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Intracerebral hemorrhage (ICH) is the second most common type of stroke and has one

of the highest fatality rates of any disease. There are many clinical signs and symptoms

after ICH due to brain cell injury and network disruption resulted from the rupture of

a tiny artery and activation of inflammatory cells, such as motor dysfunction, sensory

impairment, cognitive impairment, and emotional disturbance, etc. Thus, researchers

have established many tests to evaluate behavioral changes in rodent ICH models, in

order to achieve a better understanding and thus improvements in the prognosis for

the clinical treatment of stroke. This review summarizes existing protocols that have

been applied to assess neurologic function outcomes in the rodent ICH models such

as pain, motor, cognition, and emotion tests. Pain tests include mechanical, hot, and

cold pain tests; motor tests include the following 12 types: neurologic deficit scale test,

staircase test, rotarod test, cylinder test, grid walk test, forelimb placing test, wire hanging

test, modified neurologic severity score, beam walking test, horizontal ladder test, and

adhesive removal test; learning and memory tests include Morris water maze, Y-maze,

and novel object recognition test; emotion tests include elevated plus maze, sucrose

preference test, tail suspension test, open field test, and forced swim test. This review

discusses these assessments by examining their rationale, setup, duration, baseline,

procedures as well as comparing their pros and cons, thus guiding researchers to select

the most appropriate behavioral tests for preclinical ICH research.

Keywords: anxiety, behavioral tests, cognition, depression, emotion, intracerebral hemorrhage, motor function,

pain

INTRODUCTION

Intracerebral hemorrhage (ICH) is a type of intracranial hemorrhage which occurs due to sudden
rupture of tiny arteries in the brain parenchyma. As the second most common cause of stroke
(1, 2), ICH is responsible for 8–15% of all strokes in high-income countries, with the highest rates
in Asia (3). An official Chinese report the National Epidemiological Survey of Stroke in 2012–2013
showed that stroke is the second most common cause of death within the country; among all
causes of stroke mortality, the proportion of ICH was 24% (4). Overall, ICH is a major driver of
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stroke mortality rates, with a 1-month mortality rate of 30–50%
(5), and a one-year rate of 54% (6). Hemorrhage primarily
occurs in the basal ganglia, although it can also occur in the
thalamus, lobes, brainstem, and cerebellum (7, 8). There are
many neurologic manifestations of ICH, depending on the
location and the size of the hemorrhage, and the extent of
subsequent activation of inflammatory cells (9–11). In general,
these manifestations can include motor dysfunction, sensory
impairment, and cognitive impairment. Additionally, some ICH
patients may have recognition deficits, emotional disturbances,
and central pain (12). Thus, to better simulate and evaluate
all the aspects of brain cell injury and connecting network
dysfunction, a battery of assessments have been established
to evaluate behavioral changes in ICH models. Currently, a
wide variety of behavior tests exist for the ICH rodent model
assessment. However, their documentation in research reports
and literature reviews have been sporadic (13). Consequently, a
systematic and comprehensive review that summarizes all the
applications of various behavioral protocols will allow researchers
to be able to more efficiently choose suitable behavioral tests and
thus establish effective models to illuminate the pathophysiologic
mechanisms and assess the potential translation of ICH
treatment. This review summarizes the evaluation methods of
sensory, motor, emotion, and cognition tests after the operation
of the ICH model in rodent animals (Figure 1), thus allowing
experimental researchers to select the appropriate detection
methods according to different experimental conditions.

COMMON BEHAVIORAL ASSESSMENTS

Sensory Tests
Sensory tests are used to assess pain sensitivity. Sensory tests
generally involve mechanical allodynia, thermal hyperalgesia,
and cold hyperalgesia test. The mechanical allodynia test can
be performed with dynamic plantar aesthesiometer or von Frey
filaments; thermal hyperalgesia is often tested by Hargreaves
analgesia meter; and cold hyperalgesia can be tested by acetone
test, cold plate test, or cold plantar assay. In these tests, the
investigator should be blind to the treatment assignment, and
animals should be placed in the test boxes no<30min in advance
to allow for habituation (Table 1). ICH may cause changes in the
pain threshold, so pain sensory testing can be used as one of the
functional outcome parameters.

Mechanical Allodynia
Mechanical allodynia is often tested by von Frey filaments or
dynamic plantar aesthesiometer, which can well-reflect animals’
mechanical pain sensitivity (27, 28). The apparatus needed for
this test includes a metal mesh floor and several plexiglass
chambers (27). The test is usually carried out 1 day prior to

Abbreviations: ART, Adhesive removal test; BW, Beam walking; EPM, Elevated

plus maze; FPT, Forelimb placing test; FST, Forced swim test; GWT, Grid walk test;

HLT, Horizontal ladder test; ICH, Intracerebral hemorrhage; MWM, Morris water

maze; mNSS,Modified neurological severity score; NDS, Neurological deficit scale;

NORT, Novel object recognition test; OFT, Open field test; PWL, Paw withdraw

latency; RPM, Revolutions per minute; SPT, Sucrose preference test; TST, Tail

suspension test; WHT, Wire hanging test.

surgery, and 1, 3, 5, 7, 10, 14, and 21 days post-surgery (14).
Researchers often utilize the up-and-down method designed
by S.R. Chaplan in 1994 (29), but there are also several other
methods used in this test. At the beginning of the test, the
animals are placed in the chamber on a mesh floor and permitted
to freely explore for at least 30min. Then a dynamic plantar
aesthesiometer or von Frey filaments are used to prick the plantar
surface of animals’ hind paws (16).

For the test using von Frey filaments, ascending forces of
filaments are used in sequence. The minimum force that causes
the rat to remove its paw is defined as the paw withdrawal
threshold. The baseline of sham group rats is around 15–20 g
(16, 30). In some experiments, filaments weighing 0.07 or 0.4 g
are chosen to test the mice’s mechanical pain response (17). Each
filament was applied 10 times to the plantar surface (with contact
for 3 s), and mechanical allodynia was defined as the percentage
of withdrawal responses to the 10 stimulation trials. The paw
withdrawal percentage is calculated by the following formula:
[(number of paw withdrawals/10 trials) × 100%]. The baseline
of the sham group is around 10% with the stimulation of 0.07 g
filament, and 40% with the stimulation of 0.4 g filament (17). The
paw withdrawal time of the ICH animals should be longer in
duration than that of the sham group animals.

As for the dynamic plantar aesthesiometer, the forces will
change in ascending, graded forces (2 g/s, and cut-off force is
10 g for mice, 50 g for rats) electrically. The minimum force that
causes a paw withdrawal response is recorded. The process is
repeated three times for each hind paw, and the mean values
are taken as the paw withdraw threshold, respectively (15, 23).
The baseline force for normal rats is around 35 g (15), while the
normal mice is around 0.8 g (16).

