lowed by surgical resection of primary tumours and oligo-

metastases are the first intervention option for CRC
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patients [2]. Depending on stage, combination treatments

of cytotoxic chemotherapies like 5-fluoruracil (5-FU),

oxaliplatin or irinotecan show some benefits, which can

be increased in combination with vascular endothelial

growth factor receptor (VEGFR) or epidermal growth

factor receptor (EGFR) treatments [3,4]. While the use

of EGFR inhibitor depends on the mutation status of

KRAS and BRAF [5], VEGFR inhibitors are routinely

applied for stage IV patients [6]. The decisions for sys-

temic treatments are based on routine diagnostics such as

histopathological characteristics of tumours, the status of

lymph-nodes and metastasis (TNM). This grading sys-

tem doesn’t account for additional factors that impact on

response and patients’ outcome. For example, BRAF

mutations are associated with right-sided colon cancers

with specific molecular features and poor-prognosis [7,8]

however the clinical treatment decision is independent of

these recognised characteristics. In addition, the thera-

pies above are the same anti-proliferative combination

treatments that have been used since the 1990’s, drug

design and development has not kept pace with our

understanding of the biology of CRC. One attempt to

embrace the wide spectrum of inter-patient heterogene-

ity, and importantly take different molecular features into

account, is the definition of molecular subtypes [9–11].

Here we discuss the most recent advances in the field of

CRC research and highlight technical improvements

which may lead to discovery of novel treatment concepts.

Focusing particularly on the fast progressing field of

organoids, the molecular characterisation of CRC, and

the importance of next-generation mouse models, which

aim to de-risk the translation of pre-clinical results into

the clinics by improving human relevant features

(Figure 1).

Modelling CRC in vitro - a guide for
treatments
Classical 2D adherent cell lines served for many years as

valuable tools to discover key functional aspects of CRC

biology; however, these cell lines show reduced complex-

ity compared to patient tumours. Significant improve-

ment followed identification of the intestinal stem cell

(ISC) marker Lgr5 [12] and the subsequent opportunity

to culture self-organising mouse intestinal organoids

derived and arising from this stem cell population. The

generation of mouse and human organoids from virtually

every organ followed shortly [13]. Sequential genetic
www.sciencedirect.com
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Figure 1
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Timeline of recent advances in mouse models of CRC in parallel with molecular, technological and clinical scientific advances. Decades of

research provided the field with GEMMs that permitted investigation of driver mutations in CRC, however, the models had long latency and were

minimally metastatic. Concomitant discovery of intestinal stem cell markers precipitated the organoid revolution, which could be subsequently

engineered using CRISPR, and provided means to store patient samples in biobanks. Molecular subtyping of CRC biopsies revealed patient

stratification relating to epithelium, immune and fibroblast components. Advancements in transplantation techniques enabled orthotopic grafting of

mouse or patient tumour-derived/engineered organoids, importantly PDOs were shown to be able to predict patient treatment response. 2018 and

2019 saw breakthroughs in the development of increasingly metastatic GEMMs with the KPN mouse exhibiting 100% metastasis and correlating

with CMS4, the most aggressive CRC subtype. TGF-b and immunotherapy treatments demonstrated utility in reducing metastatic burden in these

models. The same period of time saw advancement of in vitro organoid models, with both co-culture with immune cells and in vitro therapeutic

treatment of organoids alone demonstrating patient responsiveness. More recently, the retrospective incorporation of molecular subtyping into

clinical trial outcomes is predictive of patient outcome, establishing the importance of patient stratification. Modified from Figure 1 in Jackstadt

and Sansom [37]. It is used under license CC BY 4.0. https://creativecommons.org/licenses/by/4.0/.
alterations using CRISPR/CAS9 to model acquisition of

CRC driver mutations in human organoids confirmed the

concept proposed by Vogelstein in 1990 [14,15]. Besides

the opportunity to culture healthy tissues, tumour derived

organoids were proven to retain morphological, genetic

and transcriptional features of the initial founder tumour

[16,17]. Importantly, cultures of CRC patient-derived

organoids (PDOs) were used as avatars to predict patient

response ex vivo [18–21]. Interestingly the generation of a

liver metastases PDO biobank revealed a modest inter-
www.sciencedirect.com 
patient heterogeneity in pharmacological response and

may serve to identify specific treatment responder versus

non-responder transcriptional profiles [22]. Strikingly,

treatment response following orthotopic transplantation

of liver metastasis or rectal tumour PDOs into immune-

deficient mice correlated with patient response [23��,24].
These elegant studies provide the proof-of-concept that

tumour response and resistance can be predicted in

‘window-of-opportunity’ trials that can help guide clinical

decision making. Some financial, logistical and technical
Current Opinion in Genetics & Development 2021, 66:50–56
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limitations still present obstacles that need to be over-

come before precision medicine of organoids and drug-

discovery can be applied routinely in the clinic [25].

