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Abstract
Compositional data from a soil survey over North Canberra, Australian Capital Territory, 
are used to develop and test an empirical soil provenancing method. Mineralogical 
data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility 
(MS), and geochemical data from X-ray fluorescence (XRF; for total major oxides) and 
inductively coupled plasma-mass spectrometry (ICP-MS; for both total and aqua regia-
soluble trace elements) are performed on the survey's 268 topsoil samples (0–5 cm 
depth; 1 sample per km2). Principal components (PCs) are calculated after imputation of 
censored data and centered log-ratio transformation. The sequential provenancing ap-
proach is underpinned by (i) the preparation of interpolated raster grids of the soil prop-
erties (including PCs); (ii) the explicit quantification and propagation of uncertainty; (iii) 
the intersection of the soil property rasters with the values of the evidentiary sample (± 
uncertainty); and (iv) the computation of cumulative provenance rasters (“heat maps”) 
for the various analytical techniques. The sequential provenancing method is tested on 
the North Canberra soil survey with three “blind” samples representing simulated evi-
dentiary samples. Performance metrics of precision and accuracy indicate that the FTIR 
and MS (mineralogy), as well as XRF and total ICP-MS (geochemistry) analytical meth-
ods, offer the most precise and accurate provenance predictions. Inclusion of PCs in 
provenancing adds marginally to the performance. Maximizing the number of analytes/
analytical techniques is advantageous in soil provenancing. Despite acknowledged limi-
tations and gaps, it is concluded that the empirical soil provenancing approach can play 
an important role in forensic and intelligence applications.
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Highlights

•	 Topsoil mineralogical and chemical properties are determined over a 260-km2 area in/around 
Canberra.
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1  |  INTRODUC TION

Soils are complex mixtures of minerals, amorphous material, or-
ganic matter, water, gasses, organisms, and, in places, man-made 
particles. The composition of soils is fundamentally controlled 
by their location through the environmental controls of climate 
(moisture, temperature), life (plants, organisms), topography (el-
evation, aspect, slope, relief), substrate (geology, parent material), 
and time (weathering), among others, as first articulated by Jenny 
in 1941 [1]. Thus, the natural soil composition varies in a largely 
predictable and structured, rather than random and chaotic, fash-
ion. Therefore, coherent maps showing the spatial variability of 
natural soil parameters can be produced provided the density at 
which they are measured is appropriate relative to the scale of 
their heterogeneity. Human land use may either confound or com-
plement understanding of the spatial patterns. Once a series of 
soil property maps are produced, they can serve two important 
forensic purposes: (i) the evidentiary relevance of observing non-
distinguishable questioned and control samples, and (ii) the poten-
tial to constrain the spatial provenance of an unknown questioned 
soil sample.

The use of geological material such as soil in forensic inves-
tigations is increasing in police forces around the world, including 
the Federal Bureau of Investigation, the Royal Canadian Mounted 
Police, and the Australian Federal Police (e.g., [2–7]). In Australia, 
successful soil forensic investigations have contributed evidence 
that has been used in Australian Supreme courts (e.g., [8]). Forensic 
soil provenancing can be defined as the capability to spatially con-
strain the likely region of origin of an evidentiary sample of earth-
related material [9,10]. Rawlins et al. [9] characterized the prediction 
of the provenance of a sample of earth-related material as “one of 
the most difficult and challenging tasks for analytical earth scientists.”

Caritat et al. [11] introduced a predictive soil provenancing 
method that does not require a specific soil survey to be carried 
out over an area of interest. More typically, however, forensic soil 
provenancing is implemented empirically by comparing the spatial 
multivariate information contained in the evidentiary soil's geo-
chemistry, mineralogy, bulk properties, etc., to either purposely ac-
quired or pre-existing knowledge (see fig. 1 in [11]). Such knowledge 
generally is derived from soil geochemical surveys and stored in da-
tabases containing this same or similar multivariate information over 
the region of interest at an appropriate density [12]. Geochemical 
surveys come in many guises (e.g., [13,14]) and although many al-
ready exist at a range of spatial coverages (continental to local), sam-
pling densities (1 sample per 1000's of km2 to 100's of samples per 

1 km2), and sampling media (materials) selections (topsoil, C horizon, 
sediment, …), forensic applications have specific requirements that 
may not have been the primary focus of the original surveys [15]. 
Despite this, these pre-existing surveys and associated databases 
have their use in forensic applications, as long as their limitations 
(e.g., sampling density, sampling medium, sample collection method) 
are understood.

Once a database is selected, a number of statistical and visualiza-
tion analysis tools can be implemented, including univariate, bivar-
iate, and multivariate statistical analysis, exploratory data analysis, 
analysis of variance, compositional data analysis, spatial interpola-
tion/geostatistics and smoothing, cluster analysis, supervised or un-
supervised classification, and data mining (e.g., [16–26]).

The next step in empirical soil provenancing is the comparison 
of the evidentiary soil sample's composition with the selected data-
base. Statistical analysis of differences can be performed using a few 
or many compositional characteristics (including chemical element 
abundances, isotopes, mineral abundances), their ratios or other cal-
culated indexes, correlation analysis, and/or factor or principal com-
ponent analysis (e.g., [27–34]), among others.

Finally, if the evidentiary sample is non-distinguishable with a 
particular region of origin, a detailed forensic investigation can pro-
ceed there. If unsuccessful or inconclusive, more data and better 
data must be collated (if pre-existing) or collected (if not), which may 
imply undertaking a more refined geochemical survey at a scale rel-
evant for the case at hand.

In this and a companion paper, we describe and compare differ-
ent approaches to soil provenancing based on a local (i.e., relatively 
small area and relatively high sampling density) soil geochemical sur-
vey in and around North Canberra, Australian Capital Territory, in 
inland southeastern Australia. The approaches under consideration 
are (i) a sequential multivariate approach (this paper), and (ii) a si-
multaneous multivariate (degree of geochemical similarity) approach 
(upcoming paper in preparation). A complementary probabilistic 
(likelihood ratio) approach will be published separately (upcoming 
paper in preparation). The aims of the present contribution accord-
ingly are to:

•	 briefly introduce the North Canberra soil geochemical survey
•	 present the sequential multivariate provenancing approach
•	 present results for this method
•	 quantify the performance of this approach
•	 draw conclusions as to the suitability of the sequential mul-

tivariate provenancing approach for forensic and intelligence 
applications

•	 Those properties are interpolated to create 250 × 250 m raster grids over the survey area.
•	 Evidentiary (blind) sample properties are compared within uncertainty to grid cell values.
•	 For every grid cell a score of 1 is given if a property matches the blind sample value, 0 

otherwise.
•	 Scores are added for all properties, mapping areas more closely matching the blind samples.
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2  |  MATERIAL S AND METHODS

2.1  |  The North Canberra soil geochemical survey

The North Canberra soil geochemical survey was initiated in 
2017 and focused on the northern part of Canberra city and sur-
rounding suburban areas, in the Australian Capital Territory (ACT) 
(Figure 1). The total area covered by the survey was ~260  km2 
sampled at an average density of 1 site/km2 [35]. In addition to 
the 268 samples in this survey, three “blind” samples (Blind 1, 
Blind 2, and Blind 3 hereafter) were collected from sites within 

the survey area (but away from the survey's grid samples), the 
geographical coordinates or even approximate locations of which 
were unknown to the lead researcher until the project had con-
cluded all data analysis and map production.