The paw withdrawal threshold declines after ICH. Von Frey
test is the most widely used method to test mechanical pain
threshold. Its advantage is that it is easy to implement and
its own set of standard procedures can facilitate a smooth
learning process for beginners. However, a von Frey test takes
longer than testing with a dynamic plantar aesthesiometer. Its
disadvantage is that both assessments can be biased by factors
such as the strength of the hand holding the stab pen, the
criteria for judging the sting, the spontaneous movements of
animals, etc. (31). Humidity, and probably temperature, may
affect elastic modulus, and thus bending force. The filaments
should be applied smoothly and avoid miss-hitting the foot or
slip. The results can be influenced by the animal’s behavior such
as grooming or spontaneous movements. In some cases, it is
difficult to distinguish whether the animals felt pain or just
needed to change their posture. The dynamic filaments may be
more easily affected by the postural change (32).

Thermal Hyperalgesia
The thermal hyperalgesia test requires a shelf with a thick glass
plate, a radiant heat stimulator, and plexiglass chambers. The
temperature of the plate surface is held constant (14, 16, 18). The
test is performed 1 day prior to surgery and on days 1, 3, 5, 7,
10, 14, and 21 post-surgery (14). Before the test, the animals are
placed in the chambers for at least 30min in advance to allow for
habituation. The heat stimulator should be focused on the plantar
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FIGURE 1 | Abnormal behavior after intracerebral hemorrhage (ICH) in rodents. For each behavioral testing, we discussed several aspects, such as rationale, setup,

duration, baseline, procedures as well as comparing their pros and cons. ART, Adhesive removal test; BW, Beam walking; EPM, Elevated plus maze; FPT, Forelimb

placing test; FST, Forced swim test; GWT, Grid walk test; HL, Horizontal ladder; ICH, Intracerebral hemorrhage; MWM, Morris water maze; mNSS, Modified

neurological severity score; NDS, Neurological deficit scale; NORT, Novel object recognition test; OFT, Open field test; RT, Rotarod test; SPT, Sucrose preference test;

ST, Staircase test; TST, Tail suspension test; WHT, Wire hanging test.

surface of the animals’ hind paws under the glass plate (27, 28).
The animal will remove its paw when the stimulation reaches the
heat threshold. The latency of the withdrawal response (the time
between started infrared stimulation to the withdrawal of the
hind paw) should be recorded (28). The duration of stimulation
should be no longer than 20 s to avoid burn damage (14, 27). The
process is repeated three or five times, and the mean values are
taken as the threshold values (17, 23, 28). The baseline for normal
rats is around 12 s (15) and for mice is around 15 s (18). The
latency of the withdrawal response of the ICH animals is shorter
than that of the sham group.

The thermal hyperalgesia test is also widely used in pain
tests. Its advantage is that when animals remove their hind
paws, the device will automatically stop, thus helping to
rule out confounding factors such as subjective judgment. Its
disadvantage is that other problems might occur because of the
free movements of animals as well as their droppings.

Cold Hyperalgesia
The cold hyperalgesia test includes three typical methods: the
acetone test, the cold plate test, and the cold plantar assay (18,
23, 26).

The first one requires a 1ml blunt syringe and a platform with
a mesh floor (19, 20). The animals also need to habituate for at

least 30min in the plexiglass chamber. For the test, acetone is
sprinkled on the plantar surface of the animal’s hind paw (applied
volumes vary across articles) (33). The animal response was
observed for 20 s and graded on a 4-point scale (0, no response;
1, quick withdrawal, flick or stamp of the paw; 2, prolonged
withdrawal or repeated flicking; and 3, repeated flicking of the
paw with licking the plantar surface of the paw). Acetone was
applied alternately three times to each hind paw at intervals
of 30 s (20, 21). The mean values of the three assessments are
taken as the threshold values (21). The baseline values of normal
animals are around one point (22). The mean value of ICH
animals is higher than that of the sham group.

The cold plate test requires a regular cold metal aluminum
platform that can maintain at a constant low temperature (4 ±

1◦C) (23, 24). Animals are to be situated on the plate and the
latency of withdrawal response is recorded. Withdraw latency is
defined as lickings, paw movements, or little leaps (23). A 20 s
cutoff for mice (30 s for rats) should be implemented to prevent
tissue damage (25). The baseline of sham mice is around 15–20 s,
and the baseline of rats is around 25∼30 s (17, 25). The latency of
the withdrawal response for ICH animals is shorter than that of
sham group animals.

There is also a novel behavioral assay for measuring cold
sensation in mice, the cold plantar assay. This test requires a
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TABLE 1 | Sensation tests.

Methods Sub-methods Purpose Timepoint Apparatus Measurement index Range of normal

value

1. Mechanical allodynia Dynamic Plantar

aesthesiometer

Assessment

of mechanical

allodynia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, D21

after surgery (14)

Dynamic Plantar

Aesthesiometer, a

metal mesh floor, and

several Plexiglas

chambers

Paw withdrawal

threshold (g)

For rats: 35 g (15)

For mice: ∼0.8 g (16)

von Frey filaments Assessment

of mechanical

allodynia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, D21

after surgery (14)

von Frey, a metal mesh

floor, and several

plexiglass chambers

For rats: paw

withdrawal threshold (g)

For mice: paw

withdrawal percentage:

[(number of paw

withdrawals/10 trials)

× 100%]

For rats: around

15–20 g (16)

For mice: around 10%

responded to 0.07 g

filament stimulation,

and 40% to 0.4 g

filament stimulation (17)

2. Thermal hyperalgesia Assessment

of thermal

hyperalgesia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, D21

after surgery (14)

A shelf with a thick

glass plate, a radiant

heat stimulator, and

chambers (16, 18)

The latency of the paw

withdrawal response

For rats: ∼12 s (15)

For mice: ∼15 s (18)

3. Cold hyperalgesia Acetone test Assessment

of cold

hyperalgesia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, and D21

after surgery

Acetone, 1ml blunt

syringe, and a platform

with a mesh floor

(19, 20)

A four-point scale For rats: the total score

is below two points

(21).

For mice: around one

point on average (22)

Cold plate test Assessment

of cold

hyperalgesia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, and D21

after surgery (23)

An ice-cold metal

aluminum platform

(23, 24)

The latency of the

withdrawal response

For rats: around 25 s

(25)

For mice: between 15

and 20 s (17)

Cold plantar assay Assessment

of cold

hyperalgesia

One day prior to

surgery, D1, D3, D5,

D7, D10, D14, and D21

after surgery (18)

A shelf with a glass

plate and a 3ml syringe

with the syringe cut the

top off (26)

Paw withdrawal latency For mice: around

10–15 s (26)

shelf with a glass plate a 3ml syringe with the syringe top cut off,
and dry ice powder. Then the dry ice is loaded into the syringe
and compacted into an icicle. The icicle is placed on the plantar
surface of the mouse’s hind paw through the glass plate. The paw
withdrawal latency is defined as the period of time between the
beginning of contact to when the mouse’s foot moves away. The
baseline latency for normal mice is around 10–15 s. This duration
is shorter in ICH animals. The cold plantar assay can complement
currently used assays and accurately measure the cold response
threshold (26).

