
RESEARCH ARTICLE

Frequency, Antimicrobial Resistance and
Genetic Diversity of Klebsiella pneumoniae in
Food Samples
Yumei Guo1☯, Haijian Zhou2,3☯*, Liyun Qin1☯, Zhizhao Pang1, Tian Qin2,3, Hongyu Ren2,
Zhuo Pan1, Jikun Zhou1*

1 Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People’s Republic of China,
2 State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable
Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s
Republic of China, 3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases,
Hangzhou, People’s Republic of China

☯ These authors contributed equally to this work.
* zhouhaijian@icdc.cn (HZ); zhoujikun@vip.inhe.net (JZ)

Abstract
This study aimed to assess the frequency of Klebsiella pneumoniae in food samples and to

detect antibiotic resistance phenotypes, antimicrobial resistance genes and the molecular

subtypes of the recovered isolates. A total of 998 food samples were collected, and 99

(9.9%) K. pneumoniae strains were isolated; the frequencies were 8.2% (4/49) in fresh raw

seafood, 13.8% (26/188) in fresh raw chicken, 11.4% (34/297) in frozen raw food and 7.5%

(35/464) in cooked food samples. Antimicrobial resistance was observed against 16 antimi-

crobials. The highest resistance rate was observed for ampicillin (92.3%), followed by tetra-

cycline (31.3%), trimethoprim-sulfamethoxazole (18.2%), and chloramphenicol (10.1%).

Two K. pneumoniae strains were identified as extended-spectrum β-lactamase (ESBL)–

one strain had three beta-lactamases genes (blaSHV, blaCTX-M-1, and blaCTX-M-10) and one

had only the blaSHV gene. Nineteen multidrug-resistant (MDR) strains were detected; the

percentage of MDR strains in fresh raw chicken samples was significantly higher than in

other sample types (P<0.05). Six of the 18 trimethoprim-sulfamethoxazole-resistant strains

carried the folate pathway inhibitor gene (dhfr). Four isolates were screened by PCR for

quinolone resistance genes; aac(6’)-Ib-cr, qnrB, qnrA and qnrS were detected. In addition,

gyrA gene mutations such as T247A (Ser83Ile), C248T (Ser83Phe), and A260C (Asp87Ala)

and a parC C240T (Ser80Ile) mutation were identified. Five isolates were screened for ami-

noglycosides resistance genes; aacA4, aacC2, and aadA1 were detected. Pulsed-field gel

electrophoresis-based subtyping identified 91 different patterns. Our results indicate that

food, especially fresh raw chicken, is a reservoir of antimicrobial-resistant K. pneumoniae,
and the potential health risks posed by such strains should not be underestimated. Our

results demonstrated high prevalence, antibiotic resistance rate and genetic diversity of K.
pneumoniae in food in China. Improved control and prevention strategies are urgently

needed.

PLOS ONE | DOI:10.1371/journal.pone.0153561 April 14, 2016 1 / 13

a11111

OPEN ACCESS

Citation: Guo Y, Zhou H, Qin L, Pang Z, Qin T, Ren
H, et al. (2016) Frequency, Antimicrobial Resistance
and Genetic Diversity of Klebsiella pneumoniae in
Food Samples. PLoS ONE 11(4): e0153561.
doi:10.1371/journal.pone.0153561

Editor: Massimiliano Galdiero, Second University of
Naples, ITALY

Received: December 16, 2015

Accepted: March 31, 2016

Published: April 14, 2016

Copyright: © 2016 Guo et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was supported by
2012ZX10004215, 2008ZX10004-008 from National
Health and Family Planning Commission of the
People's Republic of China (http://www.nhfpc.gov.cn/
). HZ received the funding. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0153561&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nhfpc.gov.cn/


Introduction
Klebsiella pneumoniae is a common opportunistic pathogen that causes human infections. It
can be widely distributed not only in the respiratory and intestinal tracts of humans and ani-
mals but also in a variety of environments and vectors. This pathogen can cause pneumonia,
respiratory tract infections, urinary system infections, septicemia and other diseases [1,2].
Antimicrobials have been widely used to treat K. pneumoniae infections in humans. However,
increasing antimicrobial resistance, especially that mediated by extended-spectrum β-lacta-
mases (ESBL), plasmid-borne AmpCs, and carbapenemases, has been reported in recent years
and has become a serious problem [3–5].