General background, results, and interpretations of the geochem-
ical mapping of the ACT, including the investigation of the effects of 
lithology and land use on soil geochemistry, will be presented else-
where (upcoming paper in preparation). A simple description of the 
blind sample sites is, however, warranted here as it will have a bear-
ing on the interpretation of the provenance analysis we focus on (see 
Fig. S1 in Appendix S1). Blind 1 is a Kurosol soil (all soil types from the 

F I G U R E  1  Sample locations (crosses) 
for the North Canberra, Australian Capital 
Territory (ACT), soil geochemical survey 
overlain on Australian Soil Classification 
(ASC) soil orders [36] (A), and high-order 
lithology types (geology) (B). Study area 
outlined in solid black line. Principal, main, 
and secondary roads are shown as thick, 
thin, and dashed gray lines, respectively. 
Water bodies and drainage are shown in 
blue. ACT border is shown as brown dash-
dotted line. Geospatial data from ACT 
Government or Australian Government, 
unless otherwise indicated [Color figure 
can be viewed at wileyonlinelibrary.com]

(A)

(B)

www.wileyonlinelibrary.com
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Australian Soil Classification (ASC) [36]) collected over the Mount 
Ainslie Volcanics Formation, a Wenlockian (Early Silurian) dacitic ig-
nimbrite with minor ashstone, agglomerate and shale, and porphyry, 
within the Hawkins Volcanic Suite (all stratigraphic units from the 
Australian Stratigraphic Units Database https://asud.ga.gov.au/). 
We note here that Blind 1 was deliberately collected from a local 
environment not representative of the broader landscape to test the 
limit of soil provenancing. Blind 2 is Kurosol/Rudosol (Alluvial) soil 
collected over undifferentiated Quaternary alluvium and fluvial de-
posits of gravel, sand, silt, and clay along Ginninderra Creek. Blind 3 
is a Kurosol soil collected over a thin, folded Acton Shale Member, an 
Early Ordovician black graptolitic siliceous shale within the broader 
turbiditic (sandstone, mudstone, shale) Adaminaby Group.

In this paper, the analytical focus is directed to both (i) soil min-
eralogy via infrared spectroscopy (informing on, e.g., hydrated min-
erals such as clay minerals, carbonates, and sulfates) and magnetic 
susceptibility (informing on, e.g., ferrimagnetic minerals such as ma-
ghemite or magnetite, and their grain sizes); and (ii) soil geochem-
istry via major oxides and organic matter concentrations as well 
as trace element concentrations after two chemical extractions 
of different strengths. Sample collection, preparation, and analy-
sis methods are detailed in the Appendix S1, as are data analysis, 
spatial analysis, quality control, and detailed uncertainty analysis 
procedures.

2.2  |  Uncertainty analysis

Uncertainty arises from any attempt to quantify natural phenomena, 
from sampling through to analysis. In this project, two main types of 
uncertainty were specifically quantified: measurement uncertainty 
(Um) and interpolation uncertainty (Ui). They were quantified as three 
standard deviations of field triplicates (SDm) and of residuals (SDi), 
respectively. Residuals are the differences between the interpolated 
(modeled) values and the measured values at each sampled site. The 
combined uncertainty (Uc), which applies to the generated property 
raster surfaces, is calculated using the root sum of squares method 
(e.g., [37,38]) as follows:

The standard deviations (SDm, SDi) and uncertainties (Um, Ui, Uc) 
of each analyte are given in Table S3 in the Appendix S1.

2.3  |  Determination of search ranges

For each variable, the Search Range (SR) for a blind (evidentiary) 
sample was set to the measured value of that variable in that blind 
sample (Target Value or TV) with a buffer reflecting the sum of the 
uncertainty in the analytical data (Um) and of the uncertainty in the 
raster surface (Uc), according to:

This accounts for uncertainty in both the interpolated sur-
face (which is derived from measured values in the database and a 
smoothing interpolation algorithm), via Uc, and the measured value 
in the blind sample, via Um, as illustrated in Figure 2. The graphic 
illustrates that the interpolated grid value for a particular soil prop-
erty needs to fall within the uncertainty envelope (Um + Uc) around 
that soil property for the evidentiary sample to count as a match 
and score a 1 in the provenance raster computation (see below and 
Appendix S1).

2.4  |  Raster generation and clipping

Interpolation rasters for each available variable were prepared by 
inverse distance weighting (IDW), clipped, and analyzed in QGIS as 
explained in the Spatial Analysis section of the Appendix S1.

2.5  |  Provenancing methodology

A sequential multivariate approach to soil provenancing based 
on an empirical database of soil properties is developed in this 

(1)Uc =

√

(Um)
2 + (Ui)

2 =

√

(3 × SDm)
2 + (3 × SDi)

2

(2)SR = TV ± (Um + Uc)

F I G U R E  2  Schematic illustration of the values of a measured variable at seven survey samples A to G (light blue rectangles) with 
uncertainty (light blue error bars), and inverse distance weighting (IDW) interpolated surface (solid dark blue line) with combined uncertainty 
Uc (dashed dark blue lines above and below solid line). Blind sample being provenanced is shown as a dark blue rectangle, with its 
measurement uncertainty Um (dark blue error bar) [Color figure can be viewed at wileyonlinelibrary.com]

https://asud.ga.gov.au/
www.wileyonlinelibrary.com
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contribution. The first step in this approach is to measure and map 
a number of mineralogical (e.g., FTIR, MS) and geochemical (e.g., 
XRF and ICP-MS) soil properties at the sampled sites. The next 
step is the interpolation of those properties between sampled 
sites, here performed using IDW (power 3; 12 neighbors; 250 m 
cells) as detailed elsewhere. The final step of this method is to se-
lect raster cells from those grids that match the Target Value ± 
Search Range of the evidentiary sample of interest. This is akin to 
drawing contours on a topographic map that follow a given eleva-
tion with allowance for some slack or uncertainty in that elevation 
value; this essentially yields a corridor (or corridors) of locations 
(cells) that satisfy the elevation ± uncertainty criterion. A ras-
ter calculation in QGIS assigns a value of 1 to cells that satisfy a 
given criterion (i.e., those whose soil property value fall within the 
Search Range), and a value of 0 to those that do not (i.e., those 
whose soil property value fall outside the Search Range). Once the 
cells that satisfy the Search Range for one composition variable are 
established, those for one or many more variables can be added to 
it. This generates a map over the area of interest with cells having 
values ranging from 0 to N (the number of soil properties under 
consideration). Such maps can be colored to produce “heat maps” 
that readily draw attention to those areas with most criteria being 
satisfied and thus more likely to include the potential origin for the 
evidentiary sample. It is noted that the provenancing methodology 
presented here is not intended to be used at the exclusion of other 
provenancing avenues such as soil microbiome or palynology, but 
rather complement those by providing a geochemical/mineralogi-
cal perspective. Once areas of enhanced provenance potential are 
identified, further resources can be allocated to these focussed 
regions with a lower failure risk.