Cold hyperalgesia tests are widely used in ICH models.
Although the acetone test is easy to administer, it has poor
precision since the capacity of most syringes is 1ml whereas the
experimental dosage of acetone needed is usually only 0.025ml.
The rate at which acetone is ejected from the syringe can also
adversely affect the tests. In addition, acetone may have adverse
health effects for the animals and researchers. In contrast, the cold
plate test is more precise and objective, but more expensive. The
advantage of the cold plantar assay is that it is easy to utilize and
cheap, but it hasn’t been widely used as the other two tests.

Motor Tests
Presently, motor tests commonly used for ICH detection in basic
research generally include the following 12 types: the neurologic
deficit scale, corner test, staircase test, rotarod test, cylinder test,

grid walk test, forelimb placing test, wire hanging test, modified
neurologic severity score, beam walking test, horizontal ladder
test, and adhesive removal test (Table 2).

Neurologic Deficit Scale
The 24-point neurological deficit scale is often used in the motor
function tests. It is the most convenient assessment and doesn’t
require any apparatus. The animals are tested on days 1, 3, 7,
14, and 21 post-ICH (34, 35). For mice, the researcher should
observe 6 aspects, including body symmetry, gait, climbing,
circling behavior, front limb symmetry, and compulsory circling.
Each aspect is graded from 0 to 4, with the maximum score
being 24 points (74). As for rats, the researcher should observe
spontaneous ipsilateral circling, hind limb retraction, bilateral
forepaw grasp, beam walking ability, forelimb flexion. The first
four assessments should be graded from 0 to 3, the last one
should be graded from 0 to 2. The maximum score is 14. The
detailed scoring protocol has been described previously (75).
The baseline for both normal and ICH animals is 0 points.
The advantage of the neurological deficit scale scoring system
lies in its simplicity of procedure as well as equipment and
having a very exact criterion.However, it can be influenced by the
animals’ autonomous activities and the subjective judgments of
the researchers (76).
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TABLE 2 | Motor tests.

Methods Purpose Timepoint Apparatus Measurement index Range of normal value

1. Neurologic deficit scale Use in motor function tests D1, D3, D7, D14, and D21

post-ICH (34, 35)

None required Each aspect is graded from 0 to 4

points, and the total score ranges

from 0 to 24 points

0 point in both mice and rats

(34, 35)

2. Corner test Assessing integrated

sensorimotor function

One day prior to surgery, D1, D3,

D7, D14, D28 and D21 post-ICH

(34, 35)

Two cardboard pieces forming a

corner with a 30◦ angle (36)

The percentage of corner turn scores Around 50% in both mice and

rats (36–39)

3. Staircase test Measuring spontaneous

forelimb usage, walking,

and skilled reaching ability

D6, D28, D29, D30, D31, and

D32 post-ICH (40)

A plexiglass box with several

ladders (40)

The number of pellets remaining in

each well on the two sides

Above nine in both rats and mice

(41, 42)

4. Rotarod test Conduction of a

double-blind assessment of

behavioral function

D1, D3, D7, D14, and D21

post-ICH (43)

An accelerating rotarod (43) The average retention time of staying

in the rotarod

For rats: ∼150 s (44)

For mice: around 250∼300 s (45)

5. Cylinder test Measurement of brain

function and assess

spontaneous forelimb use in

rodents

D1, D3, D7, and D14 post-injury

(46)

Transparent acrylic glass cylinder

with a diameter of 7 to 10 cm (46)

Results analyzed with the following

formula: (contralateral forelimb

movement—ipsilateral forelimb

movement)/(contralateral forelimb

movement + ipsilateral forelimb

movement + both movement)

Around 0 in normal animals (47)

6. Grid walk test Measurement of

sensorimotor coordination in

mice

D1, D3, D7, and D14 post-injury

(48)

An overhead grid which

connects two tall walls (15)

For rats: the numbers of foot faults

For mice: a foot fault index

[(Contralateral faults – Ipsilateral

faults)/total steps] is calculated

For rats: ∼20 times (49, 50)

For mice: <5% (51)

7. Forelimb placing test Assessment of ICH -

induced neurological deficits

D1, D3, D12, and D28 post-ICH

(52, 53)

None This forelimb placement experiment

was quantified as the percentage of

successful responses in 10 trials

Nearly 100% in both rats and

mice (54, 55)

8. Wire hanging test Evaluation of locomotor

abnormalities and

behavioral deficits in models

of striatal, intra-ventricular,

and cortical ICH

D1, D3, D7, D14, and D21

post-ICH (56)

A temperature-controlled and

humidity-controlled room, an iron

wire (1mm in diameter, 55 cm

long, 50 cm above the ground)

(57)

The time that each animal remained

on the wire is recorded, and the

average time is calculated

Around 35 s in mice (58)

9. Beam walking test Measurement of balance

and asymmetrical

coordination

D1, D3, D7, D11, D14, D21, and

D28 post-ICH (59)

A wooden beam usually 50 cm

above the ground for mice, 1m

above the ground for rats (59–62)

Seven point scale Seven point (63)

10. Horizontal ladder test Evaluation of walking ability D7, D14, D21, D28 post-ICH

(64–66).

A horizontal ladder 30 cm above

the ground, and made up of two

clear side walls (1m long and

19 cm high) and several metal

rungs (3mm in diameter)

(67, 68).

Limb error rate = error steps/total

steps × 100%

Close to 0 (68)

11. Adhesive removal test Evaluation of sensorimotor

neurologic deficits of both

forepaws

D1, D3, D7, D14, D21 and D28

post-ICH (69, 70)

Small adhesive tape pieces

(around 4mm for mice, 6mm for

rats) (64, 70–72)

The latency of removing the tape is

recorded

Within 10 s (73)
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Corner Test
The corner test is a method used to assess sensory-motor
function, which has been proven to be a reliable method
for identifying as well as quantifying sensory and postural
asymmetry (74, 77). It provides a simple method for the detection
of contralateral deficit and ipsilateral steering deviation.

The test was applied to the unilateral nigral striatum injury
in rats (78) and to the focal cerebral ischemia in mice (36). The
device is tightly attached to two adjacent plastic plates to form a
narrow lane of 30 degrees, leaving a small opening to approach,
and then the animals are put between the plastic plates facing
the corner. When animals approach the corner, both sides of the
whiskers are stimulated at the same time, causing the animal to
rotate 180 degrees. There is no marked preference for turning
direction in healthy animals whereas unilaterally brain-damaged
animals may display a consistent preference for the same side.
The baseline for normal animals is around 50% (36–39).

