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The Coronavirus disease is quickly spreading all over the world and the emergency situation is still out of
control. Latest achievements of deep learning algorithms suggest the use of deep Convolutional Neural
Network to implement a computer-aided diagnostic system for automatic classification of COVID-19
CT images. In this paper, we propose to employ a feature-wise attention layer in order to enhance the
discriminative features obtained by convolutional networks. Moreover, the original performance of the
network has been improved using the mixup data augmentation technique. This work compares the pro-
posed attention-based model against the stacked attention networks, and traditional versus mixup data
augmentation approaches. We deduced that feature-wise attention extension, while outperforming the
stacked attention variants, achieves remarkable improvements over the baseline convolutional neural
networks. That is, ResNet50 architecture extended with a feature-wise attention layer obtained 95.57%
accuracy score, which, to best of our knowledge, fixes the state-of-the-art in the challenging COVID-CT
dataset.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction Currently, campaigns of vaccination are promoted by several
On January 30th, 2020, the World Health Organization has
declared COVID-19 has a Public Health Emergency of International
concern (WHO, 2021b). Coronaviruses are a large group of viruses
consisting of a nucleus of genetic material surrounded by an envel-
ope and protein spikes, which gives to the virus the shape of a
crown or corona. Some types of coronavirus give mild respiratory
disease, however other types of virus can generate severe diseases.
The 2019 novel coronavirus (2019 NCOV) or COVID-19 was first
identified in China and quickly spread all over the world. Common
mild symptoms of COVID-19 are temperature, cough, shortness of
breath while more severe cases presented pneumonia, kidney fail-
ure and death. The website of the World Health Organization
(WHO, 2021a) daily updates the numbers: at June 30, 2021, the
world’s sum of confirmed cases were 181.344.224 and the con-
firmed deaths 3.934.252.
countries, but the numbers of vaccines is not enough for the entire
world population and the best strategy to control the disease is still
to identify and isolate infected people. Coronavirus can be diag-
nosed by the Reverse Transcription Polymerase Chain Reaction
(RT-PCR) test; however, in many realities, the absence or the very
limited number of available RT-PCR test kits results in the impos-
sibility to make timely diagnosis to suspected cases, who will carry
on spreading the disease, unconsciously (WHO, 2021a). In addition,
RT-PCR cannot exactly determine the severity of the disease (Jiang
et al., 2020); that is, empirical results showed that the sensitivity of
chest Computed Tomography (CT) is higher than the RT-PCR test
(Fang, 2020).

As alternative, high resolution CT scans can be successfully used
to evaluate the acuteness of COVID-19 and can support doctors to
track disease transformation during the follow up (Jiang et al.,
2020; Pan et al., 2020; Li and Xia, 2020). That is, recent studies in
the medical fields, while confirming the necessity to have early
and accurate diagnosis of COVID-19 to reduce the number of fatal-
ities, promote high resolution CT as an essential tool in the diagno-
sis and follow up of COVID-19 disease. More in details, in the chest
CT of patients with severe 2019 NCOV illness it is possible to
observe Ground Glass Opacities (GGOs) and patchy consolidation
surrounded by GGOs. A successful treatment reduces the size of
those spots, and high resolution CTs allow to follow those pro-
gresses (Jiang et al., 2020; Pan et al., 2020; Li and Xia, 2020).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2021.07.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Important to underline that CTs cannot determine which virus
generates pneumonia, however, considering the current situation
of emergency, with a high level of spread of COVID-19, CT are prac-
tically used in hospitals, and patient with pneumonia are classified
as COVID-19 positive (Yang et al., 2020). Moreover, recent
advances in deep learning algorithms suggest the use of
Computer-Aided Diagnostic (CAD) systems to support front-line
doctors for efficient classification of COVID-19 with CT images.

Overall, while several studies have already been made to pro-
pose a reliable CAD systems for COVID-19, the contribution of
the attention mechanisms have not been analyzed, yet. This work
aims to fill in that gap.

