
RESEARCH ARTICLE

A computational model tracks whole-lung

Mycobacterium tuberculosis infection and

predicts factors that inhibit dissemination

Timothy WesslerID
1,2‡, Louis R. JoslynID

1,2‡, H. Jacob BorishID
3, Hannah P. GideonID

3,

JoAnne L. FlynnID
3, Denise E. Kirschner2*, Jennifer J. Linderman1*

1 Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of

America, 2 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan,

United States of America, 3 Department of Microbiology and Molecular Genetics, University of Pittsburgh

School of Medicine, Pittsburgh, Pennsylvania, United States of America

‡ These authors share first authorship on this work.

* kirschne@umich.edu (DEK); linderma@umich.edu (JJL)

Abstract

Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills

more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb

infection, are complex structures that form in lungs, composed of immune cells surrounding

bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically

contain and immunologically restrain bacteria growth, some granulomas are unable to

control Mtb growth, leading to bacteria and infected cells leaving the granuloma and dissem-

inating, either resulting in additional granuloma formation (local or non-local) or spread to

airways or lymph nodes. Dissemination is associated with development of active TB. It is

challenging to experimentally address specific mechanisms driving dissemination from

TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model,

MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran

follows cells, cytokines, and bacterial populations within each lung granuloma throughout

the course of infection and is calibrated to multiple non-human primate (NHP) cellular, gran-

uloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in

vivo local and non-local dissemination, predict likelihood of dissemination, and predict a

crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing

dissemination.

Author summary

Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb) and kills

3 people per minute worldwide. Granulomas, spherical structures composed of immune

cells surrounding bacteria, are the hallmark of Mtb infection and sometimes fail to con-

tain the bacteria and disseminate, leading to further granuloma growth within the lung

environment. To date, the mechanisms that determine granuloma dissemination events

have not been characterized. We present a computational multi-scale model of granuloma

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007280 May 20, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wessler T, Joslyn LR, Borish HJ, Gideon

HP, Flynn JL, Kirschner DE, et al. (2020) A

computational model tracks whole-lung

Mycobacterium tuberculosis infection and predicts

factors that inhibit dissemination. PLoS Comput

Biol 16(5): e1007280. https://doi.org/10.1371/

journal.pcbi.1007280

Editor: Dominik Wodarz, University of California

Irvine, UNITED STATES

Received: July 24, 2019

Accepted: February 26, 2020

Published: May 20, 2020

Copyright: © 2020 Wessler et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are available

at the following: http://malthus.micro.med.umich.

edu/lab/movies/MultiGran/ (as is indicated in the

text).

Funding: This research was supported by

R01AI123093 awarded to DEK and JLF;

R01HL110811 awarded to DEK, JLF, and JJL; and

UO1HL131072 awarded to DEK, JLF, and JJL.

Simulations also use resources of the National

Energy Research Scientific Computing Center,

http://orcid.org/0000-0001-8122-2016
http://orcid.org/0000-0002-7260-6568
http://orcid.org/0000-0002-9220-673X
http://orcid.org/0000-0002-4443-2134
http://orcid.org/0000-0001-7874-8981
https://doi.org/10.1371/journal.pcbi.1007280
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007280&domain=pdf&date_stamp=2020-05-20
https://doi.org/10.1371/journal.pcbi.1007280
https://doi.org/10.1371/journal.pcbi.1007280
http://creativecommons.org/licenses/by/4.0/
http://malthus.micro.med.umich.edu/lab/movies/MultiGran/
http://malthus.micro.med.umich.edu/lab/movies/MultiGran/


formation and dissemination within primate lungs. Our computational model is cali-

brated to multiple experimental datasets across the cellular, granuloma, and whole-lung

scales of non-human primates. We match to both individual granuloma and granuloma-

population datasets, predict likelihood of dissemination events, and predict a critical role

for multifunctional CD8+ T cells and macrophage-bacteria interactions to prevent infec-

tion dissemination.

Introduction

Tuberculosis (TB) kills more individuals per year than any other infectious disease and treat-

ment remains a global challenge [1]. Only a small fraction (5–10%) of those infected with

Mycobacterium tuberculosis (Mtb) develop active symptomatic disease [2], while the remain-

der control but do not eliminate the infection, which is termed latent TB (LTBI). A hallmark

of Mtb infection is the presence of lung granulomas (lesions), collections of immune cells that

surround Mtb in an effort to contain and control an infection. Multiple granulomas can be

present in humans and non-human primates (NHPs). In NHPs, each granuloma is initiated

by a single bacillus [3]. Of key importance is that each granuloma within an individual has its

own independent trajectory behavior. For example, the immune response in some granulomas

eliminates all bacteria, resulting in sterilization. In other granulomas, immune cells only con-

tain Mtb growth, resulting in stable granulomas that may persist for decades [4]. If Mtb growth

is not contained, however, granulomas can grow and/or spread, allowing for dissemination of

bacteria across the lungs leading to the formation of new granulomas, spread to the airways

resulting in transmission of infection through aerosolized bacteria, and possibly death of the

host if not treated. Understanding the collective behavior of granulomas within lungs leading

to dissemination events is critical to the ultimate goal of controlling the global TB epidemic.

It is difficult to experimentally address specific mechanisms operating within lungs that

drive different granuloma outcomes in primates, although it is known through interventional

studies that certain factors, such as TNF, CD4+ T cells, and CD8+ T cells are important in con-

trolling early and established Mtb infection [5–8]. As a complementary approach, mathemati-

cal modeling can generate hypotheses that can then be tested experimentally. Several

mathematical and computational models for Mtb infection have been developed to explore the

contributions of the innate and adaptive immune responses to granuloma formation and func-

tion [9–20]. These models are informed by studies in humans and in animal models of infec-

tion, especially NHPs, rabbits, pigs, and mice [21]. In particular, GranSim, our computational

model that allows simulation of the formation and function of a single granuloma using a

hybrid agent-based model framework, has offered strategies for drug treatment and vaccine

development [12,14,22–24]. GranSim, which considers thousands of cells and bacteria as

“agents” in the simulation and tracks diffusion of multiple immune mediators (e.g., cytokines),

is computationally intensive, limiting our ability to simultaneously simulate multiple granulo-

mas present in an entire lung during infection. In contrast, Prats et al. [18] utilized a bubble

model to demonstrate the importance of local inflammation, dissemination, and coalescence

of lesions as key factors leading to active TB, but did not specifically model events at the granu-

loma scale. However, following the formation of individual granulomas, the dissemination of

those granulomas across the lungs over time, and, importantly, tracking events at the granu-

loma scale could provide an important window into infection dynamics and could lead to new

insights for prevention or treatment.

PLOS COMPUTATIONAL BIOLOGY Tracking whole-lung M. tuberculosis infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007280 May 20, 2020 2 / 25

which is supported by the Office of Science of the

U.S. Department of Energy under Contract No. ACI-

1053575 and the Extreme Science and Engineering

Discovery Environment (XSEDE), which is

supported by National Science Foundation grant

MCB140228. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007280


In order to study the formation of new granulomas after initial establishment of infection,

referred to as dissemination, the evolution of individual granulomas must be captured over

time. Recently, research on Mtb-infected NHPs provided data on disseminating granulomas

[25]. Of all animal models used to study Mtb infection, NHPs are most relevant to human TB

disease because they recapitulate the full spectrum of clinical outcomes and pathologies seen in

humans [26]. From PET CT imaging, the emergence of new granulomas was tracked and

recorded. The authors genetically matched Mtb barcodes, assigned each inoculation Mtb a

unique barcode ID, and associated each granuloma identified in the temporal PET CT images

with the Mtb barcodes inside that granuloma (Fig 1). By identifying Mtb barcodes that were

present in multiple granulomas, they were able to distinguish disseminating from non-dissem-

inating granulomas. When identifying multiple bacterial barcodes within a single granuloma,

it is surmised a merger of granulomas took place. While Martin et al. showed these distinc-

tions, the mechanisms that lead to granuloma clustering or dissemination remain unanswered.