The corner test is simple, impartial, and relatively sensitive
(36). In addition to identifying sensorimotor disorders, corner
testing has been shown to be an objective assessment of long-
term functional outcomes in rats and mice (up to 90 days) after
stroke (41, 42, 79). There is an advantage that the corner test may
be more sensitive than other symmetrical tests because it reflects
multiple asymmetries, including forelimb, hind limb, posture,
and steering bias (37). However, it is not sensitive for severely
injured animals and repeated tests (76).

Staircase Test
The staircase test is mainly used to measure and compare the
flexibility, motor coordination, and autonomy ability of mice
before and after forelimb dysfunction caused by ICH (40). Its
main advantage is that it can independently evaluate the ability
of mice to skillfully use their limbs after injury.

This test was originally designed to assess the independent
use of forelimbs in rats (40) and was later used to assess skilled
reaching (80). By observing rats’ behavior when they reach for
food pellets, bilateral measurements of animal forelimb stretch,
mastery of skills, and lateral deviation can be quantified.

The apparatus including a plexiglass box (19 cm wide× 27 cm
long × 25 cm high) with an elevated platform in it, and seven
stairs descending on each side of the platform (40). Food pellets
(45mg of each pellet) were placed on the stairs (three pellets for
each stair). The rat rests on the platform and the food pellets on
one side can only be reached by the rat’s paw on the same side.
The device is designed to encourage animals to get food through
confined spaces (40). The rats are generally food-deprived 3 days
before the assessment, and trained for 2–3 weeks before this task
(5 days per week, two 15-min trials a day with a 4–5 h duration)
(64, 81). Normal animals can usually collect pellets quickly (77).
The number of pellets collected is recorded. The range of normal
values is above nine pellets on each side in both mice and rats
(64, 80). This test has been proven to be sensitive to persistent
defects in the detection of ischemic brain injury (40, 81). Potential
drawbacks of this test are that detailed behavior cannot always
be well-quantified (40) and that long-term pre-training is needed
(77). The video of detailed procedures for rats is available in
reference (82).

Rotarod Test
The rotarod test is used to assess motor coordination and balance
(83, 84). This experiment includes two parts: 3 days of training
before surgery and formal tests on days 1, 2, 3, 5, 7, and 14 after
surgery. Before starting the rotarod test, the mice are trained for
15min at a set rotational speed (15 RPM), followed by three trials
accelerated from 4 to 40 RPM in 5min (43, 85). The average
baseline latency of the three training days before the operation
is obtained (43, 69). On the test day, three trials are run on each
animal, and the average retention time of three trials is computed
(43). There should be a 15-min rest interval between each test
(46). Before surgery, the baseline of rats is around 150 s (86),
while the mice are around 250∼300 s (45, 87). Animals with
hemorrhagic damage tend to fall faster than normal ones (88).
The video of detailed procedures for rats is available in reference
(89). The video of detailed procedures for mice is available in
reference (90). Rotarod test is sensitive and straight forward, but
is unable to evaluate the acquisition of motor skill learning (91).

Cylinder Test
The cylinder test can not only be used as an assay of brain
function but can also evaluate rodent’s spontaneous forelimb use,
which is the main advantage of this method. The device consists
of a transparent acrylic glass cylinder with a diameter of 7–10 cm.
Two mirrors are placed behind the cylinder to observe the mice
from three different angles at the same time. In each trial, the
instances of placement of left and right, right, or left forelimbs
on the wall are recorded. The average percentage of baseline use
of the damaged forelimb is reported to have been tested for two
5-min trials, up to 20 times for each. The animals are evaluated
twice prior to surgery for baseline and then at days 1, 3, 7, and 14
days post-injury (47). The results are analyzed with the following
formula: (contralateral forelimb movement - ipsilateral forelimb
movement)/(contralateral forelimb movement + ipsitralateral
forelimb movement+ both movement). The baseline for normal
animals is 0 (47). The use of contralateral claws is reduced in
animals with brain damage. The video of detailed procedures
for mice can be seen in reference (92). The video of detailed
procedures for rats can be seen in reference (82). The cylinder
test is low-costing and easy to perform. It is sensitive to assess
chronic deficits (93), but is not under-utilized to assess forelimb
deficits (92).

Grid Walk Test
The grid walk test (GWT) is a sensitivemeasure of sensory-motor
coordination (94). The apparatus for this test is consists of an
overhead grid that connects two tall walls (15). The opening of
the grid for rats is around 2–3 cm (95). The animals should be
evaluated at days 1,3,7, and 14 post-injury (48). Normal mice will
precisely grasp the wireframe to balance themselves when placed
on mesh while the hemorrhagic mice’s paws may slip through the
open grid, this is defined as a “foot fault” (94). For the test, the
animals are placed on the mesh for 3min while the number of
“foot faults” for each limb and their total steps are recorded. The
average value of the foot fault test in normal rats is around 20
times (49, 50). A foot fault index [(contralateral faults—ipsilateral
faults)/total steps] is calculated. 0 represents no asymmetry;
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a positive score indicates increased contralateral foot faults
and implies impaired contralateral motor function. Since the
injury of the unilateral brain will cause contralateral neurologic
deficits (77), animals would show increased contralateral foot
faults after unilateral ICH. The normal occurrence for slips
is < ±5% in the sham mice (51). You can watch the video
of detailed procedures for mice as provided by reference (96).
The video of detailed procedures for rats is available from
reference (97).

Forelimb Placing Test
The forelimb placing test (FPT) was scored using the vibrissae-
elicited forelimb placing test (98). Mice have been known to
respond to vibrissae stimulation with foreleg movement (59).
Thus, this can be used to assess ICH-induced neurological
deficits. Prior to the test, the animals were gently moved up and
down to promote muscle relaxation and to eliminate any struggle
response (37, 99). Next, they are placed on the edge of the table.
When themice’s vibrissae touch the table, the healthy animals will
quickly place their ipsilateral forelegs on the table. This forelimb
placement experiment can be quantified as the percentage of
successful responses in 10 trials. It usually takes 5min to complete
the test. In general, this test was performed on days 1, 3, 12,
and 28 after ICH (52, 53). Animals with unilateral brain damage
have been found to respond less on the contralateral side while
healthy rats will generally have a higher success rate in this task
(98). The baseline performance for sham group animals is nearly
100% (54, 55). Overall, the advantage of this test is that it is quick
and easy to perform. It can detect mild neurologic impairments
(77). The examiners should practice in advance to avoid abrupt
moving. The integrity of the mouse whiskers is a prerequisite for
this test (77).

