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Bioinformatics analysis reveals 
potential biomarkers associated 
with the occurrence of intracranial 
aneurysms
Chao Zhao1,2,6, Zhiguo Ma3,6, Junliang Shang5, Xinchun Cui5, Jinxing Liu5, Ronghua Shi1, 
Shuai Wang1 & Aihong Wu4*

To better understand the molecular mechanisms of intracranial aneurysm (IA) pathogenesis, we used 
gene coexpression networks to identify hub genes and functional pathways associated with IA onset. 
Two Gene Expression Omnibus (GEO) datasets encompassing intracranial aneurysm tissue samples 
and cerebral artery control samples were included. To discover functional pathways and potential 
biomarkers, weighted gene coexpression network analysis was employed. Next, single-gene gene set 
enrichment analysis was employed to investigate the putative biological roles of the chosen genes. We 
also used receiver operating characteristic analysis to confirm the diagnostic results. Finally, we used 
a rat model to confirm the hub genes in the module of interest. The module of interest, which was 
designated the green module and included 115 hub genes, was the key module that was most strongly 
and negatively associated with IA formation. According to gene set variation analysis results, 15 
immune-related pathways were significantly activated in the IA group, whereas 7 metabolic pathways 
were suppressed. In two GEO datasets, SLC2A12 could distinguish IAs from control samples. Twenty-
nine hub genes in the green module might be biomarkers for the occurrence of cerebral aneurysms. 
SLC2A12 expression was significantly downregulated in both human and rat IA tissue. In the present 
study, we identified 115 hub genes related to the pathogenesis of IA onset and deduced their potential 
roles in various molecular pathways; this new information may contribute to the diagnosis and 
treatment of IAs. By external validation, the SLC2A12 gene may play an important role. The molecular 
function of SLC2A12 in the process of IA occurrence can be further studied in a rat model.
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GO  Gene ontology
KEGG  Kyoto encyclopedia of genes and genomes
GLUTs  Glucose transporters
TFs  Transcription factors
ceRNA  Competing endogenous RNA

Despite clinical advancements, intracranial aneurysm (IA) remains a life-threatening disease. The rupture of 
IAs causes subarachnoid hemorrhage; only 60% of individuals survive a subarachnoid hemorrhage event, and 
significant disability is prevalent among  survivors1. S100A8, KLF2, CDKN2A, and other molecular markers 
have been implicated in the formation, progression, and rupture of  IAs1. However, the molecular mechanisms 
leading to these processes remain poorly understood. The invasive methods of endovascular intervention and 
surgical clipping are the main therapeutic methods used for IA; no safe and effective noninvasive methods for 
the treatments or prevention of IA have been identified and implemented in clinical practice. Our research aims 
to identify molecular biomarkers of IA and therapeutic targets for their treatment.

Expression microarray technology and bioinformatic analysis have been widely applied to the study of IA-
related genetic dysfunctions in the past; these approaches have identified differentially expressed genes (DEGs) 
and signaling pathways leading to the pathogenesis and progression of IA. Compared to microarray methods, 
however, RNA sequencing (RNA-seq) provides several advantages, including multiple layers of resolution and 
transcriptome complexity, reduced background noise, and an expanded dynamic range of RNA  expression2. 
However, previous studies have rarely compared IA samples with their tissues of origin, the normal cerebral 
arteries, using RNA-seq technology. Most of the published studies used branches of the external carotid arteries 
including the superficial temporal arteries (STAs)1 and the middle meningeal arteries (MMAs) (GSE46337), as 
controls. It is well known that different tissues are at least partially defined by their gene expression  profiles3; this 
principle applies to the internal and external carotid arteries. Internal carotid arteries and external arteries are 
probably different at the gene transcription and protein levels because many cerebrovascular diseases are rarely 
detected in the external carotid arteries. To the best of our knowledge, no evidence has shown internal carotid 
arteries sharing the same gene expression profile as the external arteries. Therefore, new strategies should be 
taken in the study of IA pathogenesis and progression.