We address these open questions using a hybrid computational-mathematical modeling

framework.

Herein, we develop a novel multi-scale hybrid model, MultiGran, to track Mtb infection at

the scale of the entire lung, including capturing multiple granulomas and their individual out-

comes as well as the formation of new granulomas. MultiGran is an agent-based model that

follows cells, cytokines, and bacterial populations across multiple lung granulomas throughout

the course of infection. Each granuloma is now formulated as a single agent, and each agent

contains within it a system of non-linear ordinary differential equations (ODEs) that capture

individual granuloma dynamics. MultiGran follows the steps observed through the course of

Mtb infection: (1) initial granuloma establishment with Mtb that have been virtually barcoded

and placed within the lung environment, (2) granuloma development across time, (3) the possi-

bility of granuloma dissemination with barcoded bacteria moving to a new location, and (4)

granuloma merging by granulomas that have formed close together and whose individual

Fig 1. Three NHP lung maps illustrating the positioning of pulmonary granulomas and thoracic lymph nodes

(data previously published in Martin et al. [25]). Gray outlines denote the extent of the lungs, bronchial tubes, and

trachea. Small markers superimposed on the outlines represent the positions of pulmonary granulomas, while larger

markers denote lymph nodes. Colors denote unique barcode tags. Some samples had more than one barcode tag

present, and often these were doublet granulomas (i.e., two granulomas too close in proximity to distinguish at

necropsy) and so are marked with a pie chart showing the relative abundance of each barcode tag. The black markers

represent pulmonary granulomas for which no barcode tags were found. Filled black markers are granulomas which

grew bacteria upon plating but barcodes could not be determined for technical reasons, while open markers are

granulomas that did not grow bacteria upon plating (sterile).

https://doi.org/10.1371/journal.pcbi.1007280.g001
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boundaries are indistinguishable, or those that grow in size and thus merge into a granuloma

cluster (that may have multiple barcoded bacteria IDs). We use MultiGran to address three

outstanding questions about dissemination: what mechanisms are consistent with granuloma

dissemination and merging patterns seen in vivo? What is the likelihood of a granuloma to dis-

seminate? Can we predict factors that lead to dissemination?

Methods

Ethics statement

All experimental manipulations, protocols, and care of the animals were approved by the Uni-

versity of Pittsburgh School of Medicine Institutional Animal Care and Use Committee

(IACUC). The protocol assurance number for our IACUC is A3187-01. Our specific protocol

approval numbers for this project are 1280653, 12126588, 11110045, 19024273, 15066174,

16017309 and 18124275. The IACUC adheres to national guidelines established in the Animal

Welfare Act (7 U.S.C. Sections 2131–2159) and the Guide for the Care and Use of Laboratory

Animals (8th Edition) as mandated by the U.S. Public Health Service Policy.

All macaques used in this study were housed at the University of Pittsburgh in rooms with

autonomously controlled temperature, humidity, and lighting. Animals were singly housed in

caging at least 2 square meters apart that allowed visual and tactile contact with neighboring

conspecifics. The macaques were fed twice daily with biscuits formulated for NHPs, supple-

mented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had access

to water ad libitem. Because our macaques were singly housed due to the infectious nature of

these studies, an enhanced enrichment plan was designed and overseen by our nonhuman pri-

mate enrichment specialist. This plan has three components. First, species-specific behaviors

are encouraged. All animals have access to toys and other manipulata, some of which will be

filled with food treats (e.g., frozen fruit, peanut butter). These are rotated on a regular basis.

Puzzle feeders foraging boards, and cardboard tubes containing small food items also are

placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals

stimulate interaction between animals. Second, routine interaction between humans and

macaques are encouraged. These interactions occur daily and consist mainly of small food

objects offered as enrichment and adhere to established safety protocols. Animal caretakers are

encouraged to interact with the animals (by talking or with facial expressions) while perform-

ing tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning) are done on a

strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all

macaques are provided with a variety of visual and auditory stimulation. Housing areas con-

tain either radios or TV/video equipment that play cartoons or other formats designed for chil-

dren for at least 3 hours each day. The videos and radios are rotated between animal rooms so

that the same enrichment is not played repetitively for the same group of animals.

All animals are checked at least twice daily to assess appetite, attitude, activity level, hydra-

tion status, etc. Following Mtb infection, the animals are monitored closely for evidence of dis-

ease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, including

weights, are performed on a regular basis. Animals are sedated prior to all veterinary proce-

dures (e.g., blood draws) using ketamine or other approved drugs. Regular PET/CT imaging is

conducted on most of our macaques following infection and has proved very useful for moni-

toring disease progression. Our veterinary technicians monitor animals especially closely for

any signs of pain or distress. If any are noted, appropriate supportive care (e.g., dietary supple-

mentation, rehydration) and clinical treatments (analgesics) are given. Any animal considered

to have advanced disease or intractable pain or distress from any cause is sedated with keta-

mine and then humanely euthanatized using sodium pentobarbital.
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Experimental dataset

Experimental data specifically for this study were obtained from seven cynomolgus macaques

(Macaca fascicularis), infected with low dose Mtb (Erdman strain, ~10 CFU by bronchoscopic

instillation) as previously described [27–29]. Infection was confirmed by PET CT imaging.

PET CT scans were performed monthly to quantify new granuloma formation or clustering, as

well as disease progression. Necropsy was performed as previously described [28,29]. Briefly,

an 18F-FDG PET-CT scan was performed on every animal 1–3 days prior to necropsy to mea-

sure disease progression and identify individual granulomas and other pathologies as

described [27–30]; this scan was used as a map for identifying individual lesions. At necropsy,

each granuloma or other pathologies from lung and mediastinal lymph nodes were obtained

for histological analysis, bacterial burden, and immunological studies, including flow cytome-

try, as previously described [27–30]. For bacterial burden, each granuloma homogenate was

plated onto 7H11 medium, and the CFU were enumerated 21 days later to determine the num-

ber of bacilli in each granuloma [27,29].

To calibrate the individual granuloma computational model, we excised granulomas from

macaques that were infected for 3 weeks (n = 2), 5 weeks (n = 2), 7 weeks (n = 2) and 9 weeks

(n = 1). In addition, an animal without Mtb infection was also included in this study as a con-

trol. To obtain accurate cell number measurements, enzymatic digestion (Tumor dissociation

kit, human; Miltenyi Biotec) was performed on excised granulomas using gentleMACS octo

dissociator. The single cell suspension obtained by enzymatic digestion was processed for bac-

terial burden and cell numbers enumeration [27]. Single cell suspensions of individual granu-

lomas were stained with cell surface antibodies to enumerate T cells (CD3) and macrophages

(CD11b). The cells were further stained intracellularly with Calprotectin antibody to exclude

CD11b+Calprotectin+ cells from macrophage population. Flow cytometry and data acquisi-

tion was performed using BD LSRII and analysis was performed using Flowjo Software v10

[27].