Wire Hanging Test
The wire-hanging test (WHT) is useful for evaluating locomotor
abnormalities (100). It is applied to evaluate grip strength,
balance, and endurance in mice on days 1, 3, 7, 14, and 21
post-ICH (56). An iron wire (1mm in diameter, 55 cm long)
is stretched horizontally between two posts, 50 cm above the
ground. Mice are placed on the wire and have to use their
forelimbs to suspend their body weight. The hind limbs are
gently covered with adhesive tape to prevent them from using
all four paws. A pillow is placed beneath the mice to prevent
falling injuries. The time that each animal remained on the
wire is recorded (57). The baseline of the sham group is
around 30–40 s (101). The result is represented as the average
of three trials per animal (102). Compared to normal mice,
gripping and forelimb strength are significantly impaired in
ICH mice at all of the time points, and falling latency in the
wire-hanging test is shorter than normal or sham animals on
days 1, 3, and 7 post-ICH (56). WHT is useful to measure
coordination and endurance. The limitation of this test is that
it’s unsuitable for rats. For their heavier weight means that it
is painful for them to support their body weights on a wire
and the test has a higher chance of causing fall injuries. Results
might be in inconsistent because of the moving of the hind
limbs (103).

Modified Neurologic Severity Score (mNSS)
The modified neurologic severity score (mNSS) contains sensory
tests, motor tests, reflex tests, and beam balance tests (104) and
is used to assess neurologic deficits and the grade of neurologic
damage on the aspects of motor, ground walking, sensory,
coordination of movements, reflex, and abnormal movements
(105) (Table 3). The tests are performed on days 1, 3, 7, 14,
and 30 after ICH by the testers who are blind to the treatment
groups using either rats or mice (106). For bothmice and rats, the
tester should observe 4 aspects, including abnormal movements
or absence of reflex, beam balance test, sensory function, and
locomotor function. The first, third, and fourth aspects are all
graded from 0 to 1 point and the second aspect is graded from 0
to 6 points. The baseline for the normal animals is 0 points. Each
animal should be tested twice and the average score is calculated
after the test (105). The highest score is 18. The higher the score,
the more severe the injury is (104).

Beam Walking
Beam walking is always carried out to measure balance and
asymmetrical coordination (108). It can be performed at 1, 3, 7,
11, 14, 21, and 28 days post-ICH (59). The wooden beam sets up
at 50 cm above the ground for mice and at 1m above the ground
for rats (59–62). Animals should be trained to cross the beam
before surgery (107). The animals are graded on a seven-point
scale on the performance when they cross the beam. Each testing
session consists of three trials to get an average value (63, 65, 109).
This test can be used to evaluate the balance and the locomotor
activity of the rodents. The disadvantage of this test is that the
narrower the balance beam is, the more times the test animal
misses, which leads to the lower reliability of the results.

Horizontal Ladder Test
The horizontal ladder test (HLT) is used to evaluate walking
ability (110, 111). Rats are mainly used in this test. The horizontal
ladder is 30 cm above the ground and is made up of two clear
side walls (1m long and 19 cm high) and several metal rungs
(3mm diameter). The distance between two adjacent rungs is
changeable (1–5 cm accordingly) (67, 68). A home cage is placed
at the end of the ladder to encourage the animals’ moving (112).
Rats should be trained for 3 days before surgery and tested at 7,
14, 21, and 28 days post-surgery, and three times per day to get
an average value (64–66). Every slight paw slip, deep paw slip,
and complete misses are scored as an error (112, 113). The total
number of steps and the number of errors of each limb is counted
(113). Each limb error rate is calculated as error steps/total steps
× 100%. The baseline of normal animals is closed to 0 (68).
HLT is sensitive enough to evaluate the relationship between
motor impairment and injury volume in ICH (67). It is useful
in assessing chronic deficits and can be used repeatedly since the
rungs are changeable (112).

Adhesive Removal Test
The adhesive removal test (ART) is used to assess the
sensorimotor neurologic deficits of both forepaws (69, 114). It is
assessed on days 1, 3, 7, 14, 21, and 28 post surgery, and needs
3 days’ training prior to surgery (69, 70). The equipment needed
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TABLE 3 | The modified neurologic severity score (mNSS).

Methods Purpose Timepoint Apparatus Measurement index Range of normal

value

1. Abnormal movements or

absence of reflex

Assessment of neurologic

impairment on reflex and

abnormal movements

One day prior to surgery,

D1, D3, D7, D14, D30 after

surgery (106)

None required Corneal reflex, pinna

reflex, startle reflex, and

dystonia or convulsion

0 point in both

mice and rats

(105)

2. Beam balance test Assessment of neurologic

impairment on coordination

of movements

One day prior to surgery,

D1, D3, D7, D14, D30 after

surgery (106)

Wooden cylindrical bar

(107)

The time that stays on

the balance beam

0 point in both

mice and rats

(105)

3. Sensory function Assessment of neurologic

impairment on sensory

function

One day prior to surgery,

D1, D3, D7, D14, D30 after

surgery (106)

A table Contractile reaction 0 point in both

mice and rats

(105)

4. Locomotor function Assessment of neurologic

impairment on locomotor

function

One day prior to surgery,

D1, D3, D7, D14, D30 after

surgery (106)

None required The state of the motor

function

0 point in both

mice and rats

(105)

for this test is very simple, the adhesive tape and a scissor. Using
the scissor to cut the tape into small circular or square pieces,
the diameter or length is around 4mm for mice and 6mm for
rats (64, 70, 71). Gently apply the tape to each forepaw in a
random order (60, 115). Be sure to keep equal pressure between
each trial and each animal (60). The latency of removing the tape
is recorded from the time the animal notices the tape until the
tape is removed. The animal’s forepaw is tested three times to
calculate the average value. An interval of 5min between each
trial is necessary (73, 115). The cutoff time is around 120–180 s
(60, 64, 115). The animal should acclimatize the experimental
cage for 2min in advance (69, 116). A 3-day-training is required
to ensure the animal adapts to the condition of being put on
the tape, and to learn to tear the tape off within 10s (73). ART
can be used to evaluate primarily the sensory deficits and the
asymmetrical biases (79). Special equipment is not needed. The
size and stickiness of the tape should be the same for data
reproducibility (93).

Cognition Tests
A variety of mazes are widely used in testing animals’
cognitive ability. In basic research of ICH rodent animal
models, the Morris water maze, Y-maze, and novel
object recognition tests are the most frequently used
methods (Table 4).

Morris Water Maze
The Morris water maze (MWM) is usually used to evaluate
spatial learning andmemory ability after ICH (117). The required
device consists of a metal pool (120 cm in diameter; 55 cm in
height) which is divided into four quadrants with a platform
(10 cm in diameter, 21 cm in height) in one quadrant for the
animals to escape. The pool is filled with water 2 cm above
the platform. The water temperature is maintained at 26 ±

1◦C (58, 118). Noldus EthoVision tracking software is to record
the delay, frequencies, and swimming speed of the mice before
the discovery of the platform (119). The experiment includes
two parts: 5 days of training and a sixth test day. The mice
are trained at intervals of 20–30min for a total of four times
during each training day. During training, mice should be placed

gently on the instrument facing the wall. On average, the mice
found the platform within 90 s and stayed on the platform for
15 s (118, 124). If the platform could not be found within 90 s,
the mice are gently guided to the platform for 15 s, and the
latency is recorded as 90 s. After each test, mice are wiped with
a towel and placed into the heating cage. On the sixth day, the
platform is removed, and the animals are tested as usual. The
results are the time spent in the incubation period and the target
quadrant of the platform (117, 118, 125). In training experiments,
shorter latency in reaching the platform can be correlated with
better spatial learning and memory ability. Initially, ICH mice
took significantly longer than control mice. The escape latency
of sham group rats is around 15 s (88). For the sham group
mice, the escape latency is around 45s, and target crossings
required ∼12 s (119). However, this latency should significantly
be reduced over the next few days, suggesting that spatial memory
is established (126).