3  |  RESULTS AND DISCUSSION

A statistical summary of the data collected during this project can 
be found in Table 1. Lower limits of detection and proportions of 
the variance explained for the principal components obtained for 
the FTIR, XRF, Total, and aqua regia (AR) ICP-MS datasets (the latter 
three after centered log-ratio—clr—transformation) are given in the 
Appendix S1 (Tables S1 and S2).

3.1  |  Validation

Standard deviations and uncertainties derived for each parameter 
as described above are given in the Appendix S1 (Table S3). The 
Target Values and Search Ranges for the Blind 1, Blind 2, and Blind 
3 evidentiary samples collected as part of this project are shown 
in Tables 2, 3, and 4, respectively. The results of soil provenancing 
investigations using the sequential multivariate approach are dis-
cussed below.

The maps of provenance prediction for samples Blind 1, Blind 2, 
and Blind 3 based on three FTIR principal components and two MS 

parameters (for a total of five parameters) are shown in Figure 3. 
Results indicate that for these three blind samples, 3 of (a theoret-
ical maximum of) 5, 2 of 5, and 3 of 5 parameters match the Search 
Ranges for Blind 1, Blind 2, and Blind 3, respectively. If the three PCs 
from FTIR are removed from the analysis and only MS data are con-
sidered (not shown), the match rates for these three blind samples 
change to 1 of 2 for all three blind samples.

The soil provenance rasters generated by the present sequen-
tial multivariate provenancing method can be interpreted like “heat 
maps” where raster grid cells with hotter colors are a better match 
to the evidentiary sample under investigation than cooler colored 
cells. In Figure 3A, grid cells colored light, medium, and dark red 
(scores of 3, 4, or 5) indicate a match equivalent or superior to the 
cell from which simulated evidentiary sample Blind 1 actually comes 
from (which has score of 3). Provenancing grids computed from 
the cumulative results from more variables yield smoother, more 
gradational spatial patterns than those generated from fewer vari-
ables, as demonstrated by subsequent figures. In a separate section 
(Performance Assessment), we will discuss metrics to quantify how 
good the provenance predictions are.

The maps of provenance prediction for samples Blind 1, Blind 2, 
and Blind 3 based on 11 compositional XRF parameters are shown in 
Figure 4. Results indicate that for these three blind samples, 6 of 11, 
3 of 11, and 5 of 11 parameters match the Search Ranges for Blind 1, 
Blind 2, and Blind 3, respectively. If the 8 first PCs are included in the 
analysis (not shown), the match rates for these three blind samples 
change to 10 of 19, 6 of 19, and 5 of 19 for Blind 1, Blind 2, and Blind 
3, respectively.

The maps of provenance prediction for samples Blind 1, Blind 
2, and Blind 3 based on 38 compositional Total ICP-MS parameters 
are shown in Figure 5. Results indicate that for these three blind 
samples, 13 of 38, 31 of 38, and 17 of 38 parameters match the 
Search Ranges for Blind 1, Blind 2, and Blind 3, respectively. If the 8 
first PCs are included in the analysis (not shown), the match rates for 
these three blind samples change to 17 of 46, 39 of 46, and 29 of 46 
for Blind 1, Blind 2, and Blind 3, respectively.

The maps of provenance prediction for samples Blind 1, Blind 
2, and Blind 3 based on 19 compositional AR ICP-MS parameters 
are shown in Figure 6. Results indicate that for these three blind 
samples, 4 of 19, 15 of 19, and 6 of 19 parameters match the Search 
Ranges for Blind 1, Blind 2, and Blind 3, respectively. If the 8 first 
PCs are included in the analysis (not shown), the match rates for 
these three blind samples change to 9 of 27, 20 of 27, and 10 of 27 
for Blind 1, Blind 2, and Blind 3, respectively.

The maps of provenance prediction for samples Blind 1, Blind 2, 
and Blind 3 based on the 97 combined FTIR, MS, XRF, Tot, and AR 
ICP-MS parameters (including PCs) are shown in Figure 7. Results 
indicate that for these three blind samples, 39 of 97, 67 of 97, and 39 
of 97 parameters match the Search Ranges for Blind 1, Blind 2, and 
Blind 3, respectively. If the 27 PCs are removed from the analysis 
(not shown), the match rates for these three blind samples change 
to 26 of 70, 51 of 70, and 31 of 70 for Blind 1, Blind 2, and Blind 3, 
respectively.
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TA B L E  2  Target Values (TV) and Search Ranges (SR) for unknown sample Blind 1 for all variables

