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Chemotherapy is a critical treatment for endocrine-related cancers; however,
chemoresistance and disease recurrence remain a challenge. The interplay between
cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs)
promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-
DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular
matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that
regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial–
mesenchymal transition, and drug resistance. To understand these mechanisms, this
review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in
endocrine-related cancers.

Keywords: cell adhesion-mediated drug resistance, endocrine-related cancers, tumor microenvironment, cell
adhesion molecules, chemoresistance
INTRODUCTION

Multidrug resistance and disease recurrence are challenging in the treatment of endocrine-related
cancers, including breast, ovarian, prostate, pancreatic, and thyroid cancers. Breast cancer is one of
the most common cancers in women worldwide and is the leading cause of cancer-related deaths
(1). The 5-year survival rate of patients with metastatic breast cancer is approximately 26% (2). The
ER/PR/HER2-negative subtype, known as triple-negative breast cancer (TNBC), accounts for
approximately 10%–15% of all breast cancers and constitutes the most aggressive breast cancer
(3). TNBC has a high metastatic capacity and poor outcome owing to increased recurrence rates,
regardless of disease stage and resistance to conventional therapies (4). Ovarian cancer may arise
from the histological portions of the ovary, including the epithelium, stroma, or germ cells.
Epithelial ovarian cancers are diagnosed at advanced stages and are treated with surgery and
chemotherapy (5). Of these, high-grade serous carcinoma arising from the epithelium of the ovary is
the most common (5). The clinical management and prognosis of ovarian cancer depend on the
n.org April 2022 | Volume 13 | Article 8654361
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cancer stage. Most patients are diagnosed at an advanced stage
with widespread peritoneal dissemination and malignant ascites.
Since rapidly proliferating tumors compress visceral organs and
are only temporarily chemosensitive, ovarian carcinoma is a
deadly disease with a cure rate of only 30% (6). Although the
incidence rates for pancreatic ductal adenocarcinoma (PDAC)
are currently low, about half of the patients have advanced
disease at diagnosis, and it is estimated that it will be the
second leading cause of cancer-related mortality by 2030.
Nearly half of the patients with PDAC have progressive disease
at diagnosis, and multiagent chemotherapy regimens only
provide a survival benefit of 2–6 months compared with
single-agent gemcitabine for advanced patients (7). Metastatic
castration-resistant prostate cancer (8) and persistent or
recurrent thyroid cancer are highly treatment-refractory and
have poor prognoses (9, 10).

Cell adhesion molecules (CAMs) are transmembrane receptor
proteins involved in cell-to-cell or cell-to-extracellular matrix
(ECM) binding (11). Based on their structures, CAMs can be
classified into four major groups: integrins, cadherins, selectins,
and the immunoglobulin superfamily CAM (IgCAM) (12, 13).
CD44 is an essential cell surface glycoprotein involved in cell-to-
cell adhesion (14). Therefore, we considered CD44 as a CAM in this
context. CAMs play a role in maintaining cell adhesion and exert
crucial cellular functions, such as cell proliferation, survival,
migration, and oncogenesis (14–16). Moreover, the cell adhesion-
mediated resistance (CAM-DR) restricts the success of cancer
therapies and is an enormous obstacle to combat in the
clinic (13, 17). This review describes the role of integrins,
cadherins, selectins, and CD44 in endocrine-related cancer.
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This review attempts to concisely summarize the advances
made in this context, emphasizing endocrine-related cancers and
the avenues for future progress to target mitotic mechanisms to
overcome these dreadful cancers.
STRUCTURES AND FUNCTION OF CAMS

Integrins
Integrins are calcium-independent heterodimeric transmembrane
proteins with a shared structure of the extracellular,
transmembrane, and cytoplasmic domains (Figure 1A). To date,
24 functionally distinct integrin heterodimers have comprised 18
integrin a and 8 integrin b subunits (18). Integrins interact with
specific ECM ligands via bidirectional signaling pathways. Inside-out
signals mediate talin binding to integrin b-tails and thus tightly
control integrin affinity for ECM ligands. Subsequent ECM binding
triggers the recruitment of protein complexes to integrin cytoplasmic
tails to facilitate integrin downstream signaling, known as outside-in
signaling (19). In addition, integrins can be internalized and recycled,
thereby controlling the availability of integrin heterodimers in the
plasma membrane (13). Integrins and their ligands play critical roles
in cell survival, proliferation, motility, differentiation, and ensuring
appropriate cell localization (20, 21).

Cadherins
Unlike integrins, cadherins are calcium-dependent transmembrane
proteins (22) that constitute type I and type II classical cadherins,
desmosomal cadherins, proto-cadherins, seven-pass transmembrane
cadherins, and FAT and dachsous cadherins (13) (Figure 1B). These
A B
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FIGURE 1 | Structures of cell adhesion molecules. (A) Integrins. (B) Cadherins. (C) Selectins. (D) CD44. ECM, extracellular matrix.
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proteins contain a prodomain (P) immediately after the removal of
the signal sequence by proteolysis. Mature classical and desmosomal
cadherins have ectodomains composed of five extracellular cadherin
repeats, a single transmembrane region, and a cytoplasmic domain
that interacts with either b-catenin (classical cadherin) or g-catenin
(desmosomal cadherin) (22). Moreover, E-cadherin (CDH1), N-
cadherin, and P-cadherin are classified as type I, whereas VE-
cadherins are type II classical cadherins (13). Cadherins regulate
cell-to-cell cohesion in all tissues and are indispensable for
morphogenesis, maintaining tissue barriers, and regulating tissue
remodeling (16, 23).