Main contributions of this paper are: (1) to propose an ad hoc
network for medical images, that exploits an additional feature-
wise attention layer connected to the convolution networks; (2)
to compare the performance of the proposed feature-wise atten-
tion layer against the stacked attention architecture; (3) to achieve
state-of-the-art accuracy on the publicly available COVID-CT data-
set, using the proposed model and the mixup data augmentation
strategy.

The rest of the work is organized as follows. Section 2 overviews
the previous works on deep learning for classification of medical
images, with special attention to COVID-19. Section 3 details the
proposed approach by describing the used deep neural network
architecture, introducing the attention mechanism and the mix-
up data augmentation technique utilized in this study. Section 4
presents the experimental results and discussions. Finally, conclu-
sion are drawn in Section 5.
2. Previous work on deep learning for COVID-19 classification

Currently, deep networks reach the state-of-the-art perfor-
mance in many fields, such as image segmentation (Girshick
et al., 2014; Long et al., 2015; He et al., 2016; Chen et al., 2018;
Biswas et al., 2020; El-Nouby et al., 2021; Yuan et al., 2021;
Huang et al., 2021), image classification (Krizhevsky et al., 2012;
Sermanet et al., 2013; He et al., 2016; Huang et al., 2017; Zhai
et al., 2021; El-Nouby et al., 2021; Yuan et al., 2021; Huang et al.,
2021), object detection (He et al., 2016; Lin et al., 2017; Hou
et al., 2017; Zhang et al., 2020; El-Nouby et al., 2021; Huang
et al., 2021), image captioning (Vinyals et al., 2017; Karpathy and
Fei-Fei, 2017; Rennie et al., 2017; Aneja et al., 2018; Hossain
et al., 2019) and human action recognition (Liu et al., 2018;
Farrajota et al., 2019; Liu et al., 2021). Also in the medical field,
deep networks are the latest advances in many areas of research,
ranging from classification of pulmonary ground glass opacity nod-
ules (Wang et al., 2021), to classification of benign and malignant
tumors on breast images (Kriti and Agarwal, 2020; Pan, 2020;
Tripathi et al., 2021; Shia and Chen, 2021), to multiclass classifica-
tion of skin lesions (Iqbal et al., 2021; Liu et al., 2020), to detection
and characterization of Parkinson (Salazar et al., 2020) and Alzhei-
mer’s diseases (Shao et al., 2020).

All mentioned successes suggest that the use of deep learning
could help to tackle the pandemic of COVID-19 and several works
have already been presented using CT images of 2019 NCOV. To
name a few, Li (2020) collected a database of CT scans consisting
in 4,352 images from 3,322 patients; they used deep CNN to ana-
lyze the dataset and they concluded that deep learning models
can be utilized for accurate distinction among COVID-19, pneumo-
nia and other lung diseases. Butt et al. (2020) tackled the 2-class
problem (COVID, Non-COVID) considering CT scans from patients
with 2019 NCOV, influenza viral pneumonia, and no-infection.
The sensitivity and specificity of deep learning models proved to
be superior compared to the RT-PCR test. Zheng et al. (2020) used
a pre-trained U-net to segment the 3D CT chest scans, which were
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then fed into a 3D CNN to give the probability of COVID-19 infec-
tion. Gozes et al. (2020) utilized 2D and 3D deep learning models to
classify and monitor the Coronavirus disease; i.e. the proposed
Computer-Aided Diagnostic systems detects 2019 NCOV with high
accuracy and measures the progress of the illness during the time.
Song et al. (2020) developed an accurate computer-aided COVID-
19 diagnosis system, which was trained and tested using chest
CT scans; more in details, the images were collected from 88
patients affected by the Coronavirus disease, 101 patients diagno-
sis with bacteria pneumonia, and 86 healthy persons. Classification
results were promising; moreover, the model could be used to
localize ground-glass opacity (GGO), to support front-line doctors.
Wang et al. (2020) modified existing deep learning models to deal
with chest CT scans on a newly created database of 1,065 CT
images, divided into COVID-19 cases (325 images) and typical viral
pneumonia (740 images). Mostafiz et al. (2020) proposed a novel
architecture to detect COVID-19 from chest X-ray images using
deep CNN and discrete wavelets transform for features extraction.