One substantial limitation of organoid cultures is the lack

of tumour microenvironment (TME) components and

other physiological parameters. The remarkable results

for checkpoint inhibition in immunogenic microsatellite

instable (MSI) colon cancer [26] demonstrates the poten-

tial power of microenvironmental epithelial cell-extrinsic

influence over cancer cell fate and highlights the neces-

sity of immune competent model systems when testing

cancer therapies. To circumvent this limitation, co-cul-

ture systems of organoids with mesenchymal cells and

lymphocytes have been developed [27,28]. Neal et al.
modulated air-liquid interphases and demonstrated that

lymphocytes in culture treated with PD1 or PDL1 inhi-

bitors generate a cytotoxic response to cancer cells [27]. In

co-culture systems of chimeric antigen receptor (CAR)-

engineered lymphocytes with PDOs, specific cancer cell

killing was demonstrated and proposed as a personalised

in vitro testing platform [29]. These studies demonstrate

that a holistic approach is a suitable way to investigate

cancer cell-immune cell interactions with relevance for

cancer therapies. However, the culture conditions in

which these cells are propagated can never truly replicate

the nuanced tissue intercompartmental signalling ecosys-

tem within a tumour, and this should be considered when

using these systems.

Stratified medicine and tailored treatments
It is a critical challenge to distinguish responders from

non-responders, or identify stage III patients with

increased likelihood of recurrence. In an ideal scenario

this discrimination would take place prior to treatment,

consequently our understanding of the underlying molec-

ular features that drive resistance are crucial to this

endeavour. One strategy is to classify patients, and iden-

tify inter-patient heterogeneity, with the use of transcrip-

tional profiles of whole tumours, including epithelial

cancer cell and stromal components. Various studies

identified 3–6 subtypes with distinct molecular features

and pathway activation (reviewed in Ref. [30]). An inter-

national consortium set out to clarify these classifications

and ultimately defined four comprehensive consensus

molecular subtypes (CMSs) with different molecular

features [9]. CMS1 is characterized by mutations in

BRAF and microsatellite instability/DNA mismatch

repair deficiency (MSI/dMMR). These tumours display

high cytotoxic lymphocyte infiltration response to check-

point inhibition, thus called the ‘immune’ subtype.

CMS2 the ‘canonical’ subtype shows high WNT signal-

ling activation, epithelial clusters and high levels of

chromosomal instability (CIN). CMS3 differs slightly

and shows increased KRAS mutations accompanied by

association to metabolic changes and is accordingly the

‘metabolic’ subtype. CMS4, the ‘mesenchymal’ subtype,
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is dominated by stromal content, fibroblasts, monocytic

and lymphocytic lineages. Molecularly, this subtype

shows increased activation of TGF-b signalling, epithe-

lial-mesenchymal transition (EMT), and predicts worst

survival. Together, these classifications demonstrate het-

erogeneity between patients and highlight the opportu-

nity to treat patients according to their subtype. A number

of clinical trials retrospectively incorporating the CMSs

show specific response [30,31,32�] demonstrating the

importance of patient stratification and the value of

implementing CMS in clinical practice. However, a num-

ber of confounding factors can influence the accuracy of

CMS calling. Particularly, the composition of the stromal

compartment is of increased importance in CMS1/4

tumours and contributes strongly to CMS identification.