Selectins
Selectins (CD62) are single-chain transmembrane glycoproteins
that regulate cell-to-cell adhesion via carbohydrate-binding in a
calcium-dependent manner (24). There are three major types of
selectins: L-selectins (primarily expressed on leukocytes), E-selectins
(expressed on endothelial cells), and P-selectins (expressed on
activated platelets) (25) (Figure 1C). The structures of selectins
consist of a calcium-dependent lectin domain, an epidermal growth
factor (EGF)-like domain, a variably sized repeated region, a
transmembrane domain, and a cytoplasmic domain (26). The
primary function of selectins is to promote leukocyte rolling along
with endothelial cells, which is an initial step in the transmigration
of leukocytes through the endothelial barrier (27, 28).

CD44
The CD44 protein consists of four primary regions: the
extracellular region, stem region (standard stem region and
variable stem region), transmembrane region (TM), and C-
terminal cytoplasmic (CP) region (14) (Figure 1D). The CD44
variant (CD44v) differs from the CD44 standard isoform (CD44s)
by the insertion or excision of alternatively spliced exons between
the N-terminal and C-terminal domains (29). CD44s are
distributed in tissues, such as lymphocytes, the central nervous
system, lungs, epidermis, pancreas, intestines, kidneys, urinary
bladder, and cervix. CD44v is dispersed on keratinocytes,
lymphocytes, macrophages, and epithelial cells in the bladder,
stomach, and cervix (30). While binding to its primary ligand
hyaluronic acid (HA), CD44 has extensive functions, such as cell
adhesion, hyaluronate degradation, lymphocyte activation,
lymphocyte homing, lymphopoiesis, myelopoiesis, angiogenesis,
and release of cytokines (31, 32).
CAMS IN CANCERS AND THEIR
MICROENVIRONMENT

CAMs mediate the adhesion of cancer cells not only to each
other but also to stromal cells and ECM, namely, the tumor
microenvironment (TME). The TME mainly comprises stable
nonmalignant cells, including surrounding immune cells,
extracellular matrix, fibroblasts, endothelial cells (ECs), blood
vessels, and stromal cells (33).

Notably, there is a population of cancer cells named cancer
stem cells (CSCs), identified as cells within a tumor with self-
Frontiers in Endocrinology | www.frontiersin.org 3
renewal capacity and tumorigenic potential (34). In previous
studies, CSCs were isolated from various cancers and successfully
identified using surface markers, including CD44, CD24, CD133,
and CD166 (34, 35), with CD44 being the most common marker
(36). For example, a population of cells expressing CD44 high/
CD24 low was identified as CSCs in breast cancer (37).
Moreover, when CD44 binds to HA, it plays a pivotal role in
cancer invasiveness (38). In a previous study, the invasiveness of
the human breast cancer cell line MDA-MB-468 was increased
by 45% with high-molecular-weight HA and was inhibited by
anti-CD44s or HAoligo-6 (39).

CSCs also have characteristics associated with cells undergoing
epithelial–mesenchymal transition (EMT) (40). In metastatic
epithelial tumors, downregulation of CDH1, compensated by the
expression of N-cadherin, is a hallmark of EMT (41). The
transforming growth factor-b (TGF-b) pathway plays a central
role in activating EMT in several cancers (42, 43). EMT-inducing
transcription factors (EMT-TFs), such as Snail, ZEB1, TWIST, and
Slug, endow resistance to cisplatin- and oxaliplatin-based
chemotherapies in breast, ovarian, and pancreatic cancers and
CSC maintenance (44, 45). The invasion and metastasis of cancer
implicate the latest steps in malignant progression and most cancer-
associated deaths (46). Interestingly, cadherins mediate cancer cell-
to-cancer cell adhesion and, subsequently, form collective
migration, defined as two or more cells moving together rather
than single cancer cell migration (47).

After cancer cells undergo EMT, selectins confer cancer cells that
express selectin ligand implantation from blood-borne metastasis.
For instance, it was shown that overexpressing c-FOS ovarian
cancer cells had lower selectin ligands sLea and sLex and
diminished adhesion to E-selectin, thereby reducing metastasis in
an intraperitoneal xenograft mouse model (48). Regarding P-
selectin, there was a report showing that P-selectin mediated
rolling and adhesion of ovarian cancer cells expressing sLex to
mesothelial cells (49). Similarly, Gebauer et al. demonstrated that
the interaction of E-selectin, P-selectin, and mesothelial cells in
pancreatic cancer cells was in a shear stress-dependent manner (50).

