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A B S T R A C T   

Purpose: To develop and validate an automated segmentation tool for COVID-19 lung CTs. To combine it with 
densitometry information in identifying Aerated, Intermediate and Consolidated Volumes in admission (CT1) 
and follow up CT (CT3). 
Materials and Methods: An Atlas was trained on manually segmented CT1 of 250 patients and validated on 10 CT1 
of the training group, 10 new CT1 and 10 CT3, by comparing DICE index between automatic (AUTO), automatic- 
corrected (AUTOMAN) and manual (MAN) contours. A previously developed automatic method was applied on 
HU lung density histograms to quantify Aerated, Intermediate and Consolidated Volumes. Volumes of subregions 
in validation CT1 and CT3 were quantified for each method. 
Results: In validation CT1/CT3, manual correction of automatic contours was not necessary in 40% of cases. 
Mean DICE values for both lungs were 0.94 for AUTOVsMAN and 0.96 for AUTOMANVsMAN. Differences be-
tween Aerated and Intermediate Volumes quantified with AUTOVsMAN contours were always < 6%. Consoli-
dated Volumes showed larger differences (mean: − 95 ± 72 cc). If considering AUTOMANVsMAN volumes, 
differences got further smaller for Aerated and Intermediate, and were drastically reduced for consolidated 
Volumes (mean: − 36 ± 25 cc). The average time for manual correction of automatic lungs contours on CT1 was 
5 ± 2 min. 
Conclusions: An Atlas for automatic segmentation of lungs in COVID-19 patients was developed and validated. 
Combined with a previously developed method for lung densitometry characterization, it provides a fast, 
operator-independent way to extract relevant quantitative parameters with minimal manual intervention.   

Introduction 

COVID-19 is an infectious disease characterized by several and non- 
specific clinical manifestations, as fever, cough, dyspnea and fatigue [1] 
which can cause from very mild to severe illness, including Acute Res-
piratory Distress Syndrome (ARDS) [2]. Computed tomography (CT) 
plays a key role in the clinical classification and management of COVID- 
19 patients especially for its high sensitivity in identifying COVID-19 
pneumonia (up to 97% when having RT-PCR as reference standard) 
[3–6]. Moreover, the quantitative analysis of the CT images for the 

extraction, analysis and interpretation of quantitative data has become 
widespread especially because of the experience acquired on ARDS 
[7–9]. Lung quantitative CT analysis embraces several techniques, for 
example the extraction of parameters from the intensity histogram 
[10–14], texture-based parameters detailing spatial relationship be-
tween voxels [15,16] and also includes the development of predictive 
models based on AI tools [17–19]. Several studies used threshold mea-
sures to quantify the healthy and the more compromised, high-density 
consolidated volumes as predictors of the disease severity and its com-
plications, such as the need for oxygenation support or ICU admission or 
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the risk of death [9–11,13,14,16]. Segmentation plays a key role in 
quantitative CT analyses, consisting in the identification and delineation 
of the entire lung volume [20]. This is a critical step because time- 
consuming if pursued manually, and on the other hand difficult to 
perform automatically without incorrected results. In fact, as long as on 
healthy lungs the automatic segmentation algorithms work well being 
low-density and high-contrast regions [21], conversely, the presence of 
abnormalities, like pleural effusion or parenchymal consolidations, 
which have attenuation characteristics similar to the pleural margin and 
the