MWM is the most widely used method for testing memory
(127). Olfactory trails or cues are eliminated in this test
(128). The experimental data can accurately assess the animal’s
sense of spatial position and direction, especially in terms of
spatial positioning. However, this method has some shortfalls.
Swimming is an acute stressful stimulus for the animals, so
neuroendocrine effects may impact experimental results (128).
Additionally, the water temperature has a significant impact
on animal activities, so it is essential to keep the water at
a comfortable temperature. Finally, after the experiment, the
experimental animals should be dried immediately to prevent
sickness. The video of detailed procedures for mice can be seen
in reference (129). The video of detailed procedures for rats can
be seen in reference (130).

Y-Maze Test
The Y-maze is also often used to test spatial memory. The device
of Y-maze consists of three arms [40 cm long × 15 cm wide ×

35 cm high for rats, 30 cm long × 10 cm wide × 17 cm high
for mice)], diverging at 120◦ from the central point (121). The
entrance of each arm is closed with a baffle. The test is performed
30 days after the operation (120). During the test, the baffles
of two random arms are opened. One of the two is chosen to
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TABLE 4 | Cognition tests.

Methods Purpose Timepoint Apparatus Preparation Measurement index Range of normal

value

1. Morris water maze Evaluation of

spatial learning

and memory ability

D8-15 post-ICH

(117, 118)

A metal pool (110 cm in

diameter) filled within 15 cm

of the upper edge, a

platform (11 cm in diameter)

for the animals to escape to

the changing position of

each block (maximum = 60

sec/test)(119)

Mice are trained at

intervals of 20–30min

for a total of four times

during each training

day (117, 118)

Escape latency,

percentage time spent

in the target quadrant,

and platform crossing

times.

For rats: escape

latency: ∼15 s in the

testing day (88)

For mice: escape

latency: ∼45 s

Target crossings: 12

times (119)

2. Y-maze test Testing of spatial

memory

D30 post-ICH

(120)

Consists of three arms

(40 cm ×15 cm × 35 cm for

rats, 30 cm × 10 cm ×

17 cm for mice) diverging at

a 120◦ from the central

point, and the entrance of

each arm is closed with a

baffle (75, 121)

Placement of animals

inside the arm for free

exploration of the

opened two arms for

5min (120, 122).

The percentage of

novel arm entries.

Around 35% in mice

and rats (75, 108)

3. Novel object

recognition test

Testing of

non-spatial

memory

D21 post-ICH (57) Three objects numbered A,

B, and C respectively, and

an open-field arena (30 cm

× 25 cm × 20 cm) (57)

Habituation to the

environment for 5min 1

day before the test

(57, 123)

The discrimination

index (exploring object

C/exploring of both

objects)

Around 70% in mice

and rats (57, 123)

be the Start arm, and the remaining arm with baffle still on
is designated the novel arm (122). The animals are put in the
start arm and allowed to explore the opened two arms freely
for 5min. Then they are put back in the home cage to rest.
After 2 h, all three baffles are removed and the animal is allowed
to explore freely for 5min. The durations of explorations in
three arms and the duration in each arm are recorded (117).
The percentage of novel arm entries is calculated around 35%
(108, 121). There is another calculation method. First, label the
three arms of the maze A, B, and C. Then start recording.
Next, examine the recorded number of all arm entries and
alternations. Finally, calculate the percent (%) alternation with
the following formula:

% Alternation = (Number of Alternations/[Total number of
arm entries− 2])× 100 (131).

The advantage of the Y-maze test is that it is easy to perform
and the apparatus itself is simple and convenient. The sensitivity
and reproducibility of the test need to be characterized in the ICH
models (76). The video of detailed procedures for mice can be
seen in reference (132). The video of detailed procedures for rats
can be seen in reference (133).

Novel Object Recognition Test
The novel object recognition test (NORT) assesses the animals’
memory capability. It requires three objects, numbered A, B, and
C, respectively, and an open-field arena (47 cm× 26 cm× 20 cm)
that can hold the objects and mouse (56). Object A is the same
as object B (green cubes, 4 cm × 4 cm × 3 cm), and they both
look different from object C (white ball, 5 cm in diameter) which
is the novel object (56). The open-field arena for rats is larger
(60 cm × 60 cm × 50 cm) (134). The test includes three periods:
habituation on day 1, training on day 2, and testing 1 h after
the training. First, the mouse is placed in the empty arena and

allowed to explore for 10min on day 1. On the next day, objects
A and B are placed in the open-field arena, and the mouse is put
between these two objects, where it is permitted to explore freely
for 5min. Then, themouse is taken out and placed back in its cage
for a rest. The arena should be cleaned with alcohol to eliminate
other scents at this time. After 1 h, object B is replaced by object C,
and the mouse is returned to the arena for 5min. The durations
of exploration for object A and object C are recorded. The
movement of the mouse is recorded by a camera and analyzed
later. Sniffing or touching with the nose and/or forepaws within
2 cm around the objects is defined as an exploration event. Sitting
or leaning on the objects is not considered to be exploratory
behavior. The discrimination index is calculated as the time spent
exploring object C divided by the time spent exploring both
objects. The baseline of the discrimination index in normal mice
or rats is around 70% (57, 123).

NORT is simple to perform and can be completed in a short
time (135). However, experimental data is painstaking to obtain
since video analysis takes considerable time and the animals’
exploratory behavior may be hard to categorize at times (57).
Choosing appropriate objects is difficult because the size, shape,
material, and height, etc. may affect animals’ preference (76). The
video of detailed procedures for mice can be seen in reference
(136). The video of detailed procedures for rats can be seen in
reference (137).

Emotion-Related Tests
Emotion tests are currently commonly used in basic neurologic
research but seldomly used in ICH research. The mood tests
are mainly divided into anxiety and depression tests. These
texts include the elevated plus-maze, sucrose preference test, tail
suspension test, open field test, forced swim test, and so on
(Table 5).
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TABLE 5 | Emotion-related tests.

Methods Purpose Timepoint Apparatus Measurement index Range of normal value

1. Elevated Plus Maze Testing for anxiety D30 post-surgery (75). Consists of two arms and looks like a

cross, one of the arms has walls

around, called an enclosed arm, while

the other without walls is the open

arm. The maze for the rat is 50 cm ×

10 cm × 50 cm [86]. The maze for the

mice is 45 cm × 11 cm × 22 cm, and

80 cm above the ground (138)

The percentage of time spent in the open

arm and the entries into the open arm

For rats: the percentage of time spent in

the open arm: around 30% (139)

For mice: the number of entries into the

open arm: around 3 times (140).