All these works are important witness of the potentials of deep
learning in the medical field; unfortunately, most of the used data-
bases are not publicly available. This issue was addressed by He
et al. (2020) who created an open access dataset of COVID-19 Com-
puted Tomography (CT) images, namely COVID-CT. The database
includes chest CTs from 216 COVID-19 patients. CT images of this
database were retrieved from preprints on COVID-19 published
into medRxiv, bioRxiv and other Internet sites distributing unpub-
lished preprints on health. By augmenting COVID-CT dataset with
images from the Lung Nodule Analysis (LUNA, 2016) dataset, He
et al. (2020) applied transfer learning on DenseNet architecture
(Huang et al., 2017) and achieved (F1, AUC, accuracy) scores of
(0.85, 0.94, 0.86), respectively.

Important to underline that, since the pictures in COVID-CT
dataset come from different preprints, there are several distur-
bance factors such as size, resolution, illumination, contrast, which
increase the complexity of the system. Yang et al. (2020) tackled
this problem by using the degraded CT pictures only for training;
original CT images donated by the Tongji Hospital, Wuhan, China
were used for both validation and test. More in details, they man-
ually extracted the CTs pictures and labeled them by reading the
captions of the images; pictures storing multiple CT images were
manually separated into individual CT. As results, the dataset
stores (349, 397) CT images of (COVID, Non-COVID) pictures. The
performance achieved by their contrastive self-supervised learning
(Hadsell et al., 2006) and transfer learning approach (F1 = 0.90,
AUC = 0.98, and accuracy = 0.89) has been judged as ”good enough”
by senior radiologists of the hospital. Finally, Ahuja et al. (2020)
conducted another study on COVID-CT dataset by proposing to
apply data augmentation techniques for mitigating the issue of
having a limited number of images. They employed a pretrained
ResNet18 network on their augmented dataset, which resulted in
99.8% top accuracy score. However, the comparison between this
study and above-mentioned works along with our study would
not be fair, because their test set contains fewer samples compared
to the currently available set. On the other hand, they utilize their
approaches to find the abnormalities caused by COVID from CT
images.
3. Methodology

3.1. Deep Convolutional Neural Network

Deep Convolutional Neural Networks (CNN) are biologically
inspired 2-dimensional (2D) variations of deep Neural Networks
(NN), which, currently, hold the record in performance on several
computer vision and image processing tasks (Krizhevsky et al.,
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2012; Sermanet et al., 2013; Girshick et al., 2014; Long et al., 2015;
Vinyals et al., 2017; Hou et al., 2017; Farrajota et al., 2019; Xu et al.,
2020; Zhang et al., 2020). Another advantage of Deep CNN is to be
”easy to use” because they automatically decompose the input sig-
nal into a set of features, at different level of abstractions, and clas-
sify it. In other words, hidden layers are stratum of the network
corresponding to features, and deep models have the advantage
to make feature extraction and classification at once, overcoming
the two-steps procedure of classical machine learning algorithms
(LeCun et al., 2015).

The two basic layers of a CNN are the convolutional and the
down-sampling layers. While convolutional layers create feature
map by convolving 2D filters, i.e. set of weights in 2D, on the top
of the image, down-sampling layers extract statistics out of non-
overlapping partitions of the input 2D features map, e.g. the
max-pool layer returns the max value out of every patch of size
n� n. The architecture of a deep CNN depends to the number of
hidden layers, i.e. the depth of the model, the number of filters
used at every layers, i.e. the number of output channels, the type
of special blocks used, e.g. residual blocks with different cardinal-
ity, and attention blocks.