In addition, bacterial burden data of 623 granulomas from 38 NHP that were controls in

other studies (previously published [20,27,31–33] and ongoing studies) at University of Pitts-

burgh (Flynn Lab) were included for evaluation. The timing of infection depended on the par-

ticular study (Table of CFU values and tables of cell counts located at http://malthus.micro.

med.umich.edu/lab/movies/MultiGran/ Table: Granuloma_CFU_counts) and ranged from

4–17 weeks post Mtb infection.

Non-human primate lung lattice data

To create a virtual lung that replicates an NHP lung, we used a CT scan of an uninfected NHP

to model the 3-dimensional lung space. Binary images mapping the cross section of the lungs

were created for each CT slice by segmentation of CT image values below -320 Houndsfield

units. The individual slices were then stacked into an array, and a polygon mesh outlining the

lung volume was generated using the marching_cubes_classic function in the open source

Python scikit-image package (v 0.14.1, [34]).

Identifying granuloma distributions in non-human primate lungs

To allow us to test whether the distribution of granulomas in our virtual lungs matched that

observed in NHP lungs, we refer to the distribution of granulomas arising from barcoded bac-

teria derived from our previously published data in Martin et al. [25]. In that study, four cyno-

molgus macaques were infected with 11+/- 5 CFU barcoded Mtb Erdman. Barcoded libraries

were generated where each bacterium has a different random 7-mer along with one of three

75-mer identifier tags inserted into the bacterial chromosome. This process created roughly
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50,000 bacteria that are able to be uniquely identified by the random 7-mer tag with very small

(< 2%) risk of duplication in an infection of<50 CFU (See Fig 1 in Martin et al. [25]). The ani-

mals were necropsied between 15 and 20 weeks post-infection. Animals were imaged at

monthly intervals (or more frequently) to identify timing of granuloma establishment. Pulmo-

nary granulomas were excised during necropsy, and their three-dimensional positions were

recorded via matching to PET/CT imaging. Homogenates from excised pulmonary granulo-

mas and infected thoracic lymph nodes were plated, scraped, and sequenced to identify the

specific barcode(s) present in each granuloma. Matching the x, y, and z coordinates recorded

for each granuloma with its determined barcode content led to a three-dimensional map of the

locations of each barcode throughout the pulmonary space. Bacterial burden for each granu-

loma was determined by counting colonies on the plates.

Three of the four maps are shown in Fig 1 (the fourth was already presented in the original

paper [25]). Lung outlines were calculated from terminal scans of each NHP by the process of

creating a polygon mesh described above. Small markers represent pulmonary granulomas,

while larger markers denote lymph nodes. Each color represents a unique barcode tag. Some

samples had more than one barcode tag present, and often these were doublet granulomas

(i.e., two granulomas too close in proximity to distinguish at necropsy) and so are marked

with a pie chart showing the relative abundance of each barcode tag. The black markers repre-

sent pulmonary granulomas for which no barcode tags were found. Filled black markers are

granulomas which grew bacteria upon plating but for which barcodes could not be deter-

mined, while open markers are granulomas that did not grow bacteria upon plating (sterile);

in this study, only CFU+ granulomas were available for barcode determination.

Model overview

MultiGran is a novel multi-scale, hybrid agent-based model that describes the formation, func-

tion, and dissemination of lung granulomas containing Mtb (Fig 2). It uses sampling of non-

homogeneous Poisson processes; rule-based agent placement; parameter randomization;

solving systems of non-linear ODEs; and post-process agent groupings to perform in silico
experiments that track the progress of infection in an individual host. Each granuloma (agent)

is placed stochastically within the boundary of the lung environment based on a set of rules.

Within each agent, a system of ODEs is linked internally and solved simultaneously to update

concentrations of cells, cytokines, and bacterial burdens within each granuloma at every time

step. Additionally, within every time step, each granuloma is given the opportunity to dissemi-

nate locally and non-locally. Local dissemination involves a new granuloma being initialized

nearby, while non-local dissemination allows initialization anywhere within the lung environ-

ment. At the lung scale, the model tracks the development, location, and quantity of granulo-

mas, and determines whether each granuloma is either alone or a member of a larger

granuloma cluster. At the granuloma scale, dissemination-event decisions, rules for granuloma

formation, and concentrations of all granuloma components are tracked and defined. As is

occasionally done when a flexible agent size is needed [35], our agents (granulomas) are placed

on a continuous grid. Agents are spherical with dynamically-changing sizes, and granuloma

clustering depends on the geometry and position of each of the agents.

Each in silico experiment using MultiGran is designed to replicate an in vivo experiment.

To replicate the studies by Martin et al. [25], our simulated NHP is infected with roughly 19

uniquely-identified (barcoded) Mtb that are randomly placed in a localized region of the

lungs, similar to the typical inoculation process in the NHP experiments. Each Mtb is assumed

to be immediately taken up by a resident lung macrophage, forming a single, unique new gran-

uloma [25]. Each granuloma evolves independently. Whenever a granuloma is formed, it is
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initialized with parameter values that represent several characteristics that ultimately influence

its future behavior, as well as the emergent outcomes of the system as a whole.

Simulation environment

Code is written in MATLAB, with Bash script for submission to run on computer clusters.

ODEs are solved using MATLAB’s ode15s with the NonNegative option for all terms, and we

define the start and end time interval to be the size of the agent time step. To avoid complica-

tions with the random number generator seed being reset with the initialization of each

MATLAB instance, the Bash script executes code that generates a randomized seed list for the

simulation to use. The website http://malthus.micro.med.umich.edu/lab/movies/MultiGran/

has pseudocode and implementation descriptions, as well as simulation videos.

Granuloma establishment

A granuloma is initialized when Mtb is deposited into the lung environment. Based on our

previous publications [3,25], we assume that each Mtb creates one granuloma [3,36]. The gran-

ulomas established during inoculation (S1 Fig–Case 1) are referred to as “founder” granulomas

and are considered first-generation granulomas; all other granulomas that may emerge

throughout the simulation originate from these founders.

Granulomas are agents, so at initialization we assign parameter values to each granuloma

and its infecting Mtb, as well as counts and concentrations of all cell types and cytokines.

Every granuloma is assigned unique identification markers. These include being given a

unique individual granuloma ID IndivGranID(i), which is assigned in chronological order of

Fig 2. Process of Mtb infection and rules for granuloma dissemination and location within MultiGran. A non-human primate is inoculated with Mtb, here tracked

using different “barcodes” or IDs. These Mtb are taken up by resident macrophages, initiating an innate immune response. This response includes the secretion of

various cytokines and chemokines that help prime and/or recruit other immune cells to the site of the infection, resulting in the formation of lung granulomas. The

dynamics within each granuloma are governed by systems of ordinary differential equations. Occasionally, as a granuloma develops, it may disseminate—either locally

or non-locally. In local dissemination, an Mtb-infected macrophage moves to another nearby location within the same lung lobe. In non-local dissemination, a free

extracellular Mtb reaches the airways or is carried to a draining lymph node and then deposited at a site not necessarily near the original location; i.e., in a different lung

lobe. The (x,y,z) positions of disseminated granulomas depend on the method of dissemination (i.e., local or nonlocal) and the position of the parent granuloma.