To better understand the molecular mechanisms of IA pathogenesis better, we investigated them via bio-
informatics methods. In this study, two datasets containing IA tissue samples and cerebral artery control sam-
ples from the Gene Expression Omnibus (GEO)4 were included. Weighted gene coexpression network analysis 
(WGCNA) was used to investigate gene expression and trait data, identifying functional pathways and candidate 
biomarkers. We identified modules with clinical significance. After finding the module that was most strongly 
correlated with IA occurrence and identifying the hub genes in it, we conducted Gene Ontology (GO) and 
gene-set variation analysis (GSVA) to illustrate the molecular mechanisms of their pathogenesis. We referred 
to the FerrDb database and found that one hub gene SLC2A12, was related to the ferroptosis phenotype and 
has not previously been studied in IA research. Subsequently, single-gene gene set enrichment analysis (GSEA) 
was used to explore the potential biological functions of the selected gene SLC2A12. Furthermore, we used the 
expression data of SLC2A12 from normalized transcriptome expression data in GSE122897 and GSE157628 to 
validate its diagnostic utility by receiver operating characteristic (ROC) analysis. Upstream regulatory molecules 
of transcription factors (TFs) and microRNAs were surveyed in silico. The author discussed the roles of SLC2A12 
multiple signal pathways. Ultimately, the comprehensive gene expression profile of the Rattus norvegicus model 
validated candidate biomarkers.

This research identified possible pathogenesis-related biomarker genes and predicted their molecular mecha-
nisms of intracranial aneurysm pathogenesis. Meanwhile, it presented an ideal target for animal model experi-
ments (Fig. 1).

Methods
Gene expression datasets and data processing. Two transcriptome-wide gene expression profiles 
of GSE122897 and GSE157628 were downloaded from GEO. The RNA-seq dataset GSE122897 contains 44 IA 
tissue samples and 16 control tissue samples (cerebral arteries) based on the platform of GPL16791, Illumina 
HiSeq 2500 (Homo sapiens)5.Two IA samples in GSE122897, IA6 (GSM3487858) and IA40 (GSM3487892), were 
rejected because their statuses were unknown. The raw read count profile of GSE122897 was processed by the 
“DESeq2” package for library normalization and independent filtering and the “AnnotationDbi” and “org.Hs.eg.
db” packages for probe annotation. The total gene expression dataset, consisting of 25,807 genes was further pro-
cessed for WGCNA. Clinical traits were gathered from the information of GSE122897 (Supplementary Table 1). 
Clinical traits included type, status, gender and age. All samples were divided into a control subgroup and IA 
subgroup based on whether aneurysms occurred in the type group. In addition, in the same way, ruptured or 
not in status group, male or female in gender group. The age of each sample, from 16 to 77, was recorded in age 
group.

The transcriptome-wide microarray dataset GSE157628 provided the gene expression profile of 6 IA samples 
and 3 controls (cerebral arteries), based on Agilent-039494 SurePrint G3 Human GE v2 8 × 60 K Microarray 
039,381 (Feature Number version). The gene expression dataset of GSE157628 was processed by the limma pack-
age for background correction and normalization. DEGs in GSE157628 and GSE122897 were identified using 
the following criteria: P value < 0.05 and |logFC|> 1. The DEGs are listed in Supplementary output Tables 1  and 
2. The GSE157628 dataset was used to validate the expression of the selected genes.
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If more than one probe corresponded to one gene, the maximum expression value of each gene was used to 
eliminate duplicated probes. The gene expression of the above two datasets was elucidated by the genetic maxi-
mums of all corresponding probes.

Construction of a weighted gene coexpression network. We used the whole gene transcriptome 
expression profile of GSE122897 to perform WGCNA. A topology network of WGCNA was constructed by the 
R package “WGCNA”6 for analysis. The adjacency matrix was transformed to a topological overlap matrix; the 
soft-threshold power (β) was eight when 0.85 was chosen as the correlation coefficient threshold with a scale-free 
 R2 above 0.85 and a slope near 1. The minimum number of genes in the modules was 110, and the cut height 
threshold was 0.25 for module detection. We constructed a module-trait relationship chart and searched for 
the key modules that were closely related to type (IA or controls), IA status (ruptured or not), gender (male or 
female) and age (years).