Variable TV SR From SR To Variable TV SR From SR To

PC1_FTIR 2.034 0.124 3.943 As_Tot 1.78 0.62 2.94

PC2_FTIR 0.013 −0.099 0.125 Ba_Tot 373 296 450

PC3_FTIR −0.106 −0.355 0.143 Bi_Tot 0.12 −0.20 0.44

Xlf 0.35 −0.25 0.95 Ce_Tot 46.5 36.5 56.5

Xfd_pc 9.74 8.53 11.0 Co_Tot 6.52 4.41 8.64

SiO2_XRF 76.0 73.9 78.2 Cr_Tot 36.4 25.9 47.0

TiO2_XRF 1.00 0.94 1.05 Cs_Tot 1.83 0.84 2.83

Al2O3_XRF 8.34 7.42 9.26 Cu_Tot 15.4 −17.0 47.8

Fe2O3_XRF 2.19 1.31 3.08 Dy_Tot 4.00 3.25 4.74

MnO_XRF 0.04 0.02 0.06 Er_Tot 2.67 2.27 3.06

MgO_XRF 0.83 0.66 1.01 Eu_Tot 0.73 0.56 0.89

CaO_XRF 0.15 −0.02 0.33 Ga_Tot 8.97 6.79 11.1

Na2O_XRF 1.05 0.95 1.14 Gd_Tot 3.53 2.84 4.21

K2O_XRF 1.92 1.69 2.14 Ge_Tot 1.21 0.93 1.50

P2O5_XRF 0.09 0.07 0.10 Hf_Tot 15.3 13.3 17.2

LOI_XRF 8.11 6.59 9.62 Ho_Tot 0.85 0.71 0.98

PC1_XRF −0.403 −1.313 0.507 La_Tot 24.2 17.5 30.8

PC2_XRF 1.513 0.871 2.155 Lu_Tot 0.47 0.40 0.53

PC3_XRF 0.474 −0.223 1.171 Nb_Tot 15.9 14.3 17.4

PC4_XRF −1.566 −2.423 −0.710 Nd_Tot 18.9 14.4 23.4

PC5_XRF 0.620 0.111 1.128 Ni_Tot 12.4 5.83 19.0

PC6_XRF −1.087 −1.824 −0.349 Pb_Tot 14.1 −0.67 28.9

PC7_XRF −0.544 −0.996 −0.092 Pr_Tot 5.19 3.97 6.41

PC8_XRF −1.334 −1.726 −0.942 Rb_Tot 81.5 62.9 100

Ba_AR 40.2 22.2 58.2 Sc_Tot 12.7 11.0 14.3

Be_AR 0.37 0.19 0.54 Sm_Tot 3.56 2.53 4.58

Ce_AR 21.5 11.9 31.1 Sn_Tot 1.97 1.37 2.58

Co_AR 5.48 1.84 9.12 Sr_Tot 53.9 45.5 62.3

Cs_AR 0.44 0.23 0.64 Ta_Tot 1.37 1.22 1.51

Dy_AR 0.93 0.26 1.60 Tb_Tot 0.61 0.42 0.79

Er_AR 0.42 0.10 0.74 Th_Tot 10.7 8.67 12.7

Eu_AR 0.33 0.09 0.57 U_Tot 2.95 2.60 3.30

Fe_AR 10672 5581 15764 V_Tot 61.5 45.2 77.8

La_AR 11.6 7.70 15.5 W_Tot 3.27 2.97 3.57

Mn_AR 237 16.7 457 Y_Tot 22.9 18.7 27.0

Nd_AR 8.77 3.30 14.2 Yb_Tot 2.88 2.45 3.31

Ni_AR 3.80 1.35 6.25 Zn_Tot 45.0 32.8 57.2

Pb_AR 9.45 −5.32 24.2 Zr_Tot 613 519 707

Rb_AR 12.2 9.41 15.0 PC1_Tot −0.052 −4.558 4.455

Sr_AR 5.89 0.32 11.5 PC2_Tot 4.131 1.479 6.783

Th_AR 1.97 1.37 2.56 PC3_Tot −4.094 −7.734 −0.455

Tm_AR 0.05 0.02 0.08 PC4_Tot −1.648 −3.217 −0.078

Zn_AR 28.9 2.34 55.5 PC5_Tot 0.783 −1.693 3.259

PC1_AR 0.653 −1.282 2.588 PC6_Tot −0.178 −1.463 1.106

PC2_AR −0.674 −1.273 −0.075 PC7_Tot 1.527 0.796 2.259

(Continues)
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3.2  |  Performance assessment

The performance statistics of the sequential method of prove-
nancing soil samples are summarized in Table 5. Two performance 
indicators are calculated. First “precision” (Prc) is defined as the 
ratio of cells in a grid that have scores equivalent to, or lower than, 
the score of the cell containing the Blind (evidentiary) sample over 
the total number of cells. If Prc is 99%, only 1% of cells are identi-
fied as provenance matches, a highly precise result. Thus for in-
stance, Blind 1 for FTIR +MS (5 variables) has a score of 3; there 
are 3634 cells of the total 4638 cells of the FTIR +MS grid that has 
a score of 3 or less (0, 1, or 2), giving Prc = 3634/4638 or 78.4%. 
Second “accuracy” (Acc) is defined as the ratio of the score for 
the cell containing the Blind (evidentiary) sample in a particular 
provenancing grid over the (actual) maximum score obtained at 
any cell within the grid. If Acc is 100%, all variables making up the 
provenance grid correctly identify the cell containing the eviden-
tiary sample as a match, a highly accurate result. Thus for instance, 
Blind 1 for the FTIR +MS grid (maximum recorded score of 5) has a 
score of 3, giving Acc = 3/5 or 60%.

Each Blind sample behaves slightly differently in terms of prov-
enancing performance (Table 5). The most precise and accurate 
results for Blind 1 were obtained for the XRF with PCs method 
(Prc = 93.6%; Acc = 66.7%). The next highest Prc came from XRF 
without PCs (86.6%), while the next highest Acc was obtained for 
both XRF without PCs and FTIR + MS with PCs (60%).

For Blind 2, the most precise results came from FTIR + MS with-
out PCs (Prc = 99.8%), while the most accurate results were obtained 
for Total ICP-MS with PCs (Acc = 86.7%). The next highest Prc came 
from Total ICP-MS with PCs (94%), while the next highest Acc was 
obtained for ALL variables with PCs (84.8%).

The most precise and accurate results for Blind 3 were obtained 
for FTIR + MS with PCs (Prc = 92.2%; Acc = 60%). The next highest 
Prc came from XRF without PCs (88.7%), while the next highest Acc 
was obtained for ALL variables with PCs (52.7%) then Total ICP-MS 
with PCs (51.2%).

Considering average rather than maximum (or next highest) 
precision and accuracy, provenancing performance improved from 
Blind 1 (50.1% and 45.4%), to Blind 3 (70.6% and 46.6%), to Blind 2 
(86.2% and 66.1%). The authors believe that the poorer results for 

Blind 1 are due to the fact that this sample was collected in a non-
representative location for that grid cell (see above).

In terms of the best-suited analytical method for determinis-
tic provenancing across all Blind samples, FTIR + MS without PCs 
has the highest precision of any method (Prc  =  99.8% for Blind 
2), followed by Total ICP-MS with PCs (94.0% for Blind 2), while 
Total ICP-MS with PCs has the highest accuracy of any method 
(Acc  =  86.7% for Blind 3), followed by ALL variables with PCs 
(84.8% for Blind 2) then AR ICP-MS without PCs (83.3% for Blind 2).

Across all three Blind samples, FTIR + MS with PCs has the high-
est average precision (80.7%), closely followed by XRF without PCs 
(80.0%) then XRF with PCs (76.9%); ALL methods with PCs have the 
highest average accuracy (61.3%), followed by Total ICP-MS with 
PCs (59.1%) then ALL methods without PCs (56.2%).