Granuloma clusters can form when granulomas develop near each other and may grow into each other, or when one granuloma forms immediately adjacent to the

original granuloma via local dissemination [3]. Granuloma clusters may contain more than one Mtb ID.

https://doi.org/10.1371/journal.pcbi.1007280.g002
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initialization i = 1,2,. . .N (where N is the total number of granulomas), as well as the individual

granuloma ID of its parent, so the lineage of each of the founder Mtb can be tracked through-

out the course of infection. Each granuloma is also given a position on a continuous grid.

Granuloma development

The development of each individual granuloma “agent” is captured by a set of ODEs with 16

equations for 16 state variables capturing bacterial, T cell, macrophage and cytokine dynamics

(see S1 Equations for complete term-by-term description of the model). ODE model formula-

tions build on our previous work [37–39] describing cells and levels of cytokines in a whole

lung. The equations have been re-calibrated to NHP granuloma data (see section on Experi-

mental dataset) to represent an individual granuloma (see section Model Calibration), and

have been updated in several ways. First, we increased the role of IL-10, including it as a factor

for downregulating macrophage activation and TNF-α production by activated macrophages,

as well as allowing infected macrophages to produce IL-10, based on NHP data [40–42]. The

other set of changes relates to intra- and extra-cellular Mtb to be consistent with recent find-

ings on Mtb growth within macrophages [43–45]. Rather than releasing the entire carrying

capacity of bacteria at the occurrence of each death of an infected macrophage, the amount of

intracellular Mtb within an average infected macrophage is released (with the exception of a

bursting infected macrophage, in which case the maximum amount of Mtb is released). Fur-

thermore, only a fraction of intracellular Mtb released during the natural death of an infected

macrophage survives to become an extracellular Mtb. The expression for intracellular Mtb rep-

lication was also changed along with the addition of an expression for the natural slow death

of intracellular Mtb for model stability. We record granuloma sterilization when the count of

Mtb drops below 0.5.

Granuloma dissemination

While the mechanisms behind dissemination are not yet well-understood [25], we have cre-

ated rules such that the emergent outcomes are consistent with experiments (S1 Fig). We

define a probability function for likelihood of a dissemination event, which we make depen-

dent on the bacterial load (CFU) of the granuloma. We selected CFU because the data pre-

sented by Lin et al. [3] indicates that granuloma carrying capacity has a limit (approximately

10^5). Because NHP granulomas rarely exceed this limit [3,28], there is likely a link between

granuloma CFU and dissemination. Because Mtb is by itself non-motile, we consider two

routes of dissemination: 1) Mtb conveyance within an infected macrophage and 2) a single

Mtb flowing through lung airways or deposited via a draining lymph node (LN). From these,

we incorporated two types of dissemination events: local and non-local, the probabilities of

each event being independent, and in the unlikely event that multiple dissemination events

occur in the same time step, the order of events is randomized.

When a granuloma disseminates locally (S1 Fig–Case 3), an infected macrophage carrying

intracellular Mtb is assumed to move from the parent granuloma position to a new position

nearby. We assume the distance between the parent granuloma and a new position likely fol-

lows a normal distribution with respect to parent location and we calibrated the mean and var-

iance of this location using the data presented in Martin et al. [25]. In Martin et al., the authors

compute distances of each granuloma and granuloma clusters that they could identify via

PET/CT, rather than every individual granuloma regardless of size and cluster affiliation. We

also assume that a pre-determined quantity of T cells moves with an infected macrophage.

After this dissemination event, the parent and daughter granulomas evolve independently

from each other. When a granuloma disseminates non-locally (S1 Fig–Case 2), an extracellular
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Mtb is simulated as if entering airways (or via a LN) and deposited with equal likelihood any-

where within the lungs, where it is immediately taken up by a macrophage. S1 Fig—Case 2 rep-

resents three realizations of trial coordinates wherein the trial coordinates represented by the

red arrow do not satisfy our criteria, but the two black arrows would be acceptable placements

for a bacterium in non-local dissemination.

We created two dissemination event probabilities describing local and non-local dissemina-

tion. In both, λ is the maximum probability of dissemination and is scaled by a Michaelis-

Menten fraction, using a value of CFU at which the probability is half of the maximum value.

ProbLocal tð Þ ¼ lLocal
CFUðtÞ

CFUðtÞ þ CFULocal
half

Eq1

ProbNonlocal tð Þ ¼ lNonlocal
CFUðtÞ

CFUðtÞ þ CFUNonlocal
half

Eq2

Granuloma merging

Experiments demonstrate that a subset of granulomas contain a more than one Mtb barcode

[25]. Following inoculation or dissemination events, individual granulomas may merge, or are

sufficiently close to each other, to form clusters. We identify granuloma clusters and their

members when needed for plotting and computing statistics but allow them to evolve indepen-

dently. Briefly, our algorithm evaluates all intersections of granulomas, and combines groups

of granulomas that intersect in 3D space. These grouped granulomas are the granuloma clus-

ters. A granuloma cluster may contain only descendants of a single founder Mtb ID, or may

contain descendants of multiple founder Mtb IDs.

Model calibration

An effective strategy for calibration of a complex system such as our multiscale model is evalu-

ating the model’s ability (and model parameters) to reproduce multiple scenarios and datasets

[46–48], reducing the likelihood of overfitting parameters to a single dataset. Herein, we have

built our multi-scale model of granuloma formation and dissemination using a priori biologi-

cal knowledge and utilized multiple datasets, across multiple scales from unique experiments,

to calibrate and validate our model parameters. Table 1 displays the multiple distinct datasets

that we used to calibrate and validate this multi-scale model. First, we identified the parameter

space of the individual granuloma ODE model that best represents the individual granuloma

datasets (CFU and cell counts). See Fig 3 for an example of our workflow. To determine an ini-

tial, wide range of parameter values to test, we examined experimental values from literature,

previous ODE models of a single granuloma formation [37–39], and values from GranSim
[14,16,19,22,37–40,49]. We then used a Latin Hypercube Sampling (LHS) algorithm [50] to

sample this multi-dimensional parameter space 500 times. This initial wide range of simula-

tions did not match the NHP data. We then narrowed the initial ranges and resampled the

space in an iterative process until, out of the 500 simulations, ninety percent of the runs fell

within the bounds of our experimental data on CFU, T cell counts, and macrophages within

individual NHP granulomas. Fig 3 shows how we identify simulations that satisfy our criteria

and isolate the parameters of those simulations to narrow parameter space. The parameter

ranges for the calibrated model runs are in S1 Table, and represent the parameter space that

we sampled in order to create the granulomas for our biorepository of 200 virtual monkey

lungs and perform global sensitivity analysis techniques on.
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Next, we identified the dissemination parameter space of MultiGran that matched the NHP

whole lung outcome datasets (previously published [20,25,27,31–33] and ongoing studies). We

again utilized LHS to sample this space and identify baseline parameter ranges that match the

data (S3 Table). Fig 3 explains our workflow for calibrating the single-granuloma ODE model,

which was similar to the approach for calibrating the lung-level dissemination equations. This

calibrated parameter space was sampled to create a biorepository of in silico lungs to be used in

Results. The entire repository of 200 virtual NHP CFU trends are displayed at http://malthus.

micro.med.umich.edu/lab/movies/MultiGran/.