Deep CNN started receiving a lot of attention since 2012, when
Krizhevsky et al. (2012) won the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) with AlexNet architecture. After
that, several architectures have been proposed, such as ConvNet
or VGGNet (Simonyan and Zisserman, 2014), the Inception module
(Szegedy et al., 2015), Resnet (He et al., 2016), ResNext (Xie et al.,
2017), DenseNet (Huang et al., 2017) and AttentionNet (Wang
et al., 2017).

Comparing to the previous architectures, the key change in
Residual Networks (ResNet) (He et al., 2016) is the use of a residual
block, that adds the original input, x, to the output feature, FðxÞ,
which is calculated by processing the input x with one or more
convolutional layers. That is, while in classical deep CNN each layer
is fed with the output of the previous one, when using residual
blocks, a layer can feed the next layer and others, which are 2–3
steps ahead in the architecture, i.e. residual blocks are skip connec-
tion blocks. Looking at the architecture of the block, it is possible to
infer that the aim of the residual block is to learn the difference (or
residual) between the output and the input signals. The use of
residual blocks solves the two main issues related to deep net-
works, namely the vanishing gradient and the degradation prob-
lem, and results in an increase in performance.

Since 2015, the success of ResNet attracted many researchers
who proposed several variations of the original architecture.
ResNeXt model (Xie et al., 2017) introduces the concept of ”cardi-
nality”, which is the NeXt dimension, a new hyperparameter of the
deep network. Xie et al. (2017) claims that this new parameter is
more effective to add accuracy to the network. ResNeXt (Xie
et al., 2017) won the 2nd position in the ILSVRC 2016 competition.

Following the success of residual layer connections, the Dense-
Net architecture proposed by Huang et al. (2017) advances by car-
rying residual information and connecting all layers with theirs
preceding. Since the information propagates along the depth of
the network, the feature extractor channels in all layers can be
thinner. The resulting network is more compact compared to resid-
ual connection architectures.

This study proposes a new deep network architecture, which
uses the above-mentioned convolutional networks as feature
extractor backbone and exploits attention mechanisms to intensify
the discriminating features of classes. The performances of the
extended deep CNN architectures are compared against another
attention network, AttentionNet (Wang et al., 2017). The newly
introduced attention architecture is described in the next section.
6201
Algorithm 1: Training of the proposed network.
3.2. Attention mechanism

Medical images carry discriminating features in narrow
regions; in case of Coronavirus disease, CT chest scans are read
by expert doctors, who know ‘what to look for’, i.e. Ground-glass
opacities (GGOs), and ‘where’ to search. The implementation of a
computer-aided diagnostic system for automatic classification of
COVID-19 CT images must be designed ad hoc to deal with the spe-
cial issues listed below: when the lesion area is little, working with
the entire image is miss-leading, and the situation becomes worse
when the wound is near by an edge in the picture, which will cre-
ate a lot of noise for the classifier, lowering the classification per-
formance. In the deep learning environment, all these issues may
be addressed via the attention mechanism.

The recently introduced Residual Attention Networks Wang
et al. (2017), namely AttentionNet, is a stacked attention architec-
ture that exploits residual learning. Given that the increasing size
would lead to difficulties in learning, Wang et al. (2017) utilized
the residual schema to alleviate the problem. Furthermore,
AttentionNet incorporates sub attention modules, where each
module consists of residual trunk and attention mask branches.
The trunk branch, which comprises the residual CNN layer, extracts
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features from the set of input, while the attention mask branch
emphasizes the significance of the extracted features by applying
max-pooling down-sampling and linear interpolation up-
sampling operations, consecutively. Residual Attention Networks
achieved promising results in photographic images, but the success
of the model in medical images has not been studied, yet.