The correlation between the eigengene module and clinical traits was used to estimate the module-trait 
relationship, and detect highly phenotypically related modules efficiently. We obtained the module significance 
(MS) by calculating the average absolute gene significance (GS) of all the genes involved in the module. GS is 
measured as the log10 transformation of the P value in the logistic regression between gene expression and clini-
cal traits. Module member (MM) is defined as the correlation between the expression profile and each module 
feature value. In WGCNA, the module with the highest correlation score was defined as the key module and 
subjected to further analysis.

Functional enrichment analysis. Genes in the key module of “type” indicated a significant correlation 
with clinical features of IA occurrence. Hub genes were defined as those with |GS|> 0.4 and |MM|> 0.8. Hub 
genes were selected to perform GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. GO and 
KEGG pathway analyses were conducted to explore their biological functions utilizing the R package “cluster-
Profiler”7. GO terms and KEGG pathways were explored with adjusted P < 0.05 and FDR < 0.05 set as the cutoff 
and were visualized by the R package “GOplot”8.

Identification of pathways associated with IA formation via GSVA. Using the R package “GSEA-
Base”, we performed GSVA that was applied to the KEGG pathways enrichment described by the MSigDB which 
is a collection of annotated gene sets in GSEA software. The “c2.cp.kegg.v7.4.symbols.gmt”profile, containing 
canonical KEGG Pathways gene sets derived from the KEGG pathway database, was downloaded for this analy-
sis. To reveal the enriched pathways within 186 gene sets, we used the GSVA package to evaluate the t score 
and assign pathway activity conditions between 16 control and 41 IA samples in GSE122897 with a Gaussian 
distribution. Moreover, the limma package was also used to find differentially expressed pathways. Adjusted P 
value < 0.05 and |logFC|> 0.3 were set as criteria.

Validation and predictive efficacy evaluation of the key gene. Among the hub genes in one mod-
ule, designated the green module, SLC2A12 was selected as the key gene that has not been studied in IA research. 
We obtained the expression data of SLC2A12 and COL5A2 from normalized transcriptome expression data in 
GSE122897 and GSE157628 to construct predictive model. Then, prediction models for the ROC curve were 

Figure 1.  Flowchart on construction and validation of the pathogenesis-related gene of IA occurrence. IA, 
intracranial aneurysm; WGCNA, Weighted gene co-expression network analysis; GEO, Gene Expression 
Omnibus; DEGs, differential expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; GSVA, Gene Set Variation Analysis; GSEA, Gene Set Enrichment Analysis; This flowchart was 
generated and edited with the free application online, diagrams.net (https:// app. diagr ams. net/).

https://app.diagrams.net/
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plotted and the area under the curve (AUC) was calculated with the “pROC” package to evaluate the capability 
of the key gene to distinguish IA patients from controls.

GSEA of the key gene. A “guilt by association” method has been reported to predict the functions of an 
unknown  gene9. Via a guilt by association approach, we performed single-gene GSEA to explore the potential 
KEGG pathways of SLC2A12 in intracranial aneurysm occurrence. The “clusterProfiler” R package was utilized 
for GSEA. The KEGG gene set profile "c2.cp.kegg.v7.4.symbols.gmt"was used as the reference. The correlation 
analysis between SLC2A12 and all genes in GSE122897 was performed by the Spearman method, and the genes 
were ranked in decreasing order by the correlation score. The genelist for GSEA consisted of all the ranked genes. 
An adjusted P value < 0.05 was chosen as the cutoff criterion.

Identification of the TFs, miRNAs and ferroptosis markers related to the key gene. The 
SLC2A12 gene was searched in the Enrichr (http:// amp. pharm. mssm. edu/ Enric hr/) and hTFtarget (http:// bioin 
fo. life. hust. edu. cn/ hTFta rget/# !/) databases to obtain the interaction between SLC2A12 and its TFs. To reduce 
the chance of identifying false-positives, we overlapped TFs surveyed in consensus target genes existing in ChEA, 
the ENCODE gene-set library and the hTFtarget database. The expression correlation between SLC2A12 and the 
overlapping TF genes in GSE122897 was plotted. To identify the miRNAs targeting SLC2A12 and those related 
to intracranial aneurysm occurrence, we referred to the GeneCards database (https:// www. genec ards. org).

The FerrDb database (http:// www. zhoun an. org/ ferrdb/ legacy/ index. html/) is a manually curated resource 
on regulators and markers of ferroptosis as well as associations between ferroptosis and disease. All data were 
extracted from 784 articles in the PubMed database and annotated. We referred to FerrDb to determine the role 
of SLC2A12 in the ferroptosis phenotype.