Sensitivity analysis

We then used Partial Rank Correlation Coefficient (PRCC), a global sensitivity analysis index

[50], to identify significant correlations between single-granuloma ODE model parameter

changes and variation in whole lung outputs. We excluded the dissemination parameters from

our multi-scale PRCC analysis because they are phenomenological in nature and we are inter-

ested in identifying the mechanistic events that occur at the granuloma scale and lead to dis-

semination, a whole lung outcome.

Linking cellular scale and tissue time scales

We link the cell and cytokine scale events in the ODE model (single granuloma) with the tissue

scale ABM (multiple granulomas) to form the multi-scale MultiGran model (Fig 2). Linking of

timescales is important for proper model design [51]. We use an ABM time-step of 1 day. At

each ABM time-step, dissemination events can occur. After each ABM time step, the system of

ODEs is solved for each granuloma to update the states of all host cells, cytokines and Mtb

populations over the next 24 hours. We run the ODEs using adaptive time steps for 1 agent

iteration, for each granuloma, before proceeding to the next agent time step, as dissemination

events at the agent time step depend on the dynamically-changing state of ODEs. Additionally,

Table 1. Distinct datasets used to calibrate, validate and inform prediction-making in MultiGran. We calibrated our single-granuloma model, and then calibrated

parameters specific for dissemination at the whole-lung level, prior to validation and predictions of individual NHP outcomes.

Dataset Use Model

(scale)

Experimental values from literature, parameter values from previous ODE models of a single

granuloma formation [37–39], and values from GranSim [14,16,19,22,37–40,49].

Initial sampling of entire single-

granuloma parameter space

Single-granuloma ODE

model

(granuloma-level)

CFU/Granuloma Dataset
Includes 623 granulomas from 38 NHPs

Calibration Single-granuloma ODE

model

(granuloma-level)

Individual Granuloma Cell Count Dataset
Includes 26 granulomas from 7 NHPs including total T cell counts and macrophage counts

Calibration Single-granuloma ODE

model

(granuloma-level)

Granuloma Location Data
Mean and variance of granuloma dissemination presented in Martin et al. [25]

Initial sampling of entire

dissemination parameter space

MultiGran model

(lung-level)

Whole Lung Outcome Measures
Four outcomes—(1) number of Mtb at time of inoculation (2) number of granulomas at

necropsy (3) the percentage of Mtb barcodes found in multiple granulomas and (4) the

percentage of granulomas containing multiple Mtb barcodes

Calibration of dissemination

parameters

MultiGran model

(lung-level)

Spread of Infection Outcome Measures
Including 38 NHP and the location of 623 granulomas across both lungs

Model validation MultiGran model

(lung-level)

Individual NHP CFU/granuloma
Individual CFU/granuloma for a single NHP

Model prediction MultiGran predictions about

dissemination

(multi-scale)

https://doi.org/10.1371/journal.pcbi.1007280.t001
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the ODE state variable concentrations can be affected by the occurrence of a dissemination

event.

Results

We present a whole lung model, MultiGran, that captures the behavior of Mtb infection lead-

ing to the development of multiple granulomas via initial infection and then dissemination of

bacteria from existing granulomas. We calibrate and validate MultiGran with unique datasets

derived from NHPs, the animal model that most closely mimics the features of human infec-

tion. We then use the model to identify dissemination rates and to predict mechanisms leading

to dissemination within the calibrated parameter space.

Simulated individual granulomas recapitulate in vivo primate granuloma

dynamics

We calibrated our single-granuloma model, comprised of a system of non-linear ODEs, to

data derived from NHP studies. We compared bacterial load (CFU), T cell counts, and macro-

phage counts over time per granuloma. Our CFU dataset consists of 623 granulomas from 38

NHPs (previously published [20,27,31–33] and ongoing studies). T cell and macrophage

counts, as well as additional CFU, were derived from a separate, new dataset of 26 granulomas

from 7 Mtb-infected NHPs and baseline data from one uninfected macaque (see Methods).

Fig 3. MultiGran calibration process. The model structure for the single granuloma ODE model and the broad parameter ranges (S1 Table) were based on previously

published models and experimental data [14,16,19,22,37–40,49]. We sample from the initial parameter space using a Latin Hypercube Sampling (LHS) process. LHS

divides each of the k varied parameters into N subintervals (A), randomly selects a value from each subinterval, and randomly groups k values (one for each parameter)

to create N parameter sets (B). We next identify simulations that satisfy all our criteria (C). Here, only the purple simulation curve (parameter set #1) has satisfied the

criteria of passing within the minimum and maximum value at each timepoint for each of our three datasets simultaneously. Note that in a single LHS run, many

simulations may satisfy all criteria, but for simplicity we have shown only a single one (purple curve). By inspecting values from parameter sets that pass all criteria, we

are able to narrow each of the k broader parameter ranges. We iterate performing an LHS simulation followed by narrowing the k parameter ranges based on passing all

of the criteria until 90% of the 500 simulations fall within the bounds of our experimental data on CFU, T cell counts, and macrophages within individual NHP

granulomas.

https://doi.org/10.1371/journal.pcbi.1007280.g003
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The data from these 7 NHPs capture the timing of the immune system during early events in

infection (granulomas from all NHPs were collected between 3–9 weeks post infection) and

were imperative for proper calibration of the model.

The single-granuloma model contains many parameters to represent various mechanisms

that are part of innate and adaptive immune responses to Mtb infection, but we include few

assumptions about the relative roles of each of these mechanisms; rather, we define equations

and allow the relative influence of each mechanism emerge during calibration. We identify

ranges of parameter values (S1 Table) that replicate CFU peaks at approximately 35 days and

subsequent control of CFU after day 100 post-infection (Fig 4A), macrophage dynamics (Fig

4B), and T-cell dynamics (Fig 4C). These dynamics reflect the initial inability of the innate

immune system to control Mtb replication, the eventual control provided by T cells that arrive

from the lymph node around day 28, and the stabilization of Mtb counts around day 100.

When isolating a suitable parameter range, we identified ranges that matched these overall

trends and recapitulated the spread of granuloma outcomes outlined by the NHP datasets.

Likely, our spread captures a fuller range of individual granuloma dynamics than a sample

from a limited number of NHP can achieve.

MultiGran simulates the appearance of granulomas throughout the lung,

as seen in vivo

By employing the calibrated single-granuloma model (Fig 4) within our MultiGran frame-

work, we can now simulate the spread of infection within the lung. We inoculate with 16 to 21

individual bacteria, mimicking the protocol of Martin et al. [25], placing them within an inoc-

ulation region within one of the lower lung lobes, as is done in the NHP inoculations via bron-

choscope (see Methods). Each initial granuloma in an NHP arises from a single bacterium in

an inoculation event [25]. Therefore, we initially establish 16–21 granulomas. A sample simu-

lation at the time-point of 250 days post-infection is shown in Fig 5. The blue lung mesh repre-

sents the dataset derived from NHPs for (x,y,z) coordinates of a lung. Placed on this mesh are

simulation results–individual granulomas (“agents” in the model) and their location, size, and

bacterial origin (barcode). Note that, as in the NHP images of Fig 1, infection is primarily

within the inoculation region–but that 7 granulomas disseminated non-locally to the opposite

lung. In this simulation, one granuloma cluster was found that contained more than one Mtb

barcode, as is shown in the pie chart. Movies of disease progression using this 3D visualization

are available on the website http://malthus.micro.med.umich.edu/lab/movies/MultiGran/.