Inclusion of principal components (PCs) in the provenancing workflow 
provides a marginal advantage in terms of provenancing performance 
(Table 5). For all Blind samples confounded, both average Prc and Acc 
are higher with PCs (70.3% and 54.5%) than without (67.6% and 50.9%). 
From those figures, one can also observe that of the two performance 
metrics, Prc (ranges from 28.4% to 94.0% with PCs, and from 25.6% to 
99.8% without PCs) tends to have higher values than Acc (ranges from 
33.3% to 86.7% with PCs, and from 21.1% to 83.3% without PCs).

The performance of individual analytes, such as specific major ox-
ides or trace elements, can be deduced from the sequential multivari-
ate approach presented here. The following analytes were successful 
at matching all three Blind samples’ Search Ranges and can thus be 
put forward as the most effective soil provenancing indicators in the 
present study: Ba, Cu, Ge, Nb, Pb, Ta, and V by total ICP-MS; Pb and Zn 
by aqua regia ICP-MS; and two PCs for each of these analytical meth-
ods. However, seeing that analytical methods such as XRF or ICP-MS 
are commonly available as packages of analytes rather than oxide-by-
oxide or element-by-element analyses, realistically, comprehensive 
analyte packages are probably the most practical and cost-effective 
requests to submit to institutional or commercial laboratories.

3.3  |  Sensitivity analysis

The sequential multivariate soil provenancing method developed 
here suggests a number steps to take for identifying regions within 

Variable TV SR From SR To Variable TV SR From SR To

PC3_AR 0.278 −0.688 1.245 PC8_Tot −1.045 −3.064 0.974

PC4_AR 0.236 −0.772 1.245

PC5_AR 1.117 0.565 1.669

PC6_AR −1.062 −2.276 0.152

PC7_AR 0.679 −0.007 1.365

PC8_AR 0.831 0.230 1.432

Methods are as follows: Fourier transform infrared (_FTIR), mass-specific (Xlf) and frequency-dependent in percent (Xfd_pc) magnetic susceptibility, 
X-ray fluorescence (_XRF), and aqua regia (_AR) and total (_Tot) inductively coupled plasma-mass spectrometry. Units are as follows: All PCs: 
dimensionless; Xlf: 10−6 m3/kg; Xfd_pc: %; XRF: wt%; AR and Tot: mg/kg (ppm). See text for details.

TA B L E  2  (Continued)
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TA B L E  3  Target Values (TV) and Search Ranges (SR) for unknown sample Blind 2 for all variables

Variable TV SR From SR To Variable TV SR From SR To

PC1_FTIR −1.481 −3.390 0.429 As_Tot 4.72 3.55 5.88

PC2_FTIR −0.556 −0.667 −0.444 Ba_Tot 306 229 383

PC3_FTIR −0.220 −0.469 0.029 Bi_Tot 0.36 0.04 0.68

Xlf 0.24 −0.36 0.83 Ce_Tot 66.1 56.1 76.1

Xfd_pc 2.04 0.83 3.25 Co_Tot 8.15 6.04 10.3

SiO2_XRF 69.6 67.5 71.7 Cr_Tot 55.9 45.3 66.5

TiO2_XRF 0.80 0.74 0.85 Cs_Tot 3.86 2.87 4.86

Al2O3_XRF 10.9 9.98 11.8 Cu_Tot 22.5 −9.92 54.9

Fe2O3_XRF 3.50 2.62 4.39 Dy_Tot 5.03 4.28 5.77

MnO_XRF 0.05 0.02 0.07 Er_Tot 3.02 2.62 3.41

MgO_XRF 0.96 0.79 1.14 Eu_Tot 1.01 0.84 1.18

CaO_XRF 0.84 0.66 1.01 Ga_Tot 13.0 10.8 15.2

Na2O_XRF 0.68 0.58 0.77 Gd_Tot 5.08 4.39 5.77

K2O_XRF 1.79 1.57 2.01 Ge_Tot 1.58 1.29 1.86

P2O5_XRF 0.10 0.08 0.11 Hf_Tot 10.8 8.87 12.7

LOI_XRF 10.6 9.04 12.1 Ho_Tot 1.01 0.87 1.15

PC1_XRF −2.884 −3.794 −1.974 La_Tot 32.3 25.6 38.9

PC2_XRF −0.392 −1.033 0.250 Lu_Tot 0.46 0.40 0.53

PC3_XRF −0.998 −1.695 −0.301 Nb_Tot 12.7 11.1 14.3

PC4_XRF 0.247 −0.609 1.104 Nd_Tot 28.7 24.2 33.2

PC5_XRF 0.873 0.364 1.382 Ni_Tot 19.3 12.8 25.9

PC6_XRF 0.497 −0.241 1.234 Pb_Tot 25.0 10.2 39.8

PC7_XRF 1.633 1.181 2.085 Pr_Tot 7.72 6.50 8.93

PC8_XRF −0.860 −1.253 −0.468 Rb_Tot 98.8 80.2 117

Ba_AR 76.1 58.1 94.1 Sc_Tot 11.4 9.72 13.0

Be_AR 0.67 0.49 0.85 Sm_Tot 5.50 4.48 6.52

Ce_AR 37.8 28.2 47.4 Sn_Tot 2.93 2.33 3.54

Co_AR 7.90 4.26 11.5 Sr_Tot 72.3 63.9 80.7

Cs_AR 0.56 0.36 0.76 Ta_Tot 1.08 0.94 1.22

Dy_AR 2.17 1.49 2.84 Tb_Tot 0.81 0.63 0.99

Er_AR 1.07 0.75 1.39 Th_Tot 13.1 11.1 15.1

Eu_AR 0.74 0.50 0.98 U_Tot 2.79 2.44 3.14

Fe_AR 16685 11593 21777 V_Tot 70.1 53.8 86.4

La_AR 18.0 14.1 21.9 W_Tot 2.09 1.79 2.39

Mn_AR 315 95.1 535 Y_Tot 26.7 22.5 30.9

Nd_AR 18.7 13.2 24.1 Yb_Tot 3.00 2.57 3.42

Ni_AR 13.2 10.7 15.6 Zn_Tot 72.4 60.1 84.6

Pb_AR 21.0 6.20 35.8 Zr_Tot 421 328 515

Rb_AR 10.4 7.64 13.2 PC1_Tot −3.842 −8.348 0.664

Sr_AR 35.5 30.0 41.1 PC2_Tot −1.444 −4.096 1.208

Th_AR 2.10 1.51 2.70 PC3_Tot −0.945 −4.584 2.695

Tm_AR 0.13 0.10 0.17 PC4_Tot 0.456 −1.113 2.025

Zn_AR 73.27 46.68 99.87 PC5_Tot −0.165 −2.642 2.311

PC1_AR 0.082 −1.853 2.017 PC6_Tot 0.986 −0.298 2.270

PC2_AR 0.955 0.356 1.554 PC7_Tot 0.900 0.168 1.632

(Continues)
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a search area (i.e., cells within a raster) that are more likely to con-
tain the source of an evidentiary (blind) sample being provenanced. 
In this section, we test a number of variations on the previously 
described workflow to identify how sensitive the results are to pa-
rameterization choices. In particular, we measure the effect on the 
performance metrics Prc and Acc of (i) using an IDW algorithm with 
power of 2 (instead of 3) for the interpolation step, (ii) shifting the or-
igin of the interpolation raster grids by 125 m to the west and south, 
(iii) using raster grid cells of 500 × 500 m (instead of 250 × 250 m), 
and (iv) applying an uncertainty multiplier of 6 (instead of 3) in calcu-
lating and propagating uncertainty (Equation 1). Table 6 shows the 
impact of these scenarios relative to the base scenario for XRF and 
Total ICP-MS analyses.