This initial interaction between endothelial or mesothelial
cells expressing selectins and cancer cells results in the activation
of integrins, which mediate firm adhesion to the ECM and
stromal cells. Cancer-associated fibroblasts (CAFs) are derived
from various cell types including ECs (51), adipocytes (52),
pericytes (53), and mesenchymal stromal cells (MSCs) (54). In
addition, integrin a11 in breast CAFs originating from MSCs
(54) interacts with platelet-derived growth factor receptor beta
(PDGFRb), promotes invasiveness, and produces a matricellular
protein (55). Another role of integrins is the maintenance of CSC
characteristics, such as CD44 marker. For example, integrin b1 is
a CSC marker and its expression is critical for initiating breast
cancer tumorigenesis in vivo, which is discussed in the following
section (56).

CSCs or cancer cells contact the TME through cell-to-cell and
cell-to-ECM by CAMs, leading to the initiation of survival and
proliferation signaling pathways in cancer cells and secretion of
cytokines and growth factors from both cancer cells and stromal
cells. Furthermore, this mutual beneficial effect regulates
April 2022 | Volume 13 | Article 865436
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conventional treatment failure, called cell adhesion-mediated
drug resistance (CAM-DR), in cancer cells.
CD44 AND ENDOCRINE-RELATED
CANCERS

CD44-positive expression was predominantly correlated with a
high TMN and worse 5-year overall survival in ovarian cancers
in a meta-analysis of 18 publications including 2,161 patients
(57). CD44 is the most common cancer stem cell receptor, and its
overexpression is associated with metastasis, resistance, and
tumor recurrence in endocrine-related cancers (38, 58, 59).
Although many cells express CD44s on their cell surface,
cancerous cells express both CD44s and CD44v on their cell
membranes (60). HA interacts with various cell surface receptors,
including those involved in intracellular signaling pathways, such
as the tyrosine kinase pathway and the hyaluronan-mediated
motility receptor CD44, to increase proliferation, survival, and
resistance to cancer cells (61) (Figure 2).

CD44 and CSCs
Based on clinical evidence, increased CD44high/CD24low
expression was found in a subpopulation of chemoresistant breast
CSCs (62). The CD44+/CD117+ subpopulation is known as ovarian
CSCs (63). CD44s, rather than CD44v, initiates PDGFRb/Stat3
signaling to facilitate CSC properties in breast cancer (64). Stress
Frontiers in Endocrinology | www.frontiersin.org 4
tolerance caused by reactive oxygen species is a characteristic of
drug resistance. CD44v enhances protection against ROS and
promotes chemoresistance (65). Moreover, long-term CAF-
conditioned media facilitates the enrichment of the stemness
population of prostate cancer cells and their drug resistance via
the osteopontin/CD44 axis (66). For example, high CD44
expression results in p62-associated NRF2 activation in breast
CSCs. CD44/NRF2 activation contributes to doxorubicin
resistance in CD44high breast CSCs (67). Proteoglycan 4, a
mucin-like glycoprotein, induces TGF-b and HA expression in
breast cancer (68). Therefore, proteoglycan 4 acts as a CD44/HA
regulator and promotes metastasis (68). Recently, a study showed
that CD44 promoted PD-L1 expression, eliciting an
immunosuppressive effect in TNBC using the FACS-assisted
shRNA screening method (69). MicroRNA-199a could target
CD44, restore chemosensitivity to paclitaxel, cisplatin, and
adriamycin, and reduce ABCG2 expression, a multidrug
resistance gene in in vitro and in vivo ovarian cancer models (63).

HA/CD44/MDR1 Axis
Following the interaction of CD44 with HA, ankyrin binds to
multidrug resistance mutation 1 (MDR1) leading to doxorubicin
efflux and paclitaxel and chemoresistance in both breast and
ovarian cancer cells (70). Moreover, this activation of MDR1 is
mediated by CD44/Nanog/Stat-3 signaling (70). Further study
demonstrated that inhibitors of apoptosis proteins are also
elevated by the CD44/HA/Nanog interaction (71). This process
FIGURE 2 | CD44-related cascades in cancer cells. HA, hyaluronic acid; CAF, cancer-associated fibroblast; CSC, cancer stem cell.
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leads to microRNA-21 production and protein programmed cell
death 4 reductions (71). HA-CD44-PI3K-ErbB2 constitutes a
positive feedback loop in an Akt-independent manner (72). This
loop amplifies MDR1 expression and regulates drug resistance in
doxorubicin-resistant breast cancer cells MCF-7 (73) and
pancreatic cancer cells (73). CD44/HA/MDR1 siRNA NPs
have been successfully evaluated in ovarian cancer (74). HA-
engineered nanomicelles are taken up by triple-marker positive
(CD44+/CD133+/EpCAM+) pancreatic CSCs and induce a cell
killing effect (75). HA-modified nano-complexes target CD44
receptor-induced apoptosis of drug-resistant cells via mTOR
signaling in ovarian cancer SKOV3 cells in vivo (76).

CD44/PI3K, CD44/MAPK, and
CD44/Wnt Axis
Increased CD44v6 expression is found in prostate cancer
surrounding stromal cells (77) and indicates poor clinical
outcomes in pancreatic ductal adenocarcinomas (78).
Furthermore, knockdown of CD44v6 suppresses prostate cancer
proliferation, reduces EMT, and augments chemosensitivity via
downregulation of Wnt/b-catenin and PI3K/Akt/mTOR signaling
(77). Another study determined that CD44v3 induces MDR1
overexpression, thereby activating P300/b-catenin and NF-kB
(60). Calreticulin maintains the breast CSC properties of CD24-/
CD44+ and ALDH+ and promotes breast cancer progression via
Wnt/b-catenin signaling in an HIF-1-dependent manner (79).
SRGN is an ECM factor that binds to CD44 in an autocrine
manner and acts by triggering MAPK and Wnt/b-catenin
signaling in breast CSCs (80). Thus, CD44 is closely regulated
by Wnt signaling (33, 81).