External validation in an animal model. The gene expression matrices of the Rattus norvegicus model, 
GSE161044, were downloaded from the GEO database. It was conducted by the Illumina NextSeq 500 (Rattus 
norvegicus) System based on the platform GPL20084. This dataset consisted of 3 intracranial aneurysms (sam-
ples) and their remaining Willis circles (controls) from 3 rats by RNA-seq analysis. The raw read count profile of 
GSE161044 was processed by the “DESeq2” package for library normalization and independent filtering. Then, 
the DEGs were obtained by the criteria P value < 0.05 and |logFC|> 0.4. The DEGs are listed in Supplementary 
Table 2. The GSE161044 dataset was used to validate the expression of our genes of interest. Venn diagrams 
were then applied to identify the upregulated and downregulated common DEGs of GSE161044, GSE122897, 
GSE157628 and hub genes in the green module.

Statistical analysis. The statistical significance of differences between two groups was analyzed using non-
parametric test or t tests based on data distribution characteristics. All analyses were conducted using R4.1.0 
software, and a P value < 0.05 was considered statistically significant. The R packages DESeq2, limma, WGCNA, 
ggplot2, export, clusterProfiler, ggstatsplot, GSEABase, GSVA, ROCR, etc., were used in this study.

Results
Gene coexpression networks. After one outlier, IA43 (GSM3487895) was omitted from GSE122897, the 
cohort consisted of 20 ruptured IA tissues, 21 unruptured IA tissues and 16 cerebral artery controls as illustrated 
in Fig. 2A.The sample clustering dendrograms of the IA clinical traits (type, status, gender and age) are shown 
in Fig. 2B. In WGCNA, we correlated each module with clinical traits in the GSE122897 dataset by calculating 
the MS for each module-trait correlation. When 0.85 was used as the correlation coefficient threshold, the soft 
power threshold (β) was set to eight (Fig. 2C, 2D). Twenty coexpression modules were constructed by using 
the average linkage hierarchical clustering algorithm (Fig. 3A). Non-clustered genes were gathered in the gray 
module. No modules manifested strong correlations (|r|> 0.8) with clinical traits, except that the green module 
(r = -0.54, P = 3e−5 < 0.01) and the pink module (r = 0.52, P = 3e−5 < 0.01) showed modest correlations with type 
(Fig. 3B). After comparing the relationships between GS and MM, we considered the green module (correlation 
coefficient = 0.72, P = 2 ×  10−200; Fig. 3C) to be the key module that was most strongly and negatively associated 
with IA formation and was analyzed further in detail. Meanwhile, the pink module was the most positively asso-
ciated (Fig. 3D).The green module contained 1887 genes, of which 115 genes were identified as hub genes based 
on the cutoff criteria (|MM|> 0.8 and |GS|> 0.4) (Supplementary output Table 3).

In the pink module, 130 hub genes were identified (Supplementary output Table 4). COL5A2 and VIPR1 
overlapped the hub genes and the differentially expressed genes of GSE157628 and GSE122897 (Supplementary 
Image 1).

Functional enrichment analysis of the hub genes. GO biological process (BP) functional enrichment 
analysis showed that the hub genes in the green module were mainly enriched in the transport of organic sub-
stance such as organic anions, and organic acids, including monocarboxylic and other carboxylic acids, across 
the blood–brain barrier and vessels. They could also play important roles in cardiac conduction regulation, 
establishment or maintenance of the transmembrane electrochemical gradient and potassium ion transmem-
brane transport (Fig. 4A). However, no statistically significant results were identified by KEGG analysis.

Pathways associated with IA formation via GSVA. The pathway with logFC > 0.3 or logFC < -−0.3 
was defined as an upregulated or downregulated pathway, respectively (Supplementary Table 3). Fifteen path-

http://amp.pharm.mssm.edu/Enrichr/)
http://bioinfo.life.hust.edu.cn/hTFtarget/#!/
http://bioinfo.life.hust.edu.cn/hTFtarget/#!/
https://www.genecards.org
http://www.zhounan.org/ferrdb/legacy/index.html/
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ways related to immune processes were significantly activated in the IA group, whereas 7 metabolism pathways 
were inhibited according to the GSVA results (Fig. 4B).