The sensitivity analysis (Table 6) reveals that performance 
metrics can vary by up to ±~40% relative to the reference scenario 
for Blinds 1, 2, and 3 combined and that Prc tends to deteriorate 
(−41% to +17%; i.e., negative bias) when parameters are changed, 
whereas Acc tends to improve (−20% to +39%; i.e., positive bias). 
Median changes in Prc relative to the base scenario are −10% and 
−7% with and without PCs, respectively. Median changes in Acc 
relative to the base scenario are +12% and +8% with and without 
PCs, respectively. The dependency of provenancing performance 
on parameter choices is relatively significant: performance across 
all three Blind samples and five scenarios averages 61.5% and 
64.4% for Prc when PCs are and are not included, respectively, 
and 61.8% and 59.4% for Acc when PCs are and are not included, 
respectively. Therefore, we recommend that values of 60% be 
used for both Prc and Acc as minimum thresholds for accepting 
a provenance prediction. On this basis, Table 5 clearly shows that 
provenancing of Blind 1 largely failed (4 out of 20 performance 
metrics ≥60%), most likely because of the uncharacteristic choice 
of location of this blind sample as discussed above, whereas prov-
enancing of Blind 3 (10 out of 20) and especially Blind 2 (16 out of 
20) was (more) successful.

3.4  |  Limitations and future research

The present study focussed specifically on data analysis workflows 
for the provenancing of soil trace evidence. It did not address the 

(acknowledged) issues of (i) sample size available for analysis in a 
geochemical survey situation vs a crime scene forensic casework; 
(ii) soil transfer and persistence from the crime scene to the point 
where soil is sampled for forensic assessment; (iii) the potential for a 
questioned soil sample from an urban/suburban environment being 
impacted by human activity (e.g., transported soil for landscaping 
or engineering purpose); and (iv) the choice of interpolation method 
to predict the values of a soil property between survey grid points. 
The latter point has been the focus of investigations in the past (e.g., 
[39–42]), though perhaps not specifically with a forensic application 
in mind. Other limitations to this provenancing approach, such as 
contamination, are common to all forensic traces, for example, fin-
gerprinting, biological tissues, fibers, and not specific to soil prov-
enancing; they are of course an important concern and need to be 
managed by appropriate protocols.

Future research could thus include expanding the present inves-
tigation to include (i) micro-analysis techniques, and (ii) quantitative 
mineralogical and geochemical assessment of soil transfer and per-
sistence (e.g., as footsteps are taken with dirty boots, a car is driven 
with muddied tires, or a shovel is subjected to drying and shaking to 
simulate transport in a vehicle).

Despite the acknowledged limitations to the empirical soil 
provenancing approach developed herein and the recognition that 
additional research is recommended, it is concluded that empiri-
cal soil provenancing based on soil mineralogical and geochemi-
cal surveys can play an important role in forensic and intelligence 
applications.

4  |  SUMMARY AND CONCLUSIONS

A sequential multivariate method of soil provenancing was ap-
plied to a high-density (1 sample per km2) soil geochemical survey 
around North Canberra, southeastern Australia. In this survey, 268 
air-dried topsoil samples (0–5 cm) were analyzed for mineralogi-
cal and geochemical properties (Fourier transform infrared (FTIR) 
spectroscopy, magnetic susceptibility (MS), and geochemical com-
position by X-ray fluorescence (XRF) for total major oxides, and 
inductively coupled plasma-mass spectrometry (ICP-MS) for total 
trace elements as well as for aqua regia-soluble trace elements). 

Variable TV SR From SR To Variable TV SR From SR To

PC3_AR −0.731 −1.698 0.236 PC8_Tot −0.099 −2.118 1.920

PC4_AR 0.969 −0.039 1.978

PC5_AR −0.357 −0.908 0.195

PC6_AR 2.708 1.494 3.922

PC7_AR 0.045 −0.641 0.731

PC8_AR −0.394 −0.995 0.206

Methods are as follows: Fourier transform infrared (_FTIR), mass-specific (Xlf) and frequency-dependent in percent (Xfd_pc) magnetic susceptibility, 
X-ray fluorescence (_XRF), and aqua regia (_AR) and total (_Tot) inductively coupled plasma-mass spectrometry. Units are as follows: All PCs: 
dimensionless; Xlf: 10−6 m3/kg; Xfd_pc: %; XRF: wt%; AR and Tot: mg/kg (ppm). See text for details.

TA B L E  3  (Continued)
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TA B L E  4  Target Values (TV) and Search Ranges (SR) for unknown sample Blind 3 for all variables