Phospho (p)-AKT expression is more likely found in CD44v6-
positive breast cancer tissues. Moreover, overexpression of CD44v6
and p-AKT is correlated with poor clinical outcomes (82).
Osteopontin/CD44 cascade promotes ovarian cancer cell
chemoresistance via PI3K/AKT signaling and drug efflux
mechanisms (83). Rho GTPase activation has been linked to the
prostate cancer cell line PC3 and osteopontin adhesion. Subsequently,
surface CD44 and MMP-9 expression increases (84). Furthermore,
CD44 has been linked to aggressive pancreatic cancer by the PI3K/
AKT or MAPK/ERK pathways in clinical data (85).

Recently, several studies have implied that some interleukins
(ILs) also regulate CD44 signaling. IL1b, a pivotal regulator of the
systemic inflammatory response, is produced by macrophages in
breast cancer. This process is mediated by the breast cancer cell
membrane-derived soluble CD44. Therefore, neutralization of
CD44 by antibody decreased IL1b production in macrophages
and attenuated the growth of primary breast cancer (86). Another
similar target strategy using an IL1R2 neutralizing antibody
suppressed breast CSC progression (87). IL-6 can generate CD44
+ CSCs via the induction of EMT in breast cancer cell T47D (88).
CADHERINS AND ENDOCRINE-
RELATED CANCERS

In recent decades, studies have shown that mechanical EMT
mediated by cadherin switching leads to drug resistance in
Frontiers in Endocrinology | www.frontiersin.org 5
breast cancer. Decreased CDH1 expression is significantly
correlated with a higher-grade, triple-negative receptor status,
and poor prognosis in invasive breast carcinoma (89).
Upregulation of cyclin D1, b-catenin, N-cadherin, MMP-2,
MMP-9, and ICAM-1 and downregulation of CDH1 were found
in doxorubicin-resistant TNBC cells (90). CDH1 is crucial for
epithelial polarization and differentiation. Deregulation of CDH1
function plays a fundamental role in breast cancer metastasis and
is associated with a worse prognosis (91). Over the past decade,
many mechanisms have been identified to cause CDH1
inactivation in breast cancer (92, 93). In the 1990s, a correlation
was found between the absence of CDH1 and the lobular subtype
harboring CDH1 genetic alterations (94, 95). Subsequently, it is
well-known that approximately half of the invasive lobular breast
cancers show loss of heterozygosity, which is crucial for CDH1
dysfunction and loss of expression (93, 96). In addition, epigenetic
alterations have emerged as a possible cause of aberrant CDH1
expression and function, such as hypermethylation of the CDH1
promoter site (97, 98). Abnormal glycosylation is also a potential
cause of CDH1 dysfunction, because CDH1 is post-translationally
modified by oxygen and nitrogen glycosylation (99, 100).

Cadherins and EMT
Many recent studies have focused on signaling changes in EMT
in endocrine-related cancers (101–103). In this review, we have
taken breast cancer as an example to illustrate recent EMT-
related signaling (Figure 3). b-catenin, a critical cytoplasmic
protein, confers cadherin-mediated cell-to-cell adhesion due to
the transcriptional output of Wnt signaling, which leads to breast
cancer tumor progression (104). Krüppel-like factor 9 (KLF9)
blocks lung metastasis of breast cancer and increases CDH1
expression in 4T1 cells in vivo, indicating that the KLF9/CDH1
axis strongly contributes to breast cancer invasion and metastasis
(105). N-cadherin-dependent cell-to-cell adhesion is required for
migration mediated by bone marrow-derived MSCs towards
MDA-MB-231 breast cancer cells via canonical TGF-b
signaling (106). A previous study reported that aging breast
ECM alone was sufficient to drive normal human mammary
epithelial cells (KTB21) to an invasive and cancer-like phenotype
that led to a loss of CDH1 in vivo (107). CDH1 facilitates
metastasis in phenotypically sorted subpopulations of breast
cancer cells, enabling clustering of circulating tumor cells
(108). Snail exerts invasion, migration, and adhesion effects via
regulation of N-cadherin and CDH1 in drug-resistant MCF-7/A
cells (109). The authors also found that miR34a combined with
doxorubicin suppressed the expression of Snail by inhibiting the
Notch/NF-kB and RAS/RAF/MEK/ERK pathways in MCF-7/A
cells (109).