Instead of stacking the attention modules, this work proposes
to utilize an extension layer connected to a feature extraction
network for attention mechanism as Bahdanau et al. (2015). A
CNN component is exploited to create feature mappings. Subse-
quently, the obtained feature maps are fed into a feature-wise
attention layer, along with the hidden states of the mappings,
which mimic the recurrence behaviour of Recurrent Neural Net-
works (RNNs) in order to learn vicinity information. More in
details, the context vector, c, is calculated as the attentive fea-
tures, ai, with dimension Da and the feature mappings, f with
dimension Df ; moreover, the hidden states, hi, are utilized by sig-
moid function, r. In formula:

hi ¼ rðhi�1 þ f Þ ð1aÞ

ai ¼ expðhiÞPDa
k¼1 expðhkÞ

ð1bÞ

c ¼
XDf

i¼1

aif ð1cÞ

Consequently, context vectors are fed into a fully connected
network with softmax activation in order to create probability dis-
tribution of the network predictions. Fig. 1 represents the proposed
model. Besides, the pseudocode for tranining the network is given
in Algorithm 1.

Comparing to the AttentionNet of Wang et al. (2017), the
introduced feature-wise attention network has the big advantage
to be architecture-independent since the attention layer is
connected to the network implicitly. That is, the proposed
model maintains end-to-end training with straightforward imple-
mentation by not requiring any interior modifications of the deep
CNN.

Furthermore, another advantage of using the proposed atten-
tion mechanism by an extension component is in terms of network
sizes. That is, despite hidden state and attention weight overheads,
the size of the feature-wise attention network is smaller compared
to the similar-depth variants of stacked attention networks.
Besides, the proposed attention mechanism adds OðD2

f :DaÞ over-
head, as given in Eq. 1, to the overall complexity of the network.
Similar to the comparison in the network sizes, the time complex-
ity required for feature-wise attention layer is smaller than the
stacked attention networks. Table 1 gives details on network sizes
FLOP values.
1 https://pytorch.org/.
2 Our code is available at https://github.com/ozgurozdemir/feature-wise-atten-

tion-for-covid-detection.
3.3. Data augmentation

Neural Networks need to be trained with a lot of data and the
very little dimension of the COVID-CT database makes the data
augmentation technique a necessary pre-processing step.

Data augmentation allows to increase the number of training
images simply by modifying the existing ones. Common methods
for data augmentation are random cropping, horizontal and verti-
cal flipping, rotation, zooming, adding noise, changing lighting con-
dition, etc.

The mixup data augmentation technique has been introduced
by Zhang et al. (2017). Mixup builds a new artificial training sam-
ple, X, by mixing the pixels of two original pictures, X1 of class y1
and X2 of class y2. In formula:
6202
X ¼ bX1 þ ð1� bÞX2 ð2aÞ
y ¼ by1 þ ð1� bÞy2 ð2bÞ
where b 2 ½0;1� is sampled from a beta distribution. Fig. 2 visualizes
the mixup operation and samples obtained by this operation.

Inspired by the successful results of Sato et al. working on brain
PET images (Sato et al., 2020), we used the mixup data augmenta-
tion technique to improve the generalization of the networks.
Experimental results highlighted the major improvement in per-
formance of the mixup technique compared to conventional data
augmentation approaches.

4. Experiments

4.1. Dataset

This study uses the publicly available COVID-CT dataset col-
lected byHe et al. (2020); Fig. 3 displays sample pictures of the data-
set and underlines the several disturbance factors present in the
database such as low resolution, changes in illumination and low
contrast. In order to improve the generalization of the networks,
two variations of training set have been prepared using data aug-
mentation techniques. The first experiment followed the traditional
approach and images were augmented by vertical flipping and ran-
dom contrast shift, by a factor randomly selected from the interval
½0:8;1:0�. As alternative, in the second experiment, the mixup data
augmentation technique has been used on the original training
set. In both trials the augmented data resulted in 573 COVID and
702 Non-COVID CT scans. Table 2 details the distribution of (COVID
Non-COVID) images in the original and augmented training, valida-
tion and test sets. Interesting to underline that, with augmentation,
the total number of training images changed from (191 + 234) 425
to (573 + 702) 1275, equivalent to a percentage increase of 300%.
As result, while the original database has a total of (425 + 118 +
203) 746 images (57% training, 16% validation, 27% test), the aug-
mented collection has (1275 + 118 + 203) 1596 pictures distributed
as (80% training, 7% validation, 13% test) (see Fig. 4).