Foodborne diseases caused by pathogenic bacteria constitute a serious threat to public
health worldwide [6,7]. Until now, most investigations on foodborne bacteria focused on com-
mon foodborne pathogens, such as Salmonella, Campylobacter, Escherichia coli, Shigella, Lis-
teria monocytogenes, Staphylococcus aureus, and Vibrio parahaemolyticus. In contrast, little
information was obtained on foodborne K. pneumoniae as K. pneumoniae is generally not rec-
ognized as a foodborne pathogen. However, antimicrobial-resistant K. pneumoniae strains
have been isolated from marketed fresh vegetables [8], shrimp in international trade [9], and
farm-raised chicken [10]. A recent report showed that foodborne K. pneumoniae could cause a
nosocomial outbreak [11]. Furthermore, several resistance genes in K. pneumoniae are located
in transferable genetic elements that may be transferred to other bacteria. Thus, the potential
contribution of K. pneumoniae to the resistance of clinically relevant bacteria is cause for
concern.

The presence of antimicrobial-resistant K. pneumoniae strains in the food supply is alarm-
ing. Our objective was to assess the frequency of K. pneumoniae in food samples. We focused
on the contamination rate in foods and on the characteristics of K. pneumoniae isolates. We
characterized their antimicrobial resistance phenotypes, identified their antimicrobial resis-
tance genes and analyzed their molecular subtypes.

Materials and Methods

Sample collection
A total of 998 food samples were collected in Shijiazhuang, a city of approximately 10 million
inhabitants in eastern China, between April 2013 and July 2014. Those samples were used to
isolate K. pneumoniae strains. The samples included 49 fresh raw seafood (fish, shellfish,
shrimp) samples, 188 fresh raw chicken samples, 297 frozen raw food (meat, vegetables, flour
and rice products) samples and 464 cooked food samples (meat, vegetables, flour and rice
products). These samples were collected from different farms, supermarkets and restaurants
distributed throughout the city. None of the samples were duplicated.

Isolation and identification
A 25-g portion of each sample was suspended in 225 mL of buffered peptone water (BPW).
The sample suspensions were incubated overnight at 36°C. A 1-mL aliquot of the pre-enrich-
ment culture was added to 10 mL of selenite cystine broth (SC) and incubated overnight at
36°C. A loopful (10 μL) of SC was streaked directly onto Salmonella Shigella (SS) agar plates
and incubated for 24 h at 36°C. Colorless, medium-sized, smooth and moist colonies were
transferred to triple-sugar iron (TSI) agar plates. All the suspected K. pneumoniae isolates were
identified using a BD Phoenix™-100 Automated Microbiology System (Becton, Dickinson and
Company, Sparks, Maryland, USA).
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Antimicrobial susceptibility testing
Antimicrobial susceptibility testing for the K. pneumoniae strains was performed using a BD
Phoenix NMIC/ID-4 system according to the manufacturer’s instructions. The following 21
antimicrobials were tested: amikacin (AMI), gentamicin (GEN), imipenem (IPM), meropenem
(MEM), cefazolin (CZO), ceftazidime (CAZ), cefotaxime (CTX), cefepime (FEP), aztreonam
(ATM), ampicillin (AMP), piperacillin (PRL), amoxicillin-clavulanate (AMC), ampicillin-sul-
bactam (SAM), piperacillin-tazobactam (TZP), colistin (CL), trimethoprim-sulfamethoxazole
(SXT), chloramphenicol (C), ciprofloxacin (CIP), levofloxacin (LVX), moxifloxacin (MXF),
and tetracycline (TE). The minimum inhibitory concentrations (MICs) were interpreted by the
standards of Clinical and Laboratory Standards Institute (CLSI) document M100-S24:2014
[12]. The presence of ESBLs was detected with the BD Phoneix NMIC/ID-4 test and was fur-
ther confirmed by the double-disk diffusion method [12]. Escherichia coli strain ATCC 25922
and K. pneumoniae strain ATCC 700603 were used as quality-control strains for the antimicro-
bial susceptibility testing.

A standardized international definition was used to define multidrug-resistant (MDR) bac-
teria [13]. MDR was defined as acquired non-susceptibility to at least 1 agent in 3 or more anti-
microbial categories.