Cadherins and CAM-DR
Furthermore, the combination of miR34a and doxorubicin
significantly repressed tumor growth in the MCF-7/A nude
mouse xenograft model compared to doxorubicin alone (109).
Cell motility was mediated by ERK1/2 and CDH1 was correlated
with lactate supplementation (110). A study showed that
activated ERK signaling is involved in radiotherapy-resistant
breast cancer using MDA-MB-231 cells. CDH1/TGF-b/p-
April 2022 | Volume 13 | Article 865436
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Smad2/3 signaling was found to be a survival axis in breast
cancer by inhibiting reactive oxygen-dependent endogenous
mitochondrial apoptosis (111). F-box and leucine-rich repeat
protein 10 (FBXL10) interacting with SNAI1 promoted the
migration and invasion of breast cancer cells by inhibiting
CDH1 expression and inducing EMT (112). AKR1B10
downregulated CDH1 expression via the PI3K/AKT/NF-kB
p65 signaling pathway in MCF-7 cells (113). Moreover, taxane
therapy resistance was related to reduced PRP4K expression,
depletion of PRP4K in TNBC cells (MDA-MB-231), and
enhanced 2D migration, and 3D invasion correlated with
higher fibronectin levels rather than changes in CDH1 (114).
Connexins linked to N-cadherin, vimentin, Snail, and Zeb1
modulate CSC and EMT properties in breast cancer cells (90).

At the RNA level, overexpression of TPA diminished the
expression of CDH1 and increased the expression of vimentin,
fibronectin, and TGF-b1 (115). Circular RNA studies have shown
that circNOLC1 (116) and circSCRIB (117) contribute to BC cell
invasion and migration ability by reducing CDH1 and facilitating
the tumorigenesis of breast cancer (118). Extracellular vesicles of
insulin-like growth factor-1 (IGF-1), which is a crucial regulatory
factor of mammary glands, promote the downregulation of CDH1
and upregulation of vimentin, N-cadherin, and MMP-9 in MDA-
MB-231 breast cancer cells (119).

Interestingly, among environmental contaminants, including
long-chain per- and polyfluoroalkyl substances (PFASs), a study
Frontiers in Endocrinology | www.frontiersin.org 6
has found that PFHxS can induce cell malignancy by reducing
the levels of CDH1 and b-integrin and promoting cell migration
and invasion in normal human breast epithelial cells (MCF-
10A) (120).

Apart from CDH1 and N-cadherin, VE-cadherin promotes
the attachment of breast cancer cells to the endothelial layer and
initiates the incorporation phase instead of transmigration (121).
As a result, cadherins mainly mediate CAM-DR via the EMT
pathway and promote long-distance metastasis of breast cancer.

Targeting of Cadherins
To date, there are few targeted therapies for cadherins. However,
one potential practical strategy is the reversal of EMT by
restoring CDH1 expression. For example, CTI-2 increased the
expression level of CDH1 and decreased the expression levels of
N-cadherin and vimentin through inactivation of the MAPK
signaling pathway (122). MTDH, an miR-9-3p inhibitor,
promotes the effect of gemcitabine on inducing apoptosis and
inhibiting cell migration, invasion, and growth in breast cancer,
suggesting that miR-9-3p regulated gemcitabine drug resistance
(123). Interestingly, atorvastatin, an HMG-CoA reductase
inhibitor, enhanced partial cancer-associated mesenchymal-to-
epithelial reverting transition, and facilitated chemotherapy
effects in metastatic TNBC (124). The sulforaphane-cisplatin
combination restored CDH1 expression by altering chromatin
modification and attenuated the metastatic potential of TNBCs
FIGURE 3 | Cadherin regulates epithelial–mesenchymal transition and triggers intracellular signaling. EMT, epithelial–mesenchymal transition; CSC, cancer stem cell.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ruan et al. CAMs in Endocrine-Related Cancers
by downregulating the SIRT-mediated EMT signaling axis (125).
This study demonstrated that sulforaphane-cisplatin could
overcome cisplatin resistance (125). The tumor-suppressive
role of miR-205, suppressed by the CLDN11 gene, regulates
EMT in breast cancer (126). Co-treatment with miR34a and
doxorubicin slowed tumor growth in MCF-7/A cells via the
Snail/CDH1 pathway in vivo (109). Intriguingly, many herbal or
traditional medicines are available. JI017 in combination with
paclitaxel can overcome paclitaxel resistance (127). Triptonide, a
small molecule from the traditional Chinese medicinal herb,
promotes the downregulation of N-cadherin, VE-cadherin, and
VEGFR2 (128). Rhoifolin (RFL), a flavonoid from C. nudiflora, is
a Chinese medicinal herb that affects CDH1, vimentin, Snail, and
Slug, thereby eliciting anti-motile properties (129). Ethanol-
based garlic extract prevents breast cancer evolution driven by
a hypoxia-induced decrease in CDH1 and increased vimentin
and motility (130).
SELECTINS AND ENDOCRINE-
RELATED CANCERS

The role of selectins in cancer implantation and metastasis is
well-established (131). Selectin ligands on cancer cells interact
with selectins on endothelial or mesothelial cells, leading to
extravasation of cancer cells into the blood, which is critical for
hematogenous metastasis (132) (Figure 4). In addition to blood-
borne metastasis, selectins mediate peritoneal dissemination in
endocrine-related cancers (133). Platelets and leukocytes are also
involved in metastasis via selective regulation (131, 134, 135).
Frontiers in Endocrinology | www.frontiersin.org 7
Selectins, particularly E-selectin, are involved in cancer drug
resistance in acute myeloid leukemia (AML).