GSEA. According to normalized enrichment scores, genes in the IA group were mostly actively related to 
metabolism of propanoate and butanoate, “valine, leucine and isoleucine degradation”, “vascular smooth muscle 
contraction”, and “calcium signaling pathway”. Nevertheless, those genes were mostly negatively related to cell 
component pathways (“spliceosome”, “proteasome”, “lysosome”, etc.), immunity function (B and T-cell receptor 
signaling pathway, JAK/STAT signaling pathway, chemokine signaling pathway, etc.) (Fig. 4C).

Hub genes validation and efficacy evaluation. In the GSE122897 and GSE157628 datasets, the expres-
sion of SLC2A12 was significantly decreased in IA patients (Fig. 5A, 5B). COL5A2 and VIPR1 were omitted as 
their expression patterns were different in those two datasets.

Figure 2.  (A) Clustering of samples to detect outliers. (B) Sample dendrogram and clinical traits heatmap. 
blue means IA (white means control); brown means ruptured IA (white means unruptured IA);yellow means 
female(white means male) ; The shade of red color varies from light to dark according to the age of the patient, 
from 16 to 77. (C) Scale-free topology modelfor finding the soft-thresholding power. (D) Mean connectivity.
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The ROC curve for the task of distinguishing IA samples from controls was plotted and the AUC was calcu-
lated. The AUCs of SLC2A12 were greater than 0.7 in the two datasets (Fig. 5C, D). SLC2A12 could differentiate 
IA from control in the two datasets.

TFs, miRNAs and ferroptosis markers related to the key gene. Nine TFs were extracted from Enri-
chr (Supplementary Table 4), and 23 were extracted from hTFtarget (Supplementary Table 5). Overlap of them 
is AR and NANOG. The expression correlation analysis showed that SLC2A12 was positively correlated with 
AR (Supplementary Image 2), whereas, there was no correlation with NANOG in GSE122897 (Supplementary 
Image 3).

Figure 3.  Weighted gene co-expression network analysis. (A) Clustering dendrogram of total genes related to 
IA onset. (B) Heatmap shows the relationships between different modules and clinical traits. (C) Scatter plot of 
module eigengenes in the green module. (D) Scatter plot of module eigengenes in the pink module.
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There were 14 microRNAs targeting SLC2A12, including hsa-miR-335-5p, hsa-miR-574-5p, hsa-miR-
1277-5p  ,hsa-miR-190a-3p,hsa-miR-6867-5p,hsa-miR-223-5p,hsa-miR-767-5p,hsa-miR-502-3p, hsa-miR-
501-3p,hsa-miR-5011-5p, hsa-miR-147a, hsa-miR-2113, hsa-miR-5010-3p, and hsa-miR-6818-5p, found in the 

Figure 4.  Functional enrichment of the green module. (A) Bubble plots of biological process of GO analysis. 
(B) Heatmap of differentially KEGG pathways via GSVA. (C) Heatmap of SLC2A12 most related pathways via 
single gene GSEA.
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GeneCard database. The mRNAs and miRNAs related to IA occurrence are shown in Supplementary Table 5. 
Among them, hsa-miR-223-5p and hsa-miR-502-3p overlapped with miRNAs targeting SLC2A12 and were 
related to IA formation.

In the FerrDb database, we found that SLC2A12 was a deduced biomarker of ferroptosis which is a regulated 
form of cell death driven by dysfunction of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and sub-
sequent accumulation of lipid-based reactive oxygen species (ROS).

External validation. We found that 29 genes that were potential biomarkers for the occurrence  of IA 
(Fig. 6A), overlapped with the hub genes of the green module and DEGs in GSE161044 (Supplementary Table 2). 
The common upregulated DEGs of GSE161044, GSE122897 and GSE157628 did not overlap with the hub genes 
(Supplementary Image 4). Only one hub gene, SLC2A12, overlapped with the downregulated DEGs of the three 
GEO datasets (Fig. 6B).