PCR amplification and sequencing
Genomic DNA was extracted using a QIAamp DNA minikit (Qiagen, Dusseldorf, Germany)
or prepared by the boiling method. Antimicrobial resistance-associated genes were detected by
PCR and sequenced using the primers listed in Table 1. The PCR was performed in a 50-μL
reaction volume that contained 25 μL of Premix Taq TM (Takara, Dalian, China), 10 μM of
each primer and 1 μL of sample DNA. The PCR conditions for the β-lactamase genes consisted
of an initial denaturation at 95°C for 5 min, 35 cycles of denaturation at 95°C for 50 s, anneal-
ing at 56°C, 50°C or 60°C for 40 s and elongation at 72°C for 1 min, followed by a final exten-
sion at 72°C for 5 min, in a thermocycler (Labcycler, Senso, Germany). The PCR conditions for
other resistance genes consisted of an initial denaturation at 95°C for 5 min, 30 cycles of dena-
turation at 94°C for 1 min, annealing at 55°C for 1 min and elongation at 72°C for 2 min, fol-
lowed by a final extension at 72°C for 5 min, in a thermocycler. The PCR products were
detected in a 1% agarose gel. Positive amplicons were sequenced on a PE Applied Biosystems
ABI Prism 3730 instrument. The DNA sequences were annotated using the BLAST program
(http://blast.ncbi.nlm.nih.gov) to identify the gene subtypes. Mutations in the gyrA and parC
sequences of K. pneumoniae (reference GenBank accession numbers DQ673325 and
NC009648 for gyrA and parC, respectively) were detected.

Pulsed-field gel electrophoresis (PFGE)
We used the 1-day, standardized PFGE protocol for K. pneumoniae [35]. Cell suspensions
were placed in polystyrene tubes (Falcon; 12 × 75 mm), and their optical densities were
adjusted to 3.8–4.0 using a Densimat photometer (BioMérieux, Marcy l’Etoile, France). Slices
of K. pneumoniae agarose plugs were digested using 50 U of XbaI (Takara) per slice for 4 h at
37°C, and electrophoresis was performed using a CHEF-DRIII system (Bio-Rad Laboratories,
Hercules, CA, USA). Electrophoresis was conducted with a switch time of 6 s to 36 s for 18.5 h,
and images were captured using a Gel Doc 2000 system (Bio-Rad) and converted to TIFF files.
The TIFF files were analyzed using BioNumerics version 5.1 software (Applied Maths, Kortrijk,
Belgium). A similarity analysis of the PFGE patterns was performed by calculating the Dice
coefficients (SD) [36] and clustering was performed using the unweighted-pair group method
with average linkages (UPGMA).
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Multilocus sequence typing (MLST)
MLST with 7 genes (gapA, infB,mdh, pgi, phoE, rpoB and tonB) was performed on the isolates
as previously described [37]. Alleles and sequence types (STs) were assigned using the K. pneu-
moniaeMLST database (http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html).

Statistical analysis
SPSS software (version 15.0) was used to statistically analyze the data. Categorical variables were
compared using the Fisher’s exact test. A P value<0.05 was considered to be statistically significant.

Table 1. Primers Used for PCR Amplification and Resistance Gene Sequencing.

Gene Primer Sequence (5’!3’) Annealing Temp (°C) Fragment (bp) Reference

Forward Reverse

β - lactamase genes

blaTEM TCAACATTTCCGTGTCG CTGACAGTTACCAATGCTTA 56 860 [14]

blaSHV ATGCGTTATATTCGCCTGTG AGATAAATCACCACAATGCGC 56 896 [14]

blaCTX-M-1 CCGTTTCCGCTATTACAAACCG GGCCCATGGTTAAAAAATCACTGC 56 944 [15]

blaCTX-M-2 ATGATGACTCACAGCATTCG TCCCGACGGCTTTCCGCGTT 56 833 [16]

blaCTX-M-8 TTTGCCCGTGCGATTGG CGACTTTCTGCCTTCTGCTCT 50 368 [17]

blaCTX-M-9 ATGGTGACAAAGAGAGTGCA CCCTTCGGCGATGATTCTC 50 870 [18]

blaCTX-M-10 GCAGCACCAGTAAAGTGATGG GCGATATCGTTGGTGGTACC 56 524 [19]

blaCTX-M-14 GAGAGTGCAACGGATGATG TGCGGCTGGGTAAAATAG 56 941 [20]

AmpC genes

baCMY-G1 GCTGACAGCCTCTTTCTCCAC CCTCGACACGGRCAGGGTTA 56 1082 [21]

baCMY-G2 GGTCTGGCCCATGCAGGTGA GGTCGAGCCGGTCTTGTTGA 56 963 [21]

blaDHA AACTTTCACAGGTGTGCTGGGT CCGTACGCATACTGGCTTTGC 60 405 [22]

blaACT ATTCGTATGCTGGATCTCGCCACC CATGACCCAGTTCGCCATATCCTG 50 396 [23]

blaFOX CACCACGAGAATAACC GCCTTGAACTCGACCG 50 1184 [23]