Selectins and Their Ligands in Cancers
Inhibition of the interplay between selectins and their ligands has
been studied as a potential strategy to provide therapeutic benefit
in cancer. P-selectin glycoprotein ligand 1 (PSGL-1), a well-
known selectin ligand, promotes the physiological and
pathological progression of endocrine-related cancers (136).
CD24 is another well-known P-selectin ligand that confers
ovarian cancer progression by directly mediating ovarian
cancer adhesion to tumor–mesothelial (49). MIP-1b secreted
by alternatively activated macrophages elevated the expression of
P-selectin on the mesothelial cell surface through CCR5/PI3K
signaling, and ovarian cancer cells adhered to the de novo P-
selectin via CD24 (49). MUC16 (CA125) is a selectin ligand
expressed in metastatic pancreatic cancer cells (137) and
epithelial ovarian cancer cells (138). Another mucin, called
CA19-9, accelerates pancreatic cancer progression by binding
to E-selectin, promoting angiogenesis, and regulating
immunological response (139). Overexpression of MUC1,
MUC9, and MUC13 has also been observed in ovarian cancer
cells (140, 141). Two E-selectin ligands, BST-2 and LGALS3BP,
are correlated with high liver and brain metastasis potential and
poor survival in ER-negative breast cancer (142). Growth of
pancreatic cancer cells was slowed down by E-selectin-dependent
rolling and E-selectin-HA binding (143). Sialyl Lewis X on bone-
metastatic prostate tumor cells exerted robust E-selectin binding
activity by shear-flow manner (144). Contrarily, c-FOS, a
negative regulator of E-selectin, significantly reduced ovarian
cancer growth both in vitro and in vivo (48).
FIGURE 4 | Selectins mediates metastasis of cancer cells. MDSC, myeloid-derived suppressor cell.
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Selectins and Metastasis
Breast cancer cells are anchored to the bone marrow
microenvironment through the stromal-derived factor 1 (SDF-1)/
E-selectin pathway (145). E-selectin also induces mesenchymal–
epithelial transition and Wnt activation in cancer cells to promote
bonemetastasis (146). Furthermore, E-selectin plays a critical role in
allowing breast cancer cells to infiltrate the bone marrow, and
inhibition of the SDF-1/CXCR4 axis induces the mobilization of
dormant cancer cells into circulation (147). Following lung-derived
selectin inhibition, decreased lung migration and reduced
proliferation were observed in TNBC through a 3D ex vivo
pulmonary metastasis assay and lung-conditioned media in an in
vitromodel (148). In host mice, E- and P-selectin depletion inhibits
intraperitoneal metastasis of PDA cells (149). P-selectin mediates
platelet activation simultaneously in a combination of tissue factor-
induced thrombin formation by pancreatic cancer cells (150) and
breast cancer cells (151).

Selectins and CAM-DR
Selectins, especially E-selectin, are also involved in cancer drug
resistance in AML. E-selectin promotes endocrine-related cancer
cell adhesion, chemotaxis, trans-endothelial migration, and stroma-
induced drug resistance. Blocking E-selectin results in cancer cell
mobilization from the TME to circulation and resensitizes cancer
cells to chemotherapies (152). For example, uproleselan (GMI-
1271), an E-selectin antagonist, received FDA approval for adult
relapsed/refractory AML in 2017 and a phase 3 study is ongoing
(153). A preclinical study demonstrated that AML cells have high E-
selectin binding potential with chemotherapy resistance, resulting in
a high leukemia relapse incidence. Chemoresistance of AML cells
was resensitized to chemotherapy by both E-selectin host knockout
(sele-/-) and uproleselan (154). GMI-1359, a dual CXCR4/E-selectin
antagonist, reduced growth, enhanced docetaxel treatment, and
restored docetaxel effectiveness in docetaxel-resistant prostate
cancer cells (155). High expression of E-selectin with substantial
CD45+ immune cell density adjacency was observed in
doxorubicin-treated residual human breast tumors. Moreover, the
functional blockade of E-selectin with an anti-E-selectin aptamer
decreased the residual tumor burden and metastasis by inhibiting
the TH2 shift (156).

Since L-selectin assists lymphocyte homing to lymph nodes,
OX40L promotes effector T-cell expansion and inhibits
regulatory T cells. A type of intelligent exosome engineered
with L-selectin and OX40L was developed in a previous study
(157). The exosome surface was functionally engineered with
CD62L (L-selectin, a gene for lymphocyte homing to lymph
nodes) and OX40L (CD134L, a gene for effector T-cell expansion
and regulatory T-cell inhibition) by forced expression of the
genes in the donor cells. These engineered smart exosomes were
tested, and an improved outcome was observed in a breast cancer
4T1 xenograft model (157). As ovarian cancer cells can bind to L-
selectin in vitro, RO-heparin, which has low anticoagulant
activity, can inhibit L-selectin-mediated cell adhesion and
prevent cancer metastasis (158).