4.2. Experimental setup

In all experiments, all images were resized to a fixed size,
256� 256; pixel values were normalized into the internal [0, 1];
the training and validation sets were split into mini-batches of
fixed size of 32. All networks have been trained for 100 epochs
and the best weights, which achieved the best accuracy score in
the validation set, were stored. The error was calculated using
the cross-entropy function and the Adam optimizer was used with
a learning rate of 2� 10�5. Finally, the mixup value of b (in Eq. 2)
was selected randomly from Betað0:2;0:2Þ distribution.

We run several experiments using common convolutional net-
works and AttentionNet architectures. Network weights were ini-
tialized either with random values or with the values of
networks pre-trained on ImageNet dataset Krizhevsky et al.,
2012. For the AttentionNet structures, the configurations elabo-
rated by Wang et al. (2017) were used; for networks utilizing the
feature-wise attention layer, the dimensions of feature mapping
and attention weights were set to 512 and 256, respectively. All
experiments were conducted on a single Tesla T4 GPU which 100
epoch training takes about 20 min. The network implementations
were done in PyTorch.1 For reproducibility, implementations and
weights of trained networks will be shared after the publication of
the paper.2

https://pytorch.org/
https://github.com/ozgurozdemir/feature-wise-attention-for-covid-detection
https://github.com/ozgurozdemir/feature-wise-attention-for-covid-detection


Fig. 1. Proposed network. f ; h; c; ŷ stands for feature maps, hidden states, context vector and predictions, respectively.

Table 1
Sizes of the network used in this study. Parameters and FLOP quantities are in
millions and billions, respectively.

Type Network Params(M) FLOP(B)

Feature-wise Attention ResNet50 24.69 5.41
ResNet101 43.68 10.29

ResNext50 32�4d 24.16 5.61
Wide ResNet50 68.0 14.97
DenseNet121 7.6 3.79
DenseNet201 19.2 5.74

VGG13 131.1 14.82
VGG19 141.8 25.71

Stacked Attention AttentionNet56 29.78 8.32
AttentionNet92 50.43 13.94
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4.3. Results and discussions

Initially, we conducted experiments on different architectures
of convolutional neural networks to select possible backbone for
our proposed attention mechanism. In these experiments, the net-
work weights were initialized either randomly or with the values
of networks pre-trained on ImageNet dataset (Krizhevsky et al.,
2012). Table 3 lists the performances of pure convolutional neural
Fig. 2. Mixup data augmentation method. (a) Mixup operati
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networks trained with the original COVID-CT training set, i.e. with-
out augmentation, and tested with the COVID-CT test set. Despite
the fact that there was some inconsistencies, the table indicates
that initializing weights with pre-trained values improves the
performance.

Considering the results of Table 3 the successful networks have
been selected to be used as backbone feature extractor in our pro-
posed attention architecture. Table 4 compares the performance of
pure convolutional networks and their variations, which utilizes
feature-wise attention layer. Looking at the table, it is possible to
infer that the addition of the attention layer always increase the
initial performance of the models. Moreover, the table proves that
the proposed feature-wise attention layer outperforms the stacked
attention opponent AttentionNet for each architecture. Eventually,
ResNet50 + Attention model achieved the best performance com-
pared to other networks.

Furthermore, in order to improve the generalization of the net-
works, conventional and mixup data augmentation techniques
have been applied to the training set. Table 5 compares the
increase in performance of these techniques on both feature-wise
and stacked attention networks. Results reported in Table 5 allow
to underline that the majority of the models benefit from the
mixup data augmentation technique.
on. (b) Samples augmented by mixup from training set.