Variable TV SR From SR To Variable TV SR From SR To

PC1_FTIR 2.656 0.746 4.565 As_Tot 3.45 2.29 4.61

PC2_FTIR 0.644 0.532 0.756 Ba_Tot 248 171 326

PC3_FTIR 0.135 −0.115 0.384 Bi_Tot 0.22 −0.10 0.54

Xlf 0.37 −0.23 0.97 Ce_Tot 48.0 38.0 58.0

Xfd_pc 10.2 9.02 11.4 Co_Tot 2.38 0.26 4.49

SiO2_XRF 83.4 81.3 85.6 Cr_Tot 44.2 33.7 54.8

TiO2_XRF 0.90 0.85 0.95 Cs_Tot 2.00 1.00 2.99

Al2O3_XRF 4.89 3.97 5.81 Cu_Tot 17.9 −14.5 50.3

Fe2O3_XRF 1.63 0.74 2.51 Dy_Tot 4.10 3.35 4.84

MnO_XRF 0.03 0.00 0.05 Er_Tot 2.78 2.39 3.18

MgO_XRF 0.21 0.03 0.38 Eu_Tot 0.55 0.39 0.72

CaO_XRF 0.17 −0.01 0.34 Ga_Tot 6.13 3.95 8.31

Na2O_XRF 0.22 0.12 0.31 Gd_Tot 3.54 2.85 4.23

K2O_XRF 0.84 0.62 1.07 Ge_Tot 1.37 1.08 1.66

P2O5_XRF 0.09 0.07 0.10 Hf_Tot 20.0 18.0 21.9

LOI_XRF 7.43 5.92 8.94 Ho_Tot 0.87 0.74 1.01

PC1_XRF 3.842 2.932 4.752 La_Tot 24.3 17.7 31.0

PC2_XRF −1.175 −1.817 −0.534 Lu_Tot 0.51 0.45 0.58

PC3_XRF −1.633 −2.330 −0.936 Nb_Tot 14.6 13.1 16.2

PC4_XRF −1.417 −2.273 −0.560 Nd_Tot 19.5 15.0 24.0

PC5_XRF 1.414 0.905 1.922 Ni_Tot 10.4 3.83 17.0

PC6_XRF 0.527 −0.211 1.264 Pb_Tot 12.6 −2.21 27.4

PC7_XRF 0.905 0.453 1.357 Pr_Tot 5.40 4.19 6.62

PC8_XRF 0.594 0.202 0.987 Rb_Tot 46.7 28.2 65.3

Ba_AR 52.4 34.4 70.4 Sc_Tot 6.28 4.62 7.93

Be_AR 0.27 0.09 0.45 Sm_Tot 3.62 2.60 4.64

Ce_AR 12.4 2.80 22.0 Sn_Tot 2.07 1.47 2.68

Co_AR 1.64 −2.00 5.28 Sr_Tot 34.0 25.6 42.4

Cs_AR 0.48 0.28 0.69 Ta_Tot 1.20 1.06 1.35

Dy_AR 0.36 −0.31 1.04 Tb_Tot 0.60 0.41 0.78

Er_AR 0.15 −0.17 0.47 Th_Tot 11.3 9.34 13.3

Eu_AR 0.16 −0.08 0.40 U_Tot 3.06 2.71 3.41

Fe_AR 10923 5832 16015 V_Tot 65.9 49.5 82.2

La_AR 5.98 2.06 9.89 W_Tot 2.06 1.76 2.36

Mn_AR 179 −41.3 399 Y_Tot 24.3 20.1 28.5

Nd_AR 5.00 −0.47 10.5 Yb_Tot 3.17 2.74 3.59

Ni_AR 4.74 2.30 7.19 Zn_Tot 17.6 5.37 29.8

Pb_AR 10.6 −4.15 25.4 Zr_Tot 807 713 900

Rb_AR 8.31 5.53 11.1 PC1_Tot 4.123 −0.383 8.629

Sr_AR 15.1 9.54 20.7 PC2_Tot 5.258 2.606 7.910

Th_AR 0.98 0.38 1.58 PC3_Tot −1.376 −5.015 2.263

Tm_AR 0.02 −0.01 0.05 PC4_Tot 0.694 −0.875 2.263

Zn_AR 21.9 −4.67 48.5 PC5_Tot −3.347 −5.823 −0.870

PC1_AR 6.347 4.412 8.282 PC6_Tot 1.585 0.301 2.869

PC2_AR −2.496 −3.095 −1.897 PC7_Tot −1.328 −2.059 −0.596

(Continues)
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Quality control measures, including the analysis of several sam-
ple triplicates, internal project standards, and certified reference 
materials, were applied. Appropriate compositional data and mul-
tivariate statistical analyses were carried out, including imputation 
of censored values, centered log-ratio transformation, and calcu-
lation of principal components (PCs). Uncertainty was explicitly 
quantified and propagated through all computations. Three blind 
samples, whose locations were unknown to the principal inves-
tigator, were collected by an Australian Federal Police forensic 
scientist to simulate forensic soil evidence to be provenanced 
by the method. These Blind samples were analyzed by the same 
techniques and their Target Values (TVs) and Search Ranges (SRs) 
determined, where SR =TV ± total uncertainty.

The multivariate sequential provenancing method consists of 
preparing an interpolated soil property raster for each reported 
mineralogical/geochemical variable. This was done here using the 
common inverse distance weighting (power of 3) interpolation 
method using a grid cell size of 250  ×  250  m. Interpolation un-
certainty was determined for every soil property raster. For any 
measured variable, each grid cell receives a score of 1 where its 
interpolated value (± uncertainty) overlaps with the uncertainty 
envelope of the evidentiary soil sample, or 0 otherwise. The score 
grids are calculated sequentially for all variables and added up to 
produce “heat maps” showing the pixels where most properties 
from the survey match (within uncertainty) those of the eviden-
tiary sample.

Variable TV SR From SR To Variable TV SR From SR To

PC3_AR −0.490 −1.456 0.477 PC8_Tot 0.043 −1.976 2.061

PC4_AR −1.894 −2.902 −0.885

PC5_AR −0.194 −0.746 0.358

PC6_AR 0.616 −0.598 1.829

PC7_AR 0.178 −0.507 0.864

PC8_AR 0.568 −0.033 1.169

Methods are as follows: Fourier transform infrared (_FTIR), mass-specific (Xlf) and frequency-dependent in percent (Xfd_pc) magnetic susceptibility, 
X-ray fluorescence (_XRF), and aqua regia (_AR) and total (_Tot) inductively coupled plasma-mass spectrometry. Units are as follows: All PCs: 
dimensionless; Xlf: 10−6 m3/kg; Xfd_pc: %; XRF: wt%; AR and Tot: mg/kg (ppm). See text for details.

TA B L E  4  (Continued)

F I G U R E  3  Provenance prediction maps for unknown samples Blind 1 (A), Blind 2 (B), and Blind 3 (C) based on FTIR PC1 to PC3, and 
MS Xlf and Xfd_pc parameters (overview on top, detail below). Each raster cell gets a score of 1 if it satisfies the Search Range for any of 
these parameters, and 0 if not. Maximum theoretical score = 5. Geospatial data from ACT Government or Australian Government, unless 
otherwise indicated [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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F I G U R E  4  Provenance prediction maps for unknown samples Blind 1 (A), Blind 2 (B), and Blind 3 (C) based on XRF parameters (overview 
on top, detail below). Each raster cell gets a score of 1 if it satisfies the Search Range for any of these parameters, and 0 if not. Maximum 
theoretical score = 11. Geospatial data from ACT Government or Australian Government, unless otherwise indicated [Color figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  5  Provenance prediction maps for unknown samples Blind 1 (A), Blind 2 (B), and Blind 3 (C) based on Total ICP-MS parameters 
(overview on top, detail below). Each raster cell gets a score of 1 if it satisfies the Search Range for any of these parameters, and 0 if not. 
Maximum theoretical score = 38. Color ramps are in quantile classes. Geospatial data from ACT Government or Australian Government, 
unless otherwise indicated [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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F I G U R E  6  Provenance prediction maps for unknown samples Blind 1 (A), Blind 2 (B), and Blind 3 (C) based on AR ICP-MS parameters 
(overview on top, detail below). Each raster cell gets a score of 1 if it satisfies the Search Range for any of these parameters, and 0 if not. 
Maximum theoretical score = 19. Color ramps are in quantile classes. Geospatial data from ACT Government or Australian Government, 
unless otherwise indicated [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7  Provenance prediction maps for unknown samples Blind 1 (A), Blind 2 (B), and Blind 3 (C) based on All FTIR, MS, XRF, Tot, and 
AR parameters and their PCs (overview on top, detail below). Each raster cell gets a score of 1 if it satisfies the Search Range for any of these 
parameters, and 0 if not. Maximum theoretical score = 97. Color ramps are in quantile classes. Geospatial data from ACT Government or 
Australian Government, unless otherwise indicated [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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The three blind samples showed a range of performance against 
the various analytical methods, with Blind 1 performing on aver-
age the worst and Blind 2 the best. This indicates that an eviden-
tiary sample may not always be representative of a sample taken 
for geochemical mapping purposes. Thus, natural soil heterogene-
ity is potentially a challenge requiring further research in forensic 
provenancing.