Granulocytes are crucial factors in cancer metastasis. Cancer-
induced expansion of immunosuppressive myeloid-derived
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suppressor cells (MDSCs) has been well described. Lu et al.
first reported that PSGL-1 is expressed on the surface of MDSCs
in pancreatic tumor tissues (159). They found that low-
molecular-weight heparin (LMWH) could attenuate the early
stage of adhesion between vascular ECs and MDSCs by
inhibiting P-selectin/PSGL-1 binding. Therefore, fewer MDSCs
are recruited to pancreatic tumor tissues (159). Furthermore,
they reported that hydrophilic LMWH attenuated lung
metastasis and alleviated the immunosuppressive TME through
P-selectin blockage, thereby decreasing the recruitment of
MDSCs to the lung (160). In addition to MDSCs, aged
neutrophils regulate metastasis (161). Compared to CXCR4
low/CD62L high immature neutrophils, aged neutrophils
facilitate breast cancer migration and mediate metastasis
through increased release of neutrophil extracellular traps (161).

Fucoidan, a sulfated polysaccharide, has shown a strong
affinity towards P-selectin and is widely used for its
anticoagulant, antitumor, and anti-inflammatory effects;
therefore, fucoidan-Dox NPs (FU-Dox NPs) were developed.
The MDA-MB-231 cell line with high P-selectin expression is
more sensitive to FU-Dox NPs than the MDA-MB-468 cell line
that exerts low P-selectin expression (162). Interestingly, P-
selectin-mediated adhesion is upregulated by sulfatide in a
breast cancer model. However, increased sulfatide synthesis
sensitizes cancer cells to hypoxia and doxorubicin (163).
INTEGRIN AND ENDOCRINE-
RELATED CANCERS

According to their bidirectional signaling character, integrins
present two conformational states that determine the receptor
affinity of ECM proteins: a bent integrin (inactive form) shows a
low affinity for ECM ligands, whereas an extended integrin (active
form) elicits the activation of downstream signaling (Figure 1A).
Abnormal regulation of integrins impacts cancer cell and stroma
crosstalk, maintains cancer stemness characteristics, facilitates the
formation of metastases, and induces drug resistance (164, 165)
(Figure 5). For example, Kim et al. systemically demonstrated
integrin a4 and a6 mediated drug resistance in B-cell acute
lymphoblastic leukemia, and either integrin a4 or a6 inhibition
led to increased chemosensitivity (166–168).

Increased integrin expression mainly indicates poor outcomes
in endocrine-related cancers. For example, integrin a3 is highly
correlated with unfavorable prognosis in papillary thyroid
carcinomas (169). Increased expression of integrins a5 and b1
is associated with the development of chemotherapy resistance
and is an independent predictor of worse overall survival in
epithelial ovarian cancer (170). Increased expression of integrin
aV in PDAC cells has been associated with decreased patient
survival (149). High expression of integrin a2b1 co-expressing
HGFR or CD44v6 indicated worse progression-free survival in
primary ovarian cancer and supported the hypothesis of
mediating platinum resistance mediated by integrin a2b1
(171). Oxysterol-binding protein-like (OSBPL) family members
potentially bound to integrins are highly upregulated in PDAC
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with poor outcomes in pancreatic ductal adenocarcinoma PDAC
(172). Furthermore, increased integrin b1/lnc005620 regulated
chemoresistance to epirubicin in TNBC in vitro and in vivo
(139). However, integrin a3 is a favorable prognostic biomarker
in breast cancer via integrin a3-ECM mediated immune cell
infiltration (173). Increased integrin a5 expression induces lower
aggressiveness in tamoxifen-resistant breast cancer (174).

Integrins and CSCs
Several studies have implicated integrins as vital regulators of
CSCs. Integrin b1, specifically integrin a3b1, is necessary for
mammary tumorigenesis (175–177). Apart from stemness,
integrin b1 promotes proliferation by increasing the expression
of TGF-b receptor 2 and kindlin-2 signaling in the MIA PaCa-2
pancreatic cancer cell line (178). Knockout of integrin b1
decreased the expression of integrin a5, which resulted in
impaired cell metastasis and adhesion to vitronectin and
fibronectin (178). Integrin a5b1-targeted micellar paclitaxel
(ATN-MPTX) successfully selectively inhibited immunogenic
cell death using chemo-immunotherapy in TNBC cells (132).
Interestingly, downregulation of integrin b1 is compensated for
by increased b3 integrin expression (179).