Fig. 3. Images from the COVID-CT database (He et al., 2020). Top row: CT scans with COVID-19; Bottom row: CT scans of h.ealthy patients.

Table 2
Distribution of images in COVID-CT dataset (He et al., 2020).

Set COVID Non-COVID

Training 191 234
Training (w/ aug.) 573 702

Validation 60 58
Test 98 105
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Besides the experiments assessed on classification perfor-
mances, an ablation study has been conducted to observe the con-
tribution of the individual components on the proposed attention
architecture. Although Table 4 highlights comparison between
pure convolutional networks and the proposed approach, attention
network contains auxiliary layers, e.g. hidden states (Fig. 1), that
may influence the results. In order to develop a fair comparison,
a full architecture (Backbone + Attention) has been employed,
but the individual component weights have been frozen. As Table 6
indicates, the contribution of the feature extractor stage to the
result is major, while feature-wise attention layer is the second sig-
Fig. 4. ROC characteristic curves for models trained (a) wi
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nificant component. Lastly, the least significant performance drop
is obtained by freezing hidden layer, which proves the auxiliary
effect of the hidden states component.

Considering previous works on the COVID-CT database, He et al.
(2020) used the newly designed transfer learning strategy to reach
the top accuracy of 86% on the COVID-CT database, augmented by
LUNA’s images (LUNA, 2016). Although it is not possible to com-
pare our results against the ones of Yang et al. (2020) because they
used the COVID-CT images only for training and the original CT
scans employed in the validation and test sets are not publicly
available, they achieved 89% top accuracy score. Another study
conducted by Ahuja et al. (2020) achieved 99.4% accuracy and
99.6% F1 score, however, because the distribution of training and
test set was different compared to the recently available dataset,
their networks were tested with fewer samples.

In summary, ResNet50 and ResNext50 32 � 4d architectures
with extension of feature-wise attention layer and training set aug-
mented with the mixup technique obtained the best performance
of 95.57% accuracy, which is the best result reached on the newly
released COVID-CT database.
thout data augmentation (b) with data augmentation.



Table 3
Performance of the convolutional networks; all trained without data augmentation. Checkmarks indicates that the networks’ weights were initialized with values pre-trained on
ImageNet. The weights of of the other networks were initialized randomly. *CE stands for cross-entropy loss.

Network Pre- training CE* Accuracy F1 AUC Specificity Sensitivity

ResNet50 0.63 0.75 0.74 0.75 0.74 0.76
U 0.61 0.76 0.73 0.76 0.85 0.67

ResNet101 0.66 0.64 0.60 0.64 0.72 0.55
U 0.65 0.79 0.78 0.79 0.78 0.80

ResNext50 32�4d 0.66 0.83 0.82 0.83 0.88 0.79
U 0.61 0.78 0.79 0.78 0.74 0.83

Wide ResNet50 1.05 0.68 0.66 0.68 0.70 0.65
U 0.87 0.75 0.75 0.75 0.70 0.80

DenseNet121 0.86 0.75 0.75 0.68 0.74 0.77
U 0.85 0.76 0.76 0.76 0.77 0.76

DenseNet201 0.57 0.79 0.76 0.79 0.89 0.69
U 0.68 0.79 0.77 0.79 0.84 0.73

VGG13 0.74 0.73 0.70 0.73 0.83 0.63
U 0.56 0.80 0.80 0.80 0.81 0.80

VGG19 0.61 0.71 0.71 0.71 0.70 0.72
U 0.60 0.80 0.79 0.80 0.81 0.79

SqueezeNet 0.87 0.71 0.69 0.71 0.75 0.66
U 0.63 0.73 0.70 0.73 0.80 0.65

Table 4
Performance of the networks ’with’ or without’ feature-wise attention layer. All networks were trained without data augmentation.

Network Attention Layer CE Accuracy F1 AUC Spec. Sens.