Fig 4. Bacteria, macrophage and T cell dynamics within an individual granuloma. Individual NHP granuloma bacteria (A),

macrophages (B), and CD3+ T cells (C) shown as orange points across time. Each individual point represents data from a single

NHP granuloma. Purple lines indicate simulation outputs from 500 simulations that match NHP data. Light purple shading shows

the minimum and maximum of simulation runs, darker purple shading represents the 5th to 95th percentiles of the simulations, and

dark purple lines represent the 5th, 50th, and 95th percentiles of simulations. Parameter ranges are listed in S1 Table.

https://doi.org/10.1371/journal.pcbi.1007280.g004
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Fig 5. MultiGran in silico infection in a non-human primate lung. A single in silico simulation at 250 days post infection from three angles (A-anterior view, B&C-

opposite posterior-lateral views), plotted over a data grid taken from PET/CT images of a single NHP. Granulomas are located within the lung in 3D space. Each circle

of a single color represents a granuloma or granuloma cluster with a single Mtb barcode ID. The circle shown as a pie chart represents a granuloma cluster with two

unique Mtb barcode IDs; each color represents the relative proportion of CFU of each ID compared to the total CFU of the granuloma cluster, while the overall size of

the circle is proportional to the size of the cluster. Inoculation was in the lower right lung (bottom left in each image). Granulomas found in the upper right lung and the

left lung result from non-local dissemination within the simulation.

https://doi.org/10.1371/journal.pcbi.1007280.g005

PLOS COMPUTATIONAL BIOLOGY Tracking whole-lung M. tuberculosis infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007280 May 20, 2020 13 / 25

https://doi.org/10.1371/journal.pcbi.1007280.g005
https://doi.org/10.1371/journal.pcbi.1007280


Simulations are consistent with in vivo infection and predict dissemination

likelihood rates

MultiGran allows both local and non-local dissemination of bacteria to initiate new granulo-

mas, tracks the origin (Mtb ID) of each granuloma, and allows for merging of nearby granulo-

mas to form a cluster. Each granuloma has a unique parameter set chosen from the ranges in

S1 Table according to an LHS design. To determine what leads to different dissemination pat-

terns in vivo, we use our dataset consisting of four NHPs in that were inoculated with uniquely

identifiable Mtb (Fig 1; Martin et al. [25]). Outcome measures from these experiments include:

(1) the number of Mtb at time of inoculation (16–21 Mtb), (2) the number of granuloma (or

granuloma clusters) at necropsy (17–28 granulomas), (3) the percentage of Mtb barcodes

found in multiple granulomas (12.5–68.4%), and (4) the percentage of granulomas containing

multiple Mtb barcodes (~10–20%). We calibrated MultiGran dissemination dynamics to this

dataset by varying the seven dissemination parameters (S3 Table). Our whole lung simulations

and the NHP dataset are shown in Fig 6. Notice that the simulations capture the full heteroge-

neity of the in vivo results across each NHP. Additionally, the experimental data are from only

four NHPs, while our simulations represent a larger, more diverse set of possible outcomes.

To more directly test for non-local dissemination events, we validate our simulations

against a second dataset of 38 NHPs (Fig 7). Within this NHP dataset, we identified the lung

Fig 6. MultiGran recapitulates non-human primate dissemination outcomes. Martin et al. [25] infected 4 NHP with 16–21 different Mtb barcodes (A), and after 120

days the NHP immune system formed 16–28 non-sterilized granuloma clusters (B). We replicated these experiments by simulating 200 NHP, which started with 16–21

different Mtb. Of the 16–21 Mtb in NHP, 10%-70% were found in multiple granuloma clusters, meaning at least 10%-70% of Mtb were disseminating. Similar to the

NHP data, our simulations have 0%-90% of Mtb barcodes disseminated to multiple granuloma clusters (C). Within the NHP experiments, of the 16–28 non-sterilized

granuloma clusters, 10%-25% had multiple Mtb IDs within them, meaning at least 10%-25% of observed granulomas are clusters involving multiple sources of Mtb

infection. Our 200 MultiGran simulations demonstrate a similar range of granuloma clusters with multiple Mtb barcodes (D). Simulations are shown in gray whereas

NHP experiment outcomes are shown in blue. Each point represents a single NHP or in silico simulated granuloma.

https://doi.org/10.1371/journal.pcbi.1007280.g006
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that contained the most granulomas for each NHP, and termed this lung the more-populated

lung. Next, we calculated the percentage of granulomas that resided in the more-populated

lung out of the total number of granulomas across both lungs. We found that the 38 NHPs

exhibited a range of 52%-100% of granulomas in the lung that was more-populated. Results

from the same simulations used to create Fig 6 give a range ~54%-100%, providing additional

support for the model in its ability to capture the range of data offered by NHP experiments.

As this result is a validation step of our model, if MultiGran could not exhibit a similar range

of granulomas across both lungs, the employed approach would have invalidated the model.

When examining in vivo data, the total number of dissemination events may be under-

counted due to sterilization and granuloma clustering. In contrast, our model is able to count

every dissemination event, and thereby provides a predicted frequency of local and non-local

dissemination. We found that, on average, the rate of dissemination is about 1/24 dissemina-

tion events per granuloma per month for simulations run out to 250 days. Most dissemination

occurs earlier in the infection, as noted in Martin, et al. [25]. Further, MultiGran predicts that

local dissemination events occur about twice as frequently as non-local dissemination events.

MultiGran simulations match individual NHP infections

From our repository of 200 MultiGran simulated lungs, we isolated the five simulations that

yielded the closest match to the median values of Mtb inoculation (20), the median number of

granulomas at necropsy (20.5), the median percentage of Mtb barcodes that were found in

Fig 7. MultiGran recapitulates spread of infection data. At necropsy of 38 NHP experiments, we identified the lung that contained the most granulomas for each

NHP. Next, we calculated the percentage of granulomas that resided in the more-populated lung out of the total number of granulomas. We found that 52–100% of

granulomas formed resided within the more-populated lung. Blue dots represent each NHP experiment. We ran 200 in silico simulations that capture a similar range to

the NHP spread of infection from lung to lung, ranging from 54.3% to 100%. Gray dots represent each simulated lung.

https://doi.org/10.1371/journal.pcbi.1007280.g007

PLOS COMPUTATIONAL BIOLOGY Tracking whole-lung M. tuberculosis infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007280 May 20, 2020 15 / 25

https://doi.org/10.1371/journal.pcbi.1007280.g007
https://doi.org/10.1371/journal.pcbi.1007280


multiple granulomas (14.3%), and the median percentage of granulomas that contained multi-

ple Mtb barcodes (17.5%) across the four NHP from Martin et al. [25].

These five simulations represent the best matches to the NHP used in Martin et al. [25]. We

compare two of these simulations to the CFU/granuloma at necropsy from NHP:179–14 (Fig

8A & 8C). Both lung simulations display satisfactory matches to the NHP CFU data; both sim-

ulations cover the spread of the experimental data while lying within the bounds of the dataset.