Integrin b3 regulates breast cancer stemness through the
Wnt/b-catenin/HOXD3 pathway and mediates drug resistance
(180, 181). In addition, integrin avb3 is a potential marker of
breast and pancreatic cancers with stem-like properties and high
Frontiers in Endocrinology | www.frontiersin.org 9
resistance to receptor tyrosine kinase inhibitors, such as erlotinib
and other chemotherapies, through the KRAS-RalB-NF-kB
pathway and the mTOR/mTORC1 axis (182, 183). Moreover,
integrin avb3 mediated PARP inhibitors’ resistance in breast
cancer cells via the TGFBI-ZEB1 pathway using the CRISPR
deletion method (184). Furthermore, TGFBI produced by
macrophages during immunosuppression in early ovarian
cancer cells may be an effector of the tumor-promoting factor
TGF-b (185). Integrin av activates latent TGF-b and drives EMT
in PDAC cells (149). Similarly, integrin a6 induced EMT with
the upregulation of N-cadherin and downregulation of CDH1 in
ovarian cancer spheroids via the TGF-b1/Smad3 pathway (186).
Interestingly, TGF-b1 promotes the expression of SMYD3 and
ITGB6 as feedback mechanisms (186). Integrin a6 is enriched
and enhances stem cell phenotypes in breast CSCs, especially in
TNBC cells (187, 188). Integrin a2, a direct target of miR-206,
promotes TNBC self-renewal-related mammosphere formation,
where canonical Wnt signaling is involved (189). Recently, a
study demonstrated that upregulation of integrin b8 mediated by
lnc-TCF7 leads to ovarian cancer stemness (190). Integrin avb8,
a key activator of TGF-b, regulates immunotherapy and
radiotherapy resistance, which may be reversed by a potent
blocking monoclonal antibody against integrin avb8 (ADWA-
11) in prostate cancer (191). The anti-integrin b8 antibody
treatment mechanism restores the in vitro cytotoxic effect of
tumor CD8 T cells by inhibiting Treg cells (191, 192).
FIGURE 5 | Integrin-related cascades in cancer cells. CAF, cancer-associated fibroblast; CSC, cancer stem cell.
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Integrins and FAK/Src/PI3K Axis
FAK is a downstream protein that is highly phosphorylated in
response to integrin activation and contributes to cancer cell
behaviors, including resistance to anoikis and maintenance of an
immunosuppressive TME (193, 194). Therefore, FAK inhibition
increased immune surveillance in immunosuppressive
pancreatic ductal adenocarcinoma TME and restored tumor
response to immunotherapy, such as PD-1 antagonists (194).
Integrin b1/LRRC15 exerts a metastatic invasion role via
activation of FAK in patient-derived ovarian cancer xenograft
models, inhibited by ABBV-085, an antibody–drug conjugate of
LRRC15 (195). Following binding to integrin, PCMT1 was
released from ovarian cancer cells, leading to activated FAK-
Src signaling to promote cancer progression and anoikis
resistance (196). Moreover, stiffness-induced autophagy in
stromal cells mediated by integrin aV-PTK-AMPKa promotes
the growth of adjacent pancreatic stellate cells in vitro and in vivo
(197). Integrins a3 and b5 were increased in highly metastatic
breast cancer cell lines, such as MDA-MB-231 and MDA-MB-
231BO, while decreased in poorly metastatic MCF-7 cells.
Knockdown of integrin a3 and b5 leads to the inhibition of
migration and invasion of breast cancer cells through the FAK/
Src/Rac1 pathway (198). Increased integrin b1 contributes to
resistance to anti-HER2 (trastuzumab or lapatinib) and anti-
PI3K (pertuzumab) via the activation of FAK/Src signaling in
HER2-positive breast cancer (199, 200).

Integrins also play an essential role in stimulating the activity
of Ras, which in turn activates the MAPK/ERK and PI3K/Akt
signaling pathways (201, 202). Both the MAPK/ERK and PI3K/
Akt signaling pathways are critical cascades that regulate cancer
cell proliferation, survival, and drug resistance, which have been
well investigated in the past decades (203). CAF-derived THBS2
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bound to integrin avb3 promotes cancer cell growth and
adhesion via the MAPK pathway in PDAC cells in vitro and in
vivo (204). In addition, serial studies have implicated that
inhibition of integrins efficiently sensitizes breast cancer cells
to conventional therapies, such as radiotherapy. Integrin b1
inhibition by AIIB2 in combination with post-ionizing
radiation increases apoptosis compared with radiation alone by
downregulating Akt in breast cancer (205). Integrin a6 mediates
radiation resistance via PI3K/Akt and MEK/ERK signaling (206).
Therefore, the PI3K inhibitor LY294002 and MEK inhibitor
U0126 reverse radiation resistance was mediated by integrin
a6 in breast cancer cells (206). Conversely, integrin a6b1
mediates resistance to PI3K inhibitors in PTEN-negative
prostate cancer by inducing PIM kinases and oxidative stress
(207). Recently, the upregulation of IGF1R-integrin a6-S100A4
signaling was found to promote chemoresistance to metastasis of
epithelial ovarian cancer cells (208). S100A4 is secreted from
lung fibroblasts and can reciprocally activate them (208).
Integrin b1 is regulated by cysteine-rich angiogenic inducer 61
(CYR61), a matricellular protein, in TNBC (209). In addition,
CYR61 integrin b1-AMPKa mediates lung metastasis, anoikis
resistance, and extravasation of TNBC cells in an AKT-, FAK-,
and ERK1/2-independent manner (209).
OUTLOOK

CAMs contribute to the attachment of cancer cells to the TME
via cell-to-cell and cell-to-ECM interactions. Remodeled TME
mediates drug resistance in cancer cells, resulting in altered
expression of CAMs (Figure 6). Therefore, CAMs may be an
attractive therapeutic target for cancer intervention. Further
FIGURE 6 | Overview of cell adhesion molecules in endocrine-related cancers. CSC, cancer stem cell; ECM, extracellular matrix; CAMs, cell adhesion molecules;
EMT, epithelial–mesenchymal transition; CAM-DR, cell adhesion-mediated drug resistance.
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mechanisms of CAM-DR in endocrine-related cancers are
warranted to open new avenues for more effective treatments
in the future.
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