To this end, bioinformatics tools were developed to query

the stromal composition in detail [33]. While this was

useful to decipher the stromal content of the tumour,

CMS2/3 tumours comprise of much more epithelium. To

capture the signature of epithelial cells, which are influ-

enced by the environment and account for intra-tumoral

heterogeneity, the CRC cell intrinsic subtypes (CRIS)

were developed [10,11]. Importantly, CRIS are less

dependent on regional variation within a tumour, thus

subtypes are classified much more robustly [34]. How-

ever, a faster and less costly way to identify CMS is

needed to increase the use in clinical diagnosis. The

use of image based CMS (imCMS), where machine

learning algorithms are capable of automated detection

of CMS specific morphological features from H&E slide

alone, is a promising application with potential for clinical

implication [35]. In addition, CMS calling has been

optimized at protein level by immunohistochemistry

for CDX2, FRMD6, HTR2B, pan-cytokeratin, ZEB1

and microsatellite status [36].

In vivo models of intestinal cancer: emerging
pre-clinical tools
As we have covered in a previous review [37], the suite of

mouse models available for pre-clinical research were

lacking a number of essential features relevant to human

disease. In this section, we will focus on the recent

improvements of genetically engineered mouse models

(GEMMs) and the improved transplantation of organoids

to recapitulate human colon cancer progression.

It is beyond doubt that GEMMs are the most appro-

priate tools to recapitulate the complexity of the tumour

ecosystem [38]. Spontaneous tumours that develop in a

fully immune-competent environment create systemic

inflammation which substantially contributes to tumour

progression [39]. They are also subject to the same

evolutionary bottlenecks of transformation, invasion

and metastasis as human tumours and undergo a natural

selection during expansion. However, a persistent issue

of these models was the low penetrance of metastasis to

distant organs. If mice developed spontaneous
www.sciencedirect.com
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metastasis the rate was below 25% with a latency which

made pre-clinical investigations nearly impossible [37].

To this end, we developed a model of CMS4 intestinal

cancer, driven by KrasG12D mutation, which is highly

penetrant to the liver (>80%) with a strong desmoplas-

tic reaction in primary tumours and metastasis [40��]. In

combination with Trp53 mutation, activation of Notch1

signalling rewired the TME towards an immunosup-

pressive neutrophil rich environment driven by TGF-b
mediated neutrophil attraction. In line with these find-

ings, Germann et al. reported the importance of a

neutrophil rich TME for the activation of latent

TGF-b ligands by neutrophil secreted metalloprotei-

nases [41]. Besides the generation of an immunosup-

pressive TME, expression of activated epithelial

Notch1 (Rosa26N1icd) drives poor prognosis subtypes

CMS4 and CRIS-B; however, Notch1 activation in

the context of Apc mutations (Apcfl/+) didn’t trigger a

subtype switch and tumours remained non-metastatic

CMS2/3 tumours [40��]. Further evidence for the role of

Notch signalling in metastatic CRC came from a recent

publication by Varga et al. whom observed increased

Notch3 activation in a GEMM with mutations in Trp53
and constitutive activation of AKT [42]. The mice

developed metastatic CRC (�80% lymph nodes

affected) that resembled CMS4 when treated with

the carcinogen azoxymethane (AOM) and therapeutic

treatment with a NOTCH3 antibody reduced primary

and metastatic burden [42].

Classical CRC is thought to progress from adenoma to

adenocarcinoma with initiating mutations in the APC

tumour suppressor and subsequent mutations in KRAS,

TP53, SMAD4. When mutations along the classical

route of progression to colon cancer were combined

in mice, they develop spontaneous metastatic tumours

albeit with a penetrance of maximal 40% (often lower)

[43–45]. Orthotopic transplantation of organoids derived

from such tumours, either into the colon or the liver, has

proven to be a rapid and reliable tool to investigate

multiple aspects of advanced CRC [42,43,45–49]. For

example, these novel models were used to demonstrate

the effect of CXCR2 and TGF-b inhibition on metas-

tasis [40��], with increased efficacy when combined with

checkpoint inhibition [43,50]. Furthermore, the role of

Lgr5 positive and negative cancer stem cells were

explored using a transplant model with the surprising

finding that only liver metastases, and not the primary

tumour, show a remarkable sensitivity to Lgr5+ cell

depletion when diphtheria toxin receptor mediated

killing was utilised [49,51�]. Moreover, engineered orga-

noids monitored by intra-vital imaging uncovered that

most disseminated cells when they leave the primary

tumour and seed to the liver are Lgr5 negative [51�].
During expansion to macro-metastasis these cells de-

differentiate and regain Lgr5 expression. In addition,

primary tumours showed recurrence post depletion
www.sciencedirect.com 
[49,52], indicating a fundamental impact of the TME

on stem cell plasticity. Future studies should address

mechanisms, which control this plasticity and test the

therapeutic potential.