However, while both simulations match the CFU data at 17 weeks, we are able to predict what

could have happened beyond the necropsy date by running the simulation for a longer time

Fig 8. MultiGran matches individual NHP granuloma dynamics and predicts CFU burden across time. We compared the CFU/granuloma at necropsy for

NHP:179–14 (A&C) to two separate simulations that matched these outcomes. Blue dots represent single-granuloma values taken from NHP:179–14; gray dots

represent simulation values at comparable timepoints. Simulation predictions diverged after 17 weeks. One simulation predicted stability–i.e., granuloma containment

of bacteria (B). The other simulation (D) predicted uncontrolled growth of bacteria within one granuloma, leading to dissemination and the formation of other

granulomas across time. Each line in (B&D) represents one granuloma realization within MultiGran across time. Blue dots represent NHP:179 granuloma CFU values.

Simulation behavior to the right of the blue dots should be considered a prediction.

https://doi.org/10.1371/journal.pcbi.1007280.g008
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period. Shown are two distinct possible outcomes with the same parameter set: note they

diverge when predicting later dissemination events. Fig 8B shows one simulation predicts bac-

terial control across all the granulomas within that simulation. Fig 8D shows another outcome.

Here, a single granuloma within the lung exhibits uncontrolled bacterial growth leading to dis-

semination and there is also formation of new granulomas via both local and non-local dis-

semination (at days 145, 166, and 193). These simulations suggest that NHP:179–14 was either

containing the bacteria (i.e., LTBI) (our prediction in Fig 8B) or could have had a subclinical

infection that was on the edge of leading to multiple dissemination events (our prediction in

Fig 8D). Simulations that match the other three NHP are shown on our website, and reveal

similar trends and predictions. Additionally, the entire repository of 200 virtual NHP CFU

trends are displayed at: http://malthus.micro.med.umich.edu/lab/movies/MultiGran/.

Sensitivity analysis reveals important mechanisms responsible for

dissemination

To predict the mechanisms that lead to dissemination events within lungs, we perform global

sensitivity analysis using our repository of 200 MultiGran simulated lungs on four whole-lung

outcomes of interest: the number of dissemination events, the total number of granuloma clus-

ters at the end of the simulation, the percentage of granuloma clusters that contain multiple

barcodes, and the percentage of granulomas that occupy the initially-inoculated lung at the

end of the simulation. We quantify the contributions of each model parameters to the out-

comes of interest by calculating partial rank correlation coefficients (PRCC) at the end of the

simulation (250 days). This analysis provides information about the contribution of each

model parameter within our parameter space that was calibrated to multiple NHP datasets

across cellular, granuloma, and whole-lung datasets. Our analysis reveals one parameter as the

main driver of these four whole lung outcomes (Table 2). Parameter CD8MultiFunc describes

the multi-functional nature of CD8+T cells, i.e., the amount of overlap of cytotoxic function

and cytokine expression in CD8+ T cells. While the single-granuloma model was designed to

be agnostic prior to calibration about the primary drivers behind bacterial killing and Mtb

containment, we found that CD8MultiFunc is significantly correlated with each of the four

outcomes. If CD8MultiFunc is increased so that a greater proportion of CD8+ T cells exhibits

multi-functionality, then a larger percentage of granulomas will reside within a single lung

(less non-local dissemination) and there will be fewer dissemination events and fewer granulo-

mas overall. CD8+ T cells are a key host cell in a functional immune response to Mtb infection,

and if the subpopulation that can perform multiple roles within the complex microenviron-

ment of a granuloma increased, it would certainly benefit the host.

If we exclude parameter CD8MultiFun from the analysis, we reveal secondary contributions

of other parameters to the whole lung outcomes (Table 2). These 12 parameters represent both

adaptive and innate immune dynamics: we found both the adaptive and innate immune sys-

tem were associated with non-local and local dissemination events. Notably, the role of macro-

phage-bacteria interactions is found to be important. k18 represents the base rate of killing of

extracellular bacteria by macrophages. If this rate is high, there are fewer dissemination events

and fewer granulomas across the simulation. Additionally, k17 represents the maximum burst-

ing rate of infected macrophages. This parameter is positively correlated with the number of

dissemination events and the number of granulomas across a simulation. If bursting occurs at

a high rate within a granuloma, our model predicts that a granuloma is more likely to dissemi-

nate both locally and non-locally. Taken together, these two parameters identify an important

role for macrophage dynamics within the granuloma: if macrophages cannot adequately

respond to Mtb, the likelihood of dissemination increases. Altogether, the results of this
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analysis represent a multi-scale impact: events governing cell function at the cellular scale

impact local and non-local dissemination outcomes across the lungs and predict the difference

between dissemination and control across the lung environment.

Discussion

Tuberculosis is a complex and heterogeneous disease with a spectrum of outcomes, and the

myriad of mechanisms that influence outcomes of initial infection are poorly defined. Our

data in NHP models, and bolstered by data in humans, support the notion that each individual

granuloma in a host is independent and dynamic, in terms of immunologic composition and

function, ability to kill or restrain Mtb bacilli, and risk for dissemination or reactivation

[52,53]. However, it can be challenging in NHP models to determine the full range of host

mechanisms that play a role in initial containment and prevention of dissemination, both of

which are essential to limiting development of active TB. In the pursuit of a better understand-

ing of the collective behavior of lung granulomas in individuals infected with Mtb, we per-

formed a systems biology approach pairing NHP experiments and computational/

mathematical modeling. Specifically, we explored events that lead to dissemination and new

granuloma formation, and several studies have recently explored this biological phenomenon

[25,36,54,55]. In particular, the barcoding technique introduced by Martin et al. showed that

dissemination varies widely among macaques despite initial infection conditions being similar,

and that in individual macaques, each granuloma had a different dissemination risk, from no

Table 2. Sensitivity Analysis reveals global drivers of dissemination outcomes. PRCCs are shown for each parameter, showing a significant impact on each of the 4

MultiGran whole lung simulation outcomes at the end of the simulation. ��Excluding parameter CD8MultiFunc, the overlap of cytotoxic function and cytokine expression

in CD8+ T cells, 12 other parameters were also identified as having a significant impact on each of 4 MultiGran whole lung simulation outcomes at the end of the simula-

tion. All PRCCs shown are significant to p< .05.

Parameter

Name

Parameter Description Number of

Dissemination Events

Number of

Granulomas and

Clusters

Percentage of Granulomas

with Multiple Barcodes

Percentage of Granulomas

in More-Populated Lung

CD8MultiFunc
��

overlap of cytotoxic function and

cytokine expression in CD8+ T cells

-0.39 -0.38 -0.14 0.32

k18 Extracellular bacteria killed by

macrophages

-0.11 -0.11 -0.041 0.11

nuI10 decay rate of IL-10 cytokine -0.088 -0.087 -0.068 0.089

Sr1b TNF based recruitment of primed

CD4+ T cells

-0.075 -0.074 -0.044 0.06

k6 rate of differentiation from primed

to Th1 CD4+ T cells

-0.084 -0.073 -0.047 0.071

s12 cell production of IL-12 -0.058 -0.056 -0.025 0.056

w contribution of intracellular

bacteria to resting macrophage

activation

-0.037 -0.04 -0.021 0.04

s2 half-saturation of IL-4 -0.024 -0.021 -0.025 0.02

Sr3b TNF based recruitment of Th2 CD4

+ T cells

-0.036 -0.033 -0.021 0.025

alpha30 TNF production by infected

macrophages

0.032 0.028 0.022 -0.037

nuTg IFNg induced apoptosis of Th1 CD4

+ T cells

0.057 0.055 0.037 -0.04

s4b half-saturation of TNF on local

resting macrophage recruitment

0.042 0.043 0.04 -0.043

k17 max rate of infected macrophages

bursting

0.14 0.14 0.076 -0.12

https://doi.org/10.1371/journal.pcbi.1007280.t002
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dissemination by most granulomas, even though these granulomas were CFU+, to multiple

dissemination events from a single granuloma. The barcoding analysis provided critical new

information about bacterial spread within the lung. However, identifying mechanisms that

leading to granuloma dissemination, which is linked to development of active TB [36], is

important in designing more effective vaccines and therapeutics against TB. Systems biology

approaches can address these mechanisms and more generally contribute to our still limited

understanding of Mtb infection dynamics.