Folate pathway inhibitors

dhfr GCCAATCGGGTTATTGGCAA TGGGAAGAAGGCGTCACCCTC 55 357 [24]

Fluoroquinolone resistance-associated genes

qnrA ATTTCTCACGCCAGGATTTG GATCGGCAAAGGTTAGGTCA 55 627 [25]

qnrB GATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC 55 469 [25]

qnrC GGGTTGTACATTTATTGAATCG CACCTACCCATTTATTTTCA 55 307 [26]

qnrD CGAGATCAATTTACGGGGAATA AACAAGCTGAAGCGCCTG 55 533 [27]

qnrS ACGACATTCGTCAACTGCAA TAAATTGGCACCCTGTAGGC 55 417 [28]

aac(6’)-Ib-cr TTGCGATGCTCTATGAGTGGCTA CTCGAATGCCTGGCGTGTTT 55 482 [29]

qepA AACTGCTTGAGCCCGTAGAT GTCTACGCCATGGACCTCAC 55 596 [26]

gyrA CGACCTTGCGAGAGAAAT GTTCCATCAGCCCTTCAA 55 626 [30]

parC TACGTCATCATGGACAGG GCCACTTCACGCAGGTTG 55 460 [31]

Aminoglycoside resistance-associated genes

aacA4 ATGACTGA CATGACCTTGCG TTAGGCATCACTGCGTGTTCG 55 540 [32]

aacC1 ATGGGCATCATTCGCACATGTAGG TTAGGTGGCGGTACTTGGGTC 55 873 [32]

aacC2 ATGCATACGCGGAAGGCAATAAC CTAACCGGAAGGCTCGCAAG 55 861 [32]

aadA1 ATGAGGGAAGCGGTGATCG TTATTTGCCGACTACCTTGGTG 55 792 [32]

aadB ATGGACACAACGCAGGTCGC TTAGGCCGCATATCGCGACC 55 534 [32]

aphA6 ATGGAATTGCCCAATATTATTC TCAATTCAATTCATCAAGTTTTA 55 781 [32]

armA AGGTTGTTTCCATTTCTGAG TCTCTTCATTCCCTTCTCC 55 591 [33]

rmtB CCCAAACAGACCGTAGAGGC CTCAAACTCGGCGGGCAAGC 55 585 [33]

Integron I GGCATCCAAGCACAAG AAGCAGACTTGACCTGA 55 Variable [34]

doi:10.1371/journal.pone.0153561.t001
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Results

Contamination rate of food samples with K. pneumoniae
In total, 998 food samples were tested in this study, and K. pneumoniae was cultured from 99
of those samples. Overall, 9.9% of the food samples were positive for K. pneumoniae. K. pneu-
moniae was cultured from 8.2% (4/49) of the fresh raw seafood samples, 13.8% (26/188) of the
fresh raw chicken samples, 11.4% (34/297) of the frozen raw food samples and 7.5% (35/464)
of the cooked food samples. The rates of K. pneumoniae isolation among sample types were sig-
nificantly different (Fisher’s exact test, P<0.05). In total, 31, 33, and 35 strains were isolated
from the food raw materials, processing, and marketing sectors, respectively.

Antimicrobial susceptibility patterns of the K. pneumoniae isolates
Antimicrobial susceptibility testing was conducted for the 99 K. pneumoniae isolates, and
detailed information on the resistance rates to all of the tested antimicrobials is listed in
Table 2. The highest resistance rate was observed for AMP, which reached 92.3% (n = 92), fol-
lowed by resistance to TE (n = 31; 31.3%), SXT (n = 18; 18.2%), C (n = 10; 10.1%), and 12
other antimicrobials with resistance rates under 10.0%. There was no resistance noted to carba-
penems (IPM, MEM). Notably, the resistances to 7 antimicrobials (GEN, CTX, FEP, ATM,
SAM, CIP, or LVX) were detected only among fresh raw chicken isolates. Furthermore, the
rate of resistance to 5 antimicrobials (CZO, PRL, SXT, C and TE) in fresh raw chicken isolates
was significantly higher than in isolates from other types of samples (P<0.05). Two K. pneumo-
niae strains were detected as ESBL-producing; both were from fresh raw chicken samples.

Nineteen MDR strains were detected among 99 K. pneumoniae isolates. The proportions of
MDR strains in different samples were 50.0% (14/28), 11.4% (4/35), 2.9% (1/34) and 0% (0/4),
in fresh raw chicken, cooked food samples, frozen raw food and fresh raw seafood, respectively.
The proportion of MDR isolates from fresh raw chicken samples was significantly higher than
that from other types of samples (P<0.05).