Discussion
We considered two aspects when designing this study. On the one hand, in contrast to microarrays, RNA-seq 
technology has many unique advantages such as high sensitivity, directly detecting the sequence of each tran-
script  fragment10. RNA-seq can be directly conducted on any species for transcriptional investigation without 

Figure 5.  Expression of three hub genes in two datasets. (A) Expression boxplot of COL5A2, SLC2A12 and 
VIPR1 in GSE122897. (B) Expression boxplot of COL5A2, SLC2A12 and VIPR1 in GSE157628. (C) ROC 
plot of SLC2A12 in GSE122897. (D) ROC plot of SLC2A12 in GSE157628. (ns = no significance, *P < 0.05, 
**P < 0.01,***P < 0.001).
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prior knowledge of its genetic information as it is not necessary to design a specific probe in advance. It provides 
multiple layers of resolution and transcriptome complexity, with less background noise and a broader dynamic 
range of RNA expression. RNA-seq is increasingly used in biotechnology and is expected to replace microarrays 
for detecting transcriptome  profiles11. However, most publicly available RNA-seq data are in raw forms, not as 
friendly with researchers as microarray data for comprehensive analysis in silico.

On the other hand, global neuroscience studies tend to investigate the molecular mechanisms of IA formation 
by comparing cerebral IA samples with the STAs or MMAs. Gathering cerebral artery samples is challenging 
because there is almost no bypass in cerebral arteries except the Willis circle. Occlusion or resection of cerebral 
arteries will probably result in cerebral infarction. STA and MMA, which are derived from external carotid 
arteries, are replaceable and easy to acquire during neurosurgery. However, cerebrovascular diseases are rarely 
detected in the external carotid artery. Therefore, the pathogenesis and progression of IA should be studied, 
focusing on cerebral arteries per se. Therefore, we selected the two GEO datasets of Homo sapiens, GSE122897 
and GSE157628 for the bioinformatic analysis of IA pathogenesis, and a GEO dataset of Rattus norvegicus for 
external validation.

Understanding the molecular functions of the hub genes in this study may contribute to IA diagnosis and 
treatment. We deduced 115 hub genes in the green module associated with IA onset. GO BP analysis showed that 
their functions were enriched in multiple organic substance transport. GSVA showed that 15 immune process 
pathways were activated and 7 metabolism pathways were inhibited in IA formation. This finding suggested that 
IA formation was involved in immunological processes accompanied by metabolic pathways. SLC2A12 (also 
known as GLUT12), an insulin-independent glucose transporter, is the only ferroptosis-related gene among the 
hub genes in the green module; therefore, we selected it as a focus for our IA pathogenesis research.

To our knowledge, the loss and degeneration of vascular smooth muscle cells (VSMCs) are the major histo-
pathological features of intracranial  aneurysm12. VSMC death is controlled by multiple programmed cell death 
phenotypes, including  ferroptosis13. For example, cigarette smoke extract can induce vascular smooth muscle 
cell death via  ferroptosis14. IA onset is associated with VSMC death, which leads to thinning of the media and 
an increased rupture  risk15. SLC2A12 is expressed in VSMCs at both the mRNA and protein levels 16. Based on 
these facts, we discuss functions of SLC2A12 and VSMC ferroptosis in IA pathogenesis below.

GLUT isoforms (GLUT1-12) comprised facilitative glucose transporters (GLUTs). Transcriptional control 
mechanisms for key GLUT isoforms in VSMCs have been  reported16. SMC phenotypic switching plays a critical 
role in cerebral aneurysm formation, progression, and  rupture12. The switch to the differentiated state manifested 
downregulation of GLUT1, -9, and -10 mRNAs with an accompanying upregulation of GLUT12  mRNA16. In 
addition, damaged brain vessels and reduced expression of glucose transporter 1 (GLUT1) in 5xFAD mouse 
brains were demonstrated by Kee-Chan  Ahn17. Although the roles of GLUTs in the pathogenesis of intracranial 
aneurysms have not been elucidated clearly, we hypothesize that SLC2A12 is related to IA formation.