2. Sucrose

preference test

Testing for anhedonia

and depression

D18-21 post-surgery

(141)

Consists of two bottles, one of which

is used to hold 1% sugar solution and

the other holds pure water (141)

The sugar solution preference is calculated

by following formula: the sugar solution

consumption (g)/[pure water consumption

(g) + sugar solution consumption (g)]

For rats: ∼70% (142)

For mice: around 90% (56)

3. Tail suspension test Testing for depression D21 post-surgery (57) A hanging box (55 cm × 60 cm ×

11.5 cm), Polycarbonate tube (4 cm in

length, outside diameter 1.6 cm, inner

diameter 1.3 cm), and packaging tape

(57)

The duration of stationary time 150–300 s in mice (143)

4. Open field test Testing for anxiety-like

emotion in post-stroke

pain models

D30 post-surgery (75) An open-field box (100 cm × 100 cm

× 100 cm), the bottom of which is

subdivided into 16 equal squares,

and a computerized tracking system

(144, 145)

The duration in the outer and inner zone For rats: ∼50 s in the inner zone (145).

For mice: the duration in the outer zone is

around 350 s, and in the inner zone is

around 200 s (144)

5. Forced swim test Analysis of

depressive-like

behavior

D22 post-surgery (146) A container (50 cm high and 20 cm in

diameter for rats, 20 cm high and

22 cm in diameter for mice) filled with

water (146, 147)

The duration of immobility, climbing time

and swimming time

For rats: the mean immobility time of

125–150 s, a mean struggling time of

75–100 s, and a mean swimming time of

200–225 s (147)

For mice: a mean immobility duration of

120–140 s, a mean climbing time of

20–40 s, and a mean swimming time of

70–90 s (146)
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Elevated Plus Maze
The elevated plus maze (EPM) is generally applied to test anxiety
(75). The test apparatus is composed of two arms and looks like
a cross. One of the arms surrounding walls and is called the
enclosed arm, while the arm without walls is called the open arm.
The maze for the rats is 50 cm × 10 cm × 50 cm (75). The maze
for the mice is 45 cm × 11 cm × 22 cm and located 80 cm above
the ground (138).

The test relies on the rodent’s exploratory nature.When placed
in the middle of an EPM, their nature compels them to examine
the open arm. However, rodents’ fear of heights would discourage
exploration, thus inducing anxiety. The test is performed 30 days
post-ICH surgery (75). Two hours before the test, the mice are
put into the testing room to adapt to the environment. At the
start of the test, the animal is placed at the intersection of two
arms with its head facing the open arm. The animal is allowed
to explore the maze freely for 5min (138, 148). The time spent
in the open arm and the number of entries into the open arm is
recorded (149). For rats, the baseline for entries into the open arm
is around three times, and the percentage duration of time spent
in the open arm is around 30% of the total testing time (139). For
mice, the duration of time spent in the open arm is around 20 s,
with∼3 entries (140).

The advantage of the EPM test is that it is easy to conduct
and record, and does not need pre-training (150). However,
sometimes animals can fall from the open arms and get hurt,
and some animals may be reluctant to move onto the arms after
surgery. The video of detailed procedures for mice is available
from reference (151). The video of detailed procedures for rats
is available from reference (152).

Sucrose Preference Test
The sucrose preference test (SPT) is used to test anhedonia
and depression (141). The device includes two bottles, one of
which contains 1% sugar solution and the other pure water
(141). The test is performed at 18–21 days post-surgery (141).
At the beginning of the test, two bottles of water of equal weight
are placed in the cage. At the end of the test, the bottles are
weighed and water consumption is calculated. Then the sugar
solution preference is calculated by the following formula: the
sugar solution consumption (g)/[pure water consumption (g) +
sugar solution consumption (g)] (153). The baseline of normal
rats and mice is around 70% (142) and 90% (56), respectively.
We conclude from the references that compared with the control
group, the sugar solution preference degree of the depression
group is lower (154).

SPT is easy to perform and causes no harm to the animals,
It is the best method for evaluating anhedonia in mice (155).
However, it lacks standardized apparatus (156). Water loss when
taking out and putting in the cage is not easy to control, which
will affect the experimental results. The experimental results are
closely related to the feeding state of animals and can be affected
by environmental inconsistencies (156). Researchers have to
control the animals’ diet before the test. The video of detailed
procedures for mice can be seen in reference (157). The video
of detailed procedures for rats is available from reference (158).

Tail Suspension Test
The tail suspension test (TST) is applied to test depression (159).
The apparatus consists of a hanging box (55 cm × 60 cm ×

11.5 cm), polycarbonate tube (4 cm in length, outside diameter
1.6 cm, inner diameter 1.3 cm), and packaging tape. The test is
performed on day 21 post-surgery (57). To prepare for the test,
a 17 cm tape with a marking at 2 cm is stuck to the animals’ tails
(2–3mmof the end of the tail should be left outside the tape). The
free end of the tape is hung on the hanging rod. The upside-down
position will cause the animals to struggle. When they come
to realize that struggling does not change their situation, they
will cease to move. The mice are suspended for 7min, and the
stationary time in the last 6min is recorded (143). After the test,
the mice should be put back into their cages, and the researcher
should gently pull off the tape from the tail. It is concluded from
the references that the immobility time in 6min of the control
group is 150–300 s.

TST is easy to perform (160). The limitation of the test is that it
is not suitable for rats because they are heavier. Thus, it is painful
for them to rely on their tails to support their bodies’ weight (tail
fracture is a possibility).

Open Field Test
The open-field test (OFT) is often used for locomotor activity
and anxiety-like emotion in ICHmodels (13, 161). The apparatus
consists of an open-field box (50 cm × 50 cm × 38 cm), the
bottom of which is subdivided into 25 equal squares (nine squares
in the center called the inter-zone, surrounded by 16 outer zones),
and a computerized tracking system (144). Like the EPM test, the
OFT utilizes the exploratory nature of rodent animals. Normal
animals will spend time exploring the inner zone, while ICH
animals are more likely to stay in the outer zone to feel more
at ease. The test is performed on day 30 after surgery (75). On
the testing day, the animals are put into the testing room for 2 h
in advance to adapt to the testing environment. When the tests
begin, the animals are put into the box for 10min (145). The
duration of time spent in the outer and inner zones is recorded
(145, 161). The baseline duration spent by normal mice in the
outer zone is around 350 s, and the duration spent in the inner
zone is around 200 s (144).

OPT is widely applied in rodent behavioral research, but it has
limitations because its outcome can be easily affected by many
factors, such as time, lighting conditions, and room temperature
(76, 144). The video of detailed procedures for mice is available
from reference (144).