Antimicrobial resistance determinants of the K. pneumoniae isolates
According to the results of antimicrobial susceptibility testing, 2, 16, 4 and 5 strains were
selected to analyze ESBL genes, folate pathway inhibitor genes, fluoroquinolone resistance
genes and aminoglycoside resistance genes, respectively. For the 2 ESBL strains, 8 β-lactamase
genes and 5 AmpC genes were amplified. As shown in Table 3, 1 strain carried blaSHV,
blaCTX-M-1 and blaCTX-M-10, and the other carried blaSHV. No blaCTX-M-9, blaCTX-M-14, blaDHA,
blaTEM, baCMY, blaACT, or blaFOX genes were detected in these isolates.

Eighteen isolates that showed trimethoprim-sulfamethoxazole resistance were selected for
folate pathway inhibitor gene (dhfr) testing; 6 of the isolates were positive for dhfr. All of the 6
dhfr-positive isolates were isolated from fresh raw chicken, whereas no isolates from frozen
raw food or cooked food samples tested were positive for dhfr.

Four isolates were tested for fluoroquinolone resistance determinants. Among the 7 plas-
mid-encoded fluoroquinolone resistance-associated genes analyzed in this study, namely qnrA,
qnrB, qnrC, qnrD, qnrS, aac(6’)-Ib-cr, and qepA, 4 genes were detected (Table 4). Among the 4
tested isolates, aac(6’)-Ib-cr, qnrB, qnrA and qnrS were detected in 4, 2, 1 and 1 isolate(s),
respectively. In addition, gyrA gene mutations, such as T247A (Ser83Ile; two isolates), C248T
(Ser83Phe; one isolate), and A260C (Asp87Ala; one isolate), and the parC gene mutation
C240T (Ser80Ile; one isolate), were identified.

Among the aminoglycoside resistance-associated genes, the aacA4, aacC2, aadA1 genes
were detected in 4, 3 and 1 isolate(s), respectively (Table 5). No aacC1, aadB, aphA6, armA,
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rmtB or Integron I genes were detected in this study. Among the 5 tested isolates, 3 isolates car-
ried both aacA4 and aacC2; 1 isolate carried both aacA4 and aadA1, and 1 isolate carried none
of these genes.

PFGE and MLST analysis of K. pneumoniae isolates
All the 99 isolates of K. pneumoniae were analyzed by PFGE, and 91 different PFGE patterns
were obtained, with similarity values of 47.1% (Fig 1). Eighty-five (85.9%) isolates showed
unique PFGE patterns. No dominant pattern was identified among these isolates. Only 6 pat-
terns included more than 1 isolate. Two isolates of KPX01.CN0357 were isolated from fresh
raw chicken samples collected from the same market at the same time; 3 isolates of KPX01.
CN0404 were isolated from cooked food samples collected from the same restaurant at the
same time; 2 isolates of KPX01.CN0365 were isolated from cooked food samples collected

Table 2. Antimicrobial Resistance Rates of 99K. pneumoniae Isolates.

Antimicrobial
category

Antimicrobial Range
(μg/mL)

susceptible
MIC

Intermediate
MIC

Resistant
MIC

Raw
seafood
isolates
(n = 4)

Raw
chicken
isolates
(n = 26)

Frozen raw
food
isolates
(n = 34)

Cooked
food
isolates
(n = 35)

Total

R (%) R (%) R (%) R (%) R (%)

Aminoglycosides Amikacin 8–32 �8 �32 0 0 0 0 0

Gentamicin 2–8 �2 4 >8 0 5 (19.2%) 0 0 5
(5.1%)

Carbapenems Imipenem 1–8 �8 >8 0 0 0 0 0

Meropenem 1–8 �8 >8 0 0 0 0 0

1st-generation
cephalosporins

Cefazolin 4–16 �4 16 >16 0 2 (7.7%) 2 (5.9%) 0 4
(4.0%)

3rd- and 4th-
generation
cephalosporins

Ceftazidime 1–16 �1 2 >16 0 0 0 0 0

Cefotaxime 1–32 �1 2 >32 0 1 (3.8%) 0 0 1
(1.0%)

Cefepime 2–16 �2 >16 0 1 (3.8%) 0 0 1
(1.0%)

Monobactams Aztreonam 2–16 �2 16 >16 0 0 0 0 0

Penicillins Ampicillin 4–16 �4–8 16 >16 4 (100%) 25 (96.2%) 31 (91.2%) 32 (91.4%) 92
(92.9%)