Importantly, these GEMMs and organoid models were

proven to recapitulate characteristics of human cancers

and could be stratified into different CMS [40��,43,44]. It

is interesting to note that the field is lacking an epithelial

CMS2/3 GEMM that metastasises spontaneously with

high penetrance. Half of stage IV CRC patients comprise

of CMS2/3 and half of liver metastases are CMS2, thus

CMS2 appears able to drive metastatic progression

[53,54]. Alternatively, it may be an issue of intra-tumour

heterogeneity compromising accurate subtyping and it is

possible that CMS2/3 tumours simply contain a CMS4

region that drives the aggressive disease [55]. As previ-

ously discussed, CRIS analysis could be used as an

alternative to CMS to more robustly classify the epithe-

lium in tumours. Another possibility is the temporary

acquisition of more aggressive features, CMS2 CRC

has been demonstrated to subtype switch from CMS2

in bulk human CRC biopsies to CMS4 in cells budding

from the invasive margin, suggestive of a mechanism as to

how these subtypes could become metastatic[56]. As

observed with the Lgr5 stem cell plasticity described

above it may be that upon seeding to the distant site

the established metastases revert to the CMS of the

primary tumour rather than persist as CMS4. Obtaining

multiple tumour biopsies from different regions and

treating patients according to the most aggressive pathol-

ogy contained within may improve outcomes.

It will be an important task for the future to generate a

comprehensive cross-comparison of mouse models and

human datasets to allow for precise subtyping of mouse

models. To this end, we have initiated a Cancer Research

UK funded consortium (ACRCelerate: Colorectal Cancer

Stratified Medicine Network) which will characterise a

suite of state-of-the-art mouse models that recapitulate

human disease to generate reliable and robust pre-clinical

data and de-risk the failure of promising drug candidates

in clinical trials (Figure 2).

Conclusions
Overall, the in vitro and in vivo landscape of CRC mouse

models in recent years has improved substantially; how-

ever, a number of key features are not appropriately

represented in the currently available models. PDO cul-

tures have demonstrated their usefulness in correlating

with patient outcome and predicting patient responsive-

ness to therapy. The ongoing development of co-culture

techniques with TME components is essential to more

closely replicate patient disease, and ultimately treatment

response on a time-scale that could direct patient treat-

ment in real-time. As discussed above, subtyping patient

disease and mouse models has been proven as a valuable
Current Opinion in Genetics & Development 2021, 66:50–56
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Figure 2

Current Opinion in Genetics & Development

ACRCelerate: Colorectal Cancer Stratified Medicine Network Platform design and governance. Project proposals arising from industry partners,

academics or clinicians will be submitted to a preclinical therapeutic committee for discussion. Execution of the project will be allocated to the

various hubs based on centre expertise and interest before cross centre validation is undertaken. We also seek to develop complementary

circulating tumour cell-derived organoid (CDO) technology. This pipeline will contribute to the advancement of translational research in CRC by

bringing together CMS relevant GEMMs, orthotopic transplant models, PDOs and xenografts to couple preclinical information with clinical science.
concept, and although mouse tumours show a narrower

phenotype compared to the wide spectrum of human

disease, this feature should be used to identify the most

representative models of specific patient groups. As the
Current Opinion in Genetics & Development 2021, 66:50–56 
number of mouse models expands it may be possible to

take a primary approach to subtype mouse tumours

themselves, before relating back to human subtypes. This

may allow functional assessment of the impact of key
www.sciencedirect.com
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driver genes. With the recent advantages in single cell

techniques, tumour heterogeneity can be analysed with a

much higher resolution. Initial comparative studies in

lung cancer and CRC highlight a striking similarity

between human and mouse tumours [57�,58]. Single cell

technologies will allow for an even better cross-compari-

son of human and mouse tumours, to identify targetable

modules in various cell lineages. Additionally, spontane-

ous GEMMs which precisely generate tumours in human

relevant parts of the colon are needed. These models,

driven by genetic alterations detected in humans should

enable the community to investigate therapeutic options

for example specifically in right-sided and rectal cancer

under fully immune-competent conditions.
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