Forced Swim Test
The forced swim test (FST) is a behavioral test for rodents first
described in 1978 by Porsolt et al. (162). This test was developed
as a model for predicting the clinical efficacy of antidepressant
drugs and is now also widely used to analyze depressive-like
behavior (57, 146).

In this test, an animal is placed in a container (50 cm high and
20 cm in diameter for rats, 20 cm high, and 22 cm in diameter for
mice) filled with water. The test for rats consists of two sessions
24 h apart. The first session is the pre-test stage (15min) and the
second session is the test stage (5min). The test for mice consists
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of one session 6min long, divided into two sessions; the pre-test
(the first 2min) serves as a habituation period for the test (the
last 4min) (146). Immobility, swimming, and climbing behaviors
are recorded (163). References indicate that normal mice have
a mean immobility time of 120–140 s, a mean climbing time
of 20–40 s, and a mean swimming time of 70–90 s (146). The
baseline for normal rats is 125–150 s of immobility time, 75–100 s
of climbing time, and 200–225 s of swimming time (147). It has
been proven that animals exhibit increased immobility time in
the FST after depression and that various antidepressants are able
to reduce immobility time by increasing the swimming and/or
climbing time (147, 164).

FST is low-costing, fast, and reliable. It is widely used
to screen anti-depressants (160). However, it lacks construct
validity and specificity (93, 165). Experimental animals will suffer
from behavioral desperation when they are forced to swim.
Additionally, one crucial limitation of the FST is that re-testing
will lead to inaccurate experimental results, so animals can only
be tested once in their lifetime. Lastly, similar to other tests,
animal behavior in the FST is also influenced by biological factors
including preconditioning before the FST, schedule, routes of
treatment, dosage, and type of drugs, experimental design and,
laboratory environmental factors (166). Detailed video for the
mouse (167) and rat (146) procedures are available.

Finally, due to the great variety of animal behavior tests, more
effort should be made to ensure the consistency of experimental
conditions, and more attention should be paid to the following
aspects to reduce the error of experimental results. (1) The
test environment should be quiet and appropriate. (2) The
animals should be given 2–3 h to habituate to the experimental
environment before the test. (3) Animals should have rested
for sufficient intervals to eliminate influence from the previous
experiment. (4) The experimental equipment is wiped with
alcohol before testing to eliminate odor. (5) External stimuli such
as lighting, water temperature, water quality, and movement of
the experimenter may all influence the animal’s behavior. (6)
Animals soaked in water should be dried at the end of the
experiment to avoid sickness. (7) Double-blind should be taken
as far as possible to reduce the influence of subjective factors. (8)
Animals with significant limb use bias during pre-training should
be excluded from the test.

CONCLUDING REMARKS

Acute ICH increases with age and can occur in various brain
locations. Subsequent brain damage and network disruption
can lead to location-specific clinical signs and symptoms.
Therefore, a wide range of behavioral tests should be utilized
to assess relevant functional impairment. For example, when
the striatum is injured, the sensorimotor function should be
assessed, and when the thalamus is injured, the pain and
emotional responses in addition to the motor function should
be assessed.

Currently, the collagenase-induced and the whole blood
animal models are the two best simulations of clinical ICH.
They both generate hematoma within the brain parenchyma

with distinct pathophysiology. Based on our knowledge, there
are no studies focusing on the differences between these two
preclinical models of ICH with regard to behavioral aspects.
Our unpublished data indicate that, when comparing with
the whole blood ICH model, the collagenase-induced ICH
model shows greater blood-brain barrier breakdown and more
severe neurologic deficits. Comparing with the collagenase-
induced striatal ICH model, the collagenase-induced cortical
ICH model shows transient and mild neurologic deficits and
greater cognitive and emotional impairment (57). It has been
suggested that both the collagenase-induced and the whole blood
model should be tested in preclinical ICH drug efficacy studies.

There is currently no behavioral test specific to the ICH-
induced brain injury. This is different from the Parkinson’s
disease model that can be assessed with a 6-OHDA-induced
behavior test stressed by apomorphine. Based on this fact, we
enumerated and discussed the behavioral tests that have been
used in preclinical ICH research to provide a clear guide for
researchers. These behavioral tests include a full evaluation of
pain, motor, cognitive, and emotional dysfunction. The rationale,
setup, duration, baseline, procedures, as well as pros and cons of
each assessment, are also discussed. One point to note is that the
protocol and the baseline used in different laboratories may vary
even with the same functional behavioral assessment.

There is a gap between preclinical and clinical research of
post-ICH depression. Koivunen et al. reported that about one
out of four ICH survivors suffers from long-term depression
(168). Because of the high incidence of post-ICH depression,
elucidating its pathomechanism and identifying the therapeutic
strategies become hot areas of current stroke/ICH research. The
application of emotion-related behavioral tests in preclinical ICH
research will help with the screening of potential therapeutics
for treating post-ICH depression. Through PubMed research,
however, we identified only five research papers in which the
depression-like behaviors were studied in rodents with ICH (56,
57, 75, 88, 169). Based on the fact that we know very little about
post-ICH depression-like behaviors in rodents, more research
into this new area is strongly recommended.

Because different brain regions control specific brain
functions, the location of brain hematoma determines the type
of dysfunction that results. The selection of the behavioral
tests for ICH research should keep this in mind. For a striatal
ICH model, locomotor function tests can be selected. For a
cortical ICH model, the cognitive and emotional tests should be
selected, and for a thalamic ICH model with restricted damage
to the lateral posterior nucleus, the sensation, cognitive, and
emotion-like tests can be selected. Of course, the selection of the
specific behavioral test should consider the research objectives,
the experimental conditions, and the available lab resources (64).

Several methodologic issues may have hampered the clinical
translation of preclinical findings. To provide a feasible and
precise assessment of drug efficacy and to elucidate the underly
cellular and molecular mechanisms of action, researchers should
select the appropriate behavioral tests associated with location-
specific ICH-induced brain cell injury and relevant network
dysfunction. Additionally, many variables in rodent behavioral
tests including age, sex, the specific strain of the animals,
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and comorbidies such as diabetics and hypertension can all
influence the animal’s behavioral test performance. For instance,
age-related decline in learning, memory, and sensorimotor
functions are well-established observations (170–173). In this
regard, careful characterization of the baseline behavior should
be established to rule out the fundamental differences in test
performance, especially if global knockout mice are included.
Finally, the blinding strategy should always be followed to reduce
the Pygmalion effect or the observer bias, which requires blind
allocation of the experimental groups and the blind assessment
of the outcome measures (174).

Although histology, cellular and molecular biology,
genetics, and electrophysiology are key tools for understanding
mechanisms of action of novel therapeutic strategies, behavior
represents the functional outcome of ICH and should be used
for the final preclinical evaluation. Good lab practice with

careful selection and execution of existing behavioral tests
as we discussed above may improve the outcome of future
translational research.
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