Piperacillin 4–64 �4–16 32 >64 0 3 (11.5%) 0 1 (2.9%) 4
(4.0%)

Antipseudomonal
penicillins+β-
lactamase inhibitors

Amoxicillin-
Clavulanate

4/2-16/8 �4/2-8/4 16/8 >16/8 0 2 (7.7%) 1 (2.9%) 0 3
(3.0%)

Ampicillin-
Sulbactam

4/2-16/8 �4/2-8/4 16/8 >16/8 0 4(21.4%) 0 0 4
(4.0%)

Piperacillin-
Tazobactam

4/4-64/4 �4/4 8/4-16/4 >64/4 0 0 0 0 0

Others Colistin 0.5–2 �0.5 1 >2 0 0 0 0 0

Folate pathway
inhibitors

Trimethoprim-
Sulfamethoxazole

0.5/9.5-
2/38

�0.5/9.5 1/19 >2/38 0 13 (50.0%) 2 (5.9%) 3 (8.6%) 18
(18.2%)

Chloramphenicols Chloramphenicol 4–16 �4 8–16 >16 0 8 (30.8%) 1 (2.9%) 1 (2.9%) 10
(10.1%)

Fluoroquinolones Ciprofloxacin 0.5–2 �0.5–1 2 >2 0 6 (23.1%) 0 0 6
(5.9%)

Levofloxacin 1–8 �1 >8 0 3 (11.5%) 0 0 3
(3.0%)

Moxifloxacin 1–4 �1 2–4 >4 0 0 0 0 0

Tetracycline
antibiotics

Tetracycline 2–8 �2 >8 0 21 (80.8%) 4 (11.8%) 6 (17.1%) 31
(31.3%)

doi:10.1371/journal.pone.0153561.t002
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from different restaurants at the same time; and 2 isolates of KPX01.CN0355 were isolated
from fresh raw chicken samples collected from different markets at the same time.

The 2 ESBL-producing isolates showed different PFGE patterns. An MLST analysis of these
2 isolates produced two unique STs (ST1651, ST1652; Table 3); neither has been previously
reported.

Discussion
Foodborne bacteria are widely studied, but research on K. pneumoniae is scarce. In a previous
survey conducted in the United States, 53 (16.1%) MDR K. pneumoniae strains were isolated
from 330 farm-raised frozen shrimp that were imported from Thailand to the United States
[9]. In another survey focusing on fresh vegetables in Spain, 9 K. pneumoniae strains were
obtained from 160 vegetables, among which 1 (0.6%) was an MDR strain [8]. The major goal
of this study was to evaluate the current frequency and antimicrobial resistance of K. pneumo-
niae strains in fresh raw seafood, fresh raw chicken, frozen raw food and cooked food samples
in China. The incidence of K. pneumoniae in these samples was 9.9%, which shows that con-
tamination of food with K. pneumoniae is common in this region of China. Furthermore, 19
(1.9%) MDR K. pneumoniae strains were isolated in this study, representing a lower percentage
than that reported by Nawaz et al. [9] but a higher percentage than that reported by Falomir
et al. [8].

The highest isolation rates for K. pneumoniae and MDR K. pneumoniae strains in this study
were observed for fresh raw chicken samples. Fresh raw chicken is an important reservoir of
antimicrobial-resistant K. pneumoniae. A recent study focused on retail raw chicken demon-
strated that β-lactamases and ESBLs were emerging and prevalent in foodborne Salmonella in
China [38]. Profitable chicken farms demand the extensive usage of antimicrobials to inhibit

Table 3. Characteristics of the 2 ESBL-ProducingK. pneumoniae Isolates Detected in this Study.

Strain ID Antimicrobial resistance patterns a ESBL genes MLST type

SJZ2013N33 GEN-CZO-CAZ-CTX-FEP-ATM-AMP-PRL-AMC-SAM-SXT-C-TE SHV, CTX-M-1, CTX-M-10 1651

SJZ2013N75 GEN-CZO-CAZ-CTX-FEP-ATM-AMP-PRL-AMC-SAM-SXT-C-TE SHV 1652

a Abbreviations of antimicrobials: AMI, amikacin; GEN, gentamicin; IPM, imipenem; MEM, meropenem; CZO, cefazolin; CAZ, ceftazidime; CTX,

cefotaxime; FEP, cefepime; ATM, aztreonam; AMP, ampicillin; PRL, piperacillin; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; TZP,

piperacillin-tazobactam; CL, colistin; SXT, trimethoprim-sulfamethoxazole; C, chloramphenicol; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin;

TE, tetracycline.

doi:10.1371/journal.pone.0153561.t003

Table 4. Characteristics of the Fluoroquinolone Resistance-Associated Genes in 4 Fluoroquinolone-Resistant or Intermediately Fluoroquinolone-
Resistant K. pneumoniae Isolates Detected in this Study.