In this work, we combine experimental data from NHPs with a novel multi-scale, hybrid

agent-based model of granuloma formation, function and dissemination within the lung,

called MultiGran. We calibrate and validate MultiGran against multiple distinct NHP datasets

that span cellular, bacterial, granuloma, and whole-lung scales. This calibration and validation

allowed us to make predictions about dissemination within Mtb infected lungs. We report that

the likelihood of local dissemination is approximately two times greater than non-local dis-

semination, which supports the in vivo data reported in Martin, et al. [25], and we used sensi-

tivity analysis techniques to identify that dissemination is intertwined with the role of CD8+ T

cells in granulomas. Specifically, we predict that the functionality of CD8+ T cells is critically

important: if a greater percentage of CD8+ T cells can perform dual functions of cytokine

expression (IFNγ, TNF, and IL-10) and cytotoxicity, then the likelihood of dissemination sig-

nificantly decreases.

The role of CD8+ T cell multi-functionality within the granuloma is controversial (for

reviews of CD8+ T cells in TB, see [38,56]. While the majority of T cells within a granuloma

are single cytokine producers [27], multifunctional CD8+ T cells have been demonstrated in

the blood of Mtb-infected humans and the proliferation and response rate of these cells dif-

fered between active and latent infection [57,58]. Together, these studies and our current work

suggest a need for increased focus on this specific cell type to evaluate the potential that CD8

+ multifunctional T cells may offer.

The NHP datasets generated within this study are unique and critical to the predictions of

MultiGran. In addition, these data also present new insights into early events occurring during

Mtb infection. In particular, the ability to capture data on Mtb infection during early time

points for CFU, T cell counts, and macrophage numbers is instrumental in elaborating timing

of early immune response events. These early events in primates have been understudied, and

knowledge of the role that timing plays in granuloma establishment, formation, and develop-

ment is critical to early intervention strategies.

Using MultiGran, we were able to match to granuloma population data coming from multi-

ple monkeys (Figs 6 & 7) and granulomas (Fig 4). we were also able to match experimental

data from a single NHP (Fig 8). In the era of precision medicine [59], the ability of MultiGran
to match to individual data could help predict, in real time, whether the granulomas within

that individual are likely to disseminate. This could happen when paired with PET/CT images

of individually lung granulomas. However, more realistically, this provides an impetus for

identifying biomarkers that are associated with granulomas at risk of dissemination, which

could be more widely used to identify persons at risk of developing active TB following

infection.

There are a few limitations of our study and model. First, the driving dissemination proba-

bility rules are somewhat phenomenological. Our goal in this first study was to rely on as few

assumptions as possible; the only granuloma characteristic that is explicitly used in the dissem-

ination rules is the total bacterial burden. As a consequence, the model allows for even a stable,

mature granuloma to disseminate (with small probability). We addressed this by allowing T

cells to leave the parent granuloma to travel to a daughter granuloma in a local dissemination

event, expecting this to sterilize new granulomas. Surprisingly, this was largely ineffective.
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Instead, it is more likely that the lung parenchyma in infected individuals has increased num-

bers of Mtb-specific T cells and possibly activated macrophages, so that new granulomas form

in a completely different immune environment, compared to the initial granulomas that form

in an immunologically naïve environment. This notion is supported by our data in NHP mod-

els demonstrating that primary ongoing infection protects against reinfection [32]. MultiGran
could be refined to test this in future iterations. Second, we restrict dissemination to be within

the boundary of the lungs, but the actual environment within the lungs is very complicated

and also could include airways and blood. Third, while we acknowledge thoracic lymph nodes

as a source of non-local dissemination, and include adaptive immune cell recruitment in our

ODE model, we currently do not explicitly model lymph node compartments. In future work,

we plan to address the role of lymph nodes in Mtb infection and dissemination. Finally, while

MultiGran was developed based on extensive NHP and human data, it does not contain all the

various cell types and mechanisms in the complex environment of the granuloma, primarily

because the functions and importance of certain cell types and factors remain obscure. As data

become available, MultiGran can evolve to include additional factors for mechanistic test.

Potentially, other modeling techniques might be better suited to answer specific questions sur-

rounding granuloma dissemination. For example, if one was interested in exactly the path an

infected macrophage might take when escaping the granuloma and initiating local dissemina-

tion, a spatial model at the site of infection, such as GranSim [60], could be more appropriate.

However, such a modeling approach necessitates a loss of total lung-level dynamics that were

critical to address our questions about dissemination events (both local and non-local) across

NHP lungs.

In summary, we utilized a systems biology approach that combined computational model-

ing and NHP datasets to better understand mechanisms of granuloma dissemination. We

present MultiGran, the first multi-scale model of granuloma dissemination and formation,

that was calibrated and validated to NHP data and we make predictions about the rate of dis-

semination and the role of specific immune cells in granuloma dissemination. In particular,

we discovered roles for multifunctional CD8+ T cells and macrophage dynamics in preventing

local and non-local dissemination within the lungs. Altogether, we argue that MultiGran,

together with NHP experimental approaches, offers great potential to understand and predict

dissemination events within Mtb infected lungs.
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zTrial). The black box designates inoculation region (row 1), wherein the specific within-lung

region destined for inoculation is highlighted in green (row 2). The third row demonstrates

successful inoculation of a single bacterium–the black box was sampled randomly until the

sampled coordinates lie within the green region. Cases 2 and 3 define granuloma placement

following dissemination. Case2 –non-local dissemination. When non-local dissemination

occurs, a bacterium escapes a single granuloma (row 1) and can be placed in any region

(shown in black in row 2) that encompasses the entire lung. The green highlighted region is

the area in which the bacterial placement will be accepted. Row 3 shows three trial placements:

two realizations of accepted bacterial placement (black arrows) and one unaccepted placement

(red arrow) at (xTrial, yTrial, zTrial). Case 3– local dissemination. Local dissemination is the

only form of granuloma placement which does not utilize random placement within a region

of lung space. Rather, an infected macrophage from the parent granuloma is placed in a ran-

dom direction away from the parent granuloma. Row 2 shows several options for granuloma

infected macrophage placement. Note that the arrows are of different length to represent our

assumption that local dissemination likely follows a normal distribution with respect to parent

granuloma location. Here, the green and black arrows show valid directions for the new place-

ment for the infected macrophage, while red arrows show invalid directions. A new granuloma

will begin to develop in the chosen (green) valid location (Row 3). Note that in both (A) and

(B) bacteria, granulomas, and infected macrophages are not to scale. Lung image from Servier

Medical Art.

(TIF)
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