ResNet50 0.61 0.76 0.73 0.76 0.85 0.67
U 0.44 0.95 0.95 0.95 0.90 1.00

ResNet101 0.65 0.79 0.78 0.79 0.78 0.80
U 0.47 0.90 0.91 0.90 0.81 1.00

ResNext50 32�4d 0.66 0.83 0.82 0.83 0.88 0.79
U 0.47 0.83 0.82 0.83 0.88 0.79

DenseNet201 0.68 0.79 0.77 0.79 0.84 0.73
U 0.57 0.90 0.91 0.90 0.81 1.00

VGG19 0.60 0.80 0.79 0.80 0.81 0.79
U 0.65 0.81 0.80 0.81 0.83 0.79

AttentionNet-56 0.61 0.66 0.71 0.66 0.59 0.73

AttentionNet-92 0.63 0.70 0.64 0.69 0.77 0.68

Table 5
Results of the networks utilizing feature-wise attention layer. All networks were trained with data augmentation. * (T) stands for traditional, (M) stands for mixup data
augmentations. ** Gain indicates the contribution of using mixup technique instead of traditional augmentations, and it is calculated by mean of the metric scores.

Network Data Aug.* CE Accuracy F1 AUC Gain**

ResNet50 (T) 0.5737 0.9507 0.9515 0.9523
(M) 0.6281 0.9557 0.9561 0.9571 0.50% "

ResNet101 (T) 0.5737 0.9212 0.9245 0.9238
(M) 0.6274 0.9360 0.9378 0.9381 1.53% "

ResNext50 32�4d (T) 0.4551 0.8522 0.8387 0.8503
(M) 0.6059 0.9557 0.9561 0.9571 12.90% "

AttentionNet-56 (T) 0.6247 0.6305 0.5856 0.6276
(M) 0.5686 0.7340 0.7353 0.7350 19.56% "

AttentionNet-92 (T) 0.6197 0.7340 0.7300 0.7344
(M) 0.6076 0.7290 0.7090 0.7276 1.49% #
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Table 6
Contributions of the components on ResNet50 + Attention network.

Frozen Component Accuracy F1 AUC Drop #
ResNet50 0.5862 0.6744 0.5963 35.3%

Feature-wise Attention 0.8325 0.7901 0.8265 14.6%
Hidden States 0.9409 0.9423 0.9429 0.015%
No Freeze 0.9557 0.9561 0.9571
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5. Conclusion and future work

This paper uses deep convolutional neural network models to
tackle the urgent and challenging issue of COVID-19 classification
of CT images. More in details, this work proposes to exploit an
attention layer additionally connected to the CNN for enhancing
the discriminative power of the features extracted by CNNs. Exper-
imental results empirically proved our assumptions.

Furthermore, this paper contributes to raise attention on the
mixup data augmentation technique, which is employed for
improving the generalization of the networks. The best model
exploits ResNet50 architecture pipelined with feature-wise atten-
tion layer and it is trained with mixup augmented data (in short:
ResNet50 + Attention + mixup) to achieve the best performance
of 95.57% accuracy. In the baseline study, He et al. (2020) achieved
86% top accuracy score; on the different dataset configurations,
Yang et al. (2020) and Ahuja et al. (2020) reached 89% and 99.4%
top accuracy performances. With the best of our knowledge, the
proposed model, ResNet50 + Attention + mixup, sets the state-of-
the-art on the challenging COVID-CT dataset.

Future work includes more experiments related to the feature-
wise attention layer to test its robustness against other architec-
tures and types of data. Moreover, we plan also to test alternative
techniques for enhancing attention on medical data, such as the
method proposed by Srivastava et al. (2015), which uses convolu-
tional networks with a gating mechanism similar to Long-Short-
Term-Memory. However, adapting the gating mechanism without
any interior modification of the convolutional network, to keep the
network architecture-independent, is a challenging task.

Finally, feature-wise attentions could be amplified by using the
multi-head attention technique, which achieved significant results
in natural language processing domain (Vaswani et al., 2017).
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