Strain ID Antimicrobial resistance patterns b Fluoroquinolone resistance-associated genes gyrA mutation

SJZ2013N75 a GEN-CZO-CAZ-CTX-FEP-ATM-AMP-PRL-AMC-SAM-SXT-C-TE qnrB, aac(6’)-Ib-cr

SJZ2013N28 AMP-PRL-SXT-C-CIP-TE qnrB, aac(6’)-Ib-cr

SJZ2013N70 GEN-AMP-SAM-SXT-C-CIP-LVX-TE qnrS, aac(6’)-Ib-cr T247A (Ser83Ile)

SJZ2013N7 GEN-AMP-SAM-C-CIP-LVX-TE qnrA, aac(6’)-Ib-cr

a SJZ2013N75 showed intermediate resistance to CIP.
b Abbreviations of antimicrobials: AMI, amikacin; GEN, gentamicin; IPM, imipenem; MEM, meropenem; CZO, cefazolin; CAZ, ceftazidime; CTX,

cefotaxime; FEP, cefepime; ATM, aztreonam; AMP, ampicillin; PRL, piperacillin; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; TZP,

piperacillin-tazobactam; CL, colistin; SXT, trimethoprim-sulfamethoxazole; C, chloramphenicol; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin;

TE, tetracycline.

doi:10.1371/journal.pone.0153561.t004
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infectious diseases. However, the use of antimicrobials in these ecosystems may select for anti-
microbial-resistant microorganisms. Hence, chicken meat may be a reservoir of antimicrobial-
resistant bacteria such as K. pneumoniae, which constitutes a public health concern.

The resistance mechanisms of K. pneumoniae include the production of β-lactamases
(including ESBLs and plasmid-mediated AmpCs) and carbapenemases, the production of bio-
logical membrane formation factors, the loss of outer membrane proteins, and antimicrobial
efflux [39–41]. In this study, we investigated a total of 99 K. pneumoniae isolates from food; 4
strains were ESBL, and 1 strain produced an AmpC beta-lactamase. ESBL-producing K. pneu-
moniae strains have been shown to have a significant impact on the treatment options and clin-
ical outcomes of patients. Likewise, they have been shown to cause higher morbidity and
mortality [42–44]. Currently, ESBLs and AmpCs are the predominant β-lactamases that medi-
ate Gram-negative bacterial resistance to new broad-spectrum β-lactam antimicrobials. ESBLs
are mainly encoded by plasmids, whereas AmpCs are mainly encoded on the chromosome.
The CTX-M type is the major phenotype of domestic ESBLs; it reportedly predominates world-
wide, followed by the SHV type [45–47]. Recently, Enterobacteriaceae carrying blaCTX-M-type
genes were isolated from chicken in several countries [38, 48–50]. In this study, both ESBL-
producing K. pneumoniae strains carried the blaSHV gene, and one strain carried blaCTX-M
genes. One strain isolated in this study carried at least 4 ESBL-associated genes, i.e., coexisting
blaCTX-M-1, blaCTX-M-10, and blaSHV. The coexistence of multiple blaCTX-M-type genes in K.
pneumoniae isolates was also reported in previous studies [51,52]. The detection of ESBL-pro-
ducing strains and the coexistence of several ESBL-associated genes in the same isolates pose a
serious epidemiological, clinical and public health threat.

Quinolones are broad-spectrum antimicrobial agents that have been widely used in clinical
medicine and for raising food-producing animals (such as chicken in China). The isolation and
characterization of ciprofloxacin- and levofloxacin-resistant K. pneumoniae from fresh raw
chicken samples is corresponding to that fluoroquinolones have been used in chicken farms.
Among the 7 plasmid-encoded fluoroquinolone resistance-associated genes, the aac(6’)-Ib-cr
enzyme, qnrB, qnrA, and qnrS were the most prevalent plasmid-mediated mechanisms of quin-
olone resistance, as previously reported [29]. Several studies have suggested that, in K. pneumo-
niae, DNA gyrase A is a primary target of quinolones and that parC alterations play a
complementary role in the development of higher-level fluoroquinolone resistance [30,53]. In
contrast, one study reported that hypermutation in K. pneumoniae is uncommon and does not
contribute to the accumulation of gyrAmutations or directly to ciprofloxacin resistance [54].
Sequence analysis of the gyrA gene in K. pneumoniae isolates from fresh raw chicken in this

Table 5. Characteristics of the Aminoglycoside Resistance-Associated Genes in 5 Gentamicin-Resistant or Intermediately Gentamicin-Resistant
K. pneumoniae Isolates Detected in this Study.

Strain ID Antimicrobial resistance patterns a aminoglycoside resistance-associated genes

SJZ2013N33 GEN-CZO-CAZ-CTX-FEP-ATM-AMP-PRL-AMC-SAM-SXT-C-TE aacA4, aacC2

SJZ2013N75 GEN-CZO-CAZ-CTX-FEP-ATM-AMP-PRL-AMC-SAM-SXT-C-TE aacA4, aacC2

SJZ2013N70 GEN-AMP-SAM-SXT-C-CIP-LVX-TE aacA4, aadA1

SJZ2013N7 GEN-AMP-SAM-C-CIP-LVX-TE aacA4, aacC2

SJZ2013N4 GEN-AMP-C

a Abbreviations of antimicrobials: AMI, amikacin; GEN, gentamicin; IPM, imipenem; MEM, meropenem; CZO, cefazolin; CAZ, ceftazidime; CTX,

cefotaxime; FEP, cefepime; ATM, aztreonam; AMP, ampicillin; PRL, piperacillin; AMC, amoxicillin-clavulanate; SAM, ampicillin-sulbactam; TZP,

piperacillin-tazobactam; CL, colistin; SXT, trimethoprim-sulfamethoxazole; C, chloramphenicol; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin;

TE, tetracycline.

doi:10.1371/journal.pone.0153561.t005
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study identified 3 types of gyrAmutations (encoding Ser83Ile, Ser83Phe, and Asp87Ala substi-
tutions) and 1 type of parCmutation (encoding Ser80Ile). These point mutations were previ-
ously reported in clinical K. pneumoniae cases and may be responsible for mediating resistance

Fig 1. Clustering of the 99 K. pneumoniae Isolates Based on PFGE Patterns. The strain ID, isolation
time, sample type, forms of drug-resistant, ESBL detection, antimicrobial resistance pattern, and PFGE
pattern of each isolate are listed to the left of the patterns. In the column of “forms of drug-resistant”, “No”
means not resistant to all drugs, “R”means non-susceptibility to at least 1 agent in one or two antimicrobial
categories, “MDR”means non-susceptibility to at least 1 agent in 3 or more antimicrobial categories.

doi:10.1371/journal.pone.0153561.g001
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to fluoroquinolones [9,51,53,55]. The amino acid substitutions at positions 83 (Ser to Phe) and
80 (Ser to Ile) in gyrase A resemble a substitution that confers fluoroquinolone resistance in
Salmonella spp. [56,57]. Among the aminoglycosides resistance-associated genes, the aacA4,
aacC2, and aadA1 genes were detected in this study. These 3 genes were the major aminoglyco-
sides resistance genes among clinical K. pneumoniae cases reported at a hospital in China [51],
which suggests that the resistance genes in clinical strains may come from foodborne strains.

PFGE is a useful tool to reveal genotypic characteristics and to trace the reservoirs of infec-
tious pathogens, the rates of transmission and the mechanisms of infectious diseases. The vari-
ety of different PFGE strain patterns in this study was unexpected. Except for 6 groups of
isolates that had identical PFGE patterns, all other isolates showed unique PFGE patterns. Fur-
thermore, the 2 ESBL-producing isolates showed different PFGE patterns and MLST types.
These results reflected a high genetic diversity of foodborne K. pneumoniae isolates.

There were three limitations of this study. Firstly, this study had not included agricultural
antimicrobial use data from the regions which supplied food to the farms, supermarkets, and
restaurants from where we sampled food items. The second one was that not compared these
foodborne K. pneumoniae isolates to clinical isolates from the same region. Furthermore, the
use of agar SC and SS would underestimate the frequency of K. pneumoniae isolated, because
these two seletive medium are designed to inhibit other microorganisms than Salmonella spp.
and Shigella spp.

In conclusion, our results indicate that food, especially fresh raw chicken, is a reservoir of
antimicrobial-resistant K. pneumoniae. They may have the potential to become a public health
risk. Thus, our study demonstrates that improved monitoring and prevention strategies are
urgently needed to better control the emergence and transmission of antimicrobial-resistant K.
pneumoniae isolates.
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