The most precise analytical methods for soil provenancing iden-
tified in this study are FTIR + MS with PCs (average precision 80.7%), 
closely followed by XRF without PCs (80.0%) then XRF with PCs 
(76.9%). The most accurate analytical methods are ALL methods with 
PCs (average accuracy 61.3%), followed by Total ICP-MS with PCs 
(59.1%) then ALL methods without PCs (56.2%). We conclude that 
(i) empirical soil provenancing should prioritize FTIR, MS, and XRF 

analysis, followed by Total ICP-MS and lastly AR ICP-MS; (ii) combin-
ing mineralogical information (e.g., FTIR or MS here, but potentially 
also X-ray diffraction, etc.) with geochemistry significantly enhanced 
the performance of soil provenance analysis; (iii) having access to 

TA B L E  5  Provenancing performance statistics for the sequential 
multivariate method for unknown samples Blind 1, Blind 2, and 
Blind 3 for all analytical methods, with and without principal 
components (PCs) included

Method

With PCs Without PCs

Prc (%) Acc (%) Prc (%)
Acc 
(%)

FTIR + MS

Blind 1 78.4 60.0 51.9 50.0

Blind 2 71.5 40.0 99.8 50.0

Blind 3 92.2 60.0 62.7 50.0

XRF

Blind 1 93.6 66.7 86.6 60.0

Blind 2 73.0 42.9 64.8 33.3

Blind 3 64.1 33.3 88.7 50.0

AR

Blind 1 35.9 34.6 25.6 21.1

Blind 2 92.3 80.0 92.1 83.3

Blind 3 66.8 38.5 63.3 31.6

Tot

Blind 1 28.4 39.5 30.1 36.1

Blind 2 94.0 86.7 91.0 81.6

Blind 3 65.0 51.2 66.5 48.6

ALL

Blind 1 40.4 46.4 30.6 40.0

Blind 2 93.1 84.8 90.3 78.5

Blind 3 65.7 52.7 70.7 50.0

Methods are as follows: Fourier transform infrared (FTIR), magnetic 
susceptibility (MS), X-ray fluorescence (XRF), and aqua regia (AR) 
and total (Tot) inductively coupled plasma-mass spectrometry; ALL 
represents all the above methods combined. Precision (Prc) is defined 
as the ratio of cells in a grid that have scores equivalent to, or lower 
than, the score of the cell containing the Blind (evidentiary) sample 
over the total number of cells. Accuracy (Acc) is defined as the ratio of 
the score for the cell containing the Blind (evidentiary) sample over the 
(actual) maximum score obtained at any cell within the grid. Prc and Acc 
reported in %. See text for details.

TA B L E  6  Sensitivity analysis of provenancing performance 
statistics for the sequential multivariate method for unknown 
samples Blind 1, Blind 2, and Blind 3 for X-ray fluorescence (XRF) 
and total (Tot) inductively coupled plasma-mass spectrometry 
analytical methods, with and without principal components (PCs) 
included

Method

With PCs Without PCs

Scenario
Prc 
(%)

Acc 
(%) Prc (%)

Acc 
(%)

XRF

Blind 1 93.6 66.7 86.6 60.0 Sc 0

95.4 88.9 95.3 80.0 Sc 1

92.8 62.5 85.8 60.0 Sc 2

99.6 88.9 98.8 90.9 Sc 3

90.3 78.9 87.8 81.8 Sc 4

Blind 2 73.0 42.9 64.8 33.3 Sc 0

66.0 70.6 65.7 44.4 Sc 1

54.6 35.7 62.1 33.3 Sc 2

73.1 70.6 79.3 72.7 Sc 3

52.3 55.6 59.5 54.5 Sc 4

Blind 3 64.1 33.3 88.7 50.0 Sc 0

66.3 66.7 66.0 40.0 Sc 1

26.0 20.0 58.1 30.0 Sc 2

23.3 38.9 48.6 54.5 Sc 3

48.4 47.4 63.3 54.5 Sc 4

Tot

Blind 1 28.4 39.5 30.1 36.1 Sc 0

24.6 51.1 24.5 40.5 Sc 1

7.2 30.2 0.8 24.3 Sc 2

7.6 52.2 9.9 52.6 Sc 3

14.8 63.0 15.6 60.5 Sc 4

Blind 2 94.0 86.7 91.0 81.6 Sc 0

77.8 84.8 77.8 81.6 Sc 1

76.7 75.6 77.6 75.7 Sc 2

89.4 95.7 83.4 94.7 Sc 3

94.2 97.8 92.8 97.4 Sc 4

Blind 3 65.0 51.2 66.5 48.6 Sc 0

67.5 60.0 67.4 51.4 Sc 1

51.5 46.3 52.5 42.9 Sc 2

45.9 65.2 46.5 65.8 Sc 3

82.4 87.0 83.9 86.8 Sc 4

The reference scenario (Sc 0) is the base case developed herein (IDW 
power 3; grid origin 679750,6090750; cell size 250 m x 250 m; and 
uncertainty multiplier 3). Variations modifying one of these parameters 
at a time are Sc 1 (IDW power 2), Sc 2 (grid origin 679625,6090625), Sc 
3 (cell size 500 m x 500 m), and Sc 4 (uncertainty multiplier 6). Precision 
(Prc) and accuracy (Acc) reported in %. See text for details.
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as comprehensive an analytical suite as possible is advantageous as 
shown by the performance of the ALL methods category; and (iv) 
inclusion of PCs in the provenancing workflow provides a marginal 
advantage in terms of provenancing performance compared to not 
considering PCs. In a companion paper, we will investigate a simulta-
neous, rather than sequential, empirical soil provenancing method.
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