Glucose metabolism dysfunction can induce ferroptosis in  cells18,19. SLC2A12 was deduced as a potential 
biomarker in the FerrDb database. The GeneCard database shows that SLC2A12 is a member of HIF1 alpha 
pathway, NRF2 pathway, mesodermal commitment pathway, and PAK pathway as well as pathways for the 
transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds. Some of 
these pathways have been reported to be associated with ferroptosis in multiple  tissues20–22. HIF1 alpha pathway 
plays an important role in neurocyte  ferroptosis20. The NRF2 signaling pathway mediates lipid peroxidation and 
 ferroptosis21. PAK surper pathway covers the antioxidant action of the vitamin C pathway, and vitamin C could 
significantly activate ferroptosis and inhibit anaplastic thyroid cancer cell  growth22. In particular, the HIF1 alpha 
pathway has received sustained and extensive attention. It regulates the transcription of over 40 genes allowing 
adaptation to hypoxic conditions, by increasing oxygen delivery or facilitating metabolic adaptation to hypoxia. 
Proteins of the target genes include erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial 
growth factor, and other factors critical to vascularization, metabolic regulation, cell multiplication and survival. 

Figure 6.  Venn diagrams (A) overlap of hub genes in green module and DEGs of GSE161044. (B) overlap 
of hub genes in green module and downregulated DEGs of three GEO datasets, GSE161044, GSE122897 and 
GSE157628. This figure was generated with the free application online, Venny 2.1 (https:// bioin fogp. cnb. csic. es/ 
tools/ venny/ index. html).

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Its functions annotating how cells react to oxygen were made conspicuous by the 2019 Nobel Prize in Physiol-
ogy or Medicine. These pathways can interact with those resulting from GSVA (Fig. 4B), such as the NOD-like 
receptor signaling pathway and P53 signaling pathway.

We applied single-gene GSEA with the guilt by association method to annotate the functions of SLC2A12. 
Single-gene GSEA was usually performed after samples were divided into two groups, the highly expressed group 
and the lowly expressed group, according to the median expression level of the selected gene. In this GSEA, a 
decreasingly ranked gene list based on correlation values with SLC2A12 was used. Guilt by association approach 
in GSEA can deduce the enriched potential KEGG pathways SLC2A12 involved in. We deduced that SLC2A12 
activated multiple organic substance metabolism pathways and suppressed immune response pathways including 
the JAK/STAT signaling pathway, chemokine signaling pathway, B and T-cell receptor signaling pathway. The 
roles of SLC2A12 in metabolism and immune response pathways merit further research.

Misregulated ferroptosis can be implicated in multiple immune  events23. Recently, Rui Kong reported that 
activation of the JAK/STAT pathway can induce ferroptosis in hepatocellular carcinoma  cells24. In addition, the 
JAK/STAT pathway can participate in various biological processes in  VSMCs25 and crosstalk with HIF1 alpha 
 pathway26,27. To date, no evidence has interpreted the correlation between SLC2A12 and the JAK/STAT signaling 
pathway. The functions of SLC2A12 in immune activity should be explored in the future.

Based on the above literature review, SLC2A12 could be a novel biomarker associated with the occurrence of 
IA. Its expression was significantly decreased in human and rat IA tissue as we have interpreted above. This would 
suppress organic substance transmembrane transportation and metabolism together with an enhanced immune 
response in cerebral arteries. Various immune molecular pathways are activated, especially JAK/STAT signaling 
and HIF1 alpha pathway.Via the VSMC ferroptosis phenotype, IA occurs and develops. Regulators of SLC2A12 
including TFs and miRNAs that we have found in this article, would supplement the understanding of the IA 
pathogenesis mechanism. External validation indicated that SLC2A12 could be a candidate gene in further rat 
model experiments in order to confirm its biological functions in IA formation.

Limitations exist in this study. First, no experimental validation, using human tissue, was performed in our 
research due to obstacles in gathering human cerebral artery samples. Second, a small quantity of samples could 
cause variations in the results. Third, ruptured IAs and unruptured IAs have different gene expression profiles, 
which has been discussed in many studies. We synthesized and compared them with controls.

Conclusions
In the present study we identified 115 hub genes related to the pathogenesis of IA onset and deduced their poten-
tial roles in various molecular pathways; this new information may contribute to IA diagnosis and treatment. By 
external validation, 29 of the hub genes are potential biomarkers associated with this process in both humans 
and rats. In particular, the SLC2A12 gene may play important roles. The molecular involvement of SLC2A12 in 
IA pathogenesis can be further studied in a rat model.

Data availability
The data used to support the current study are available from the corresponding author on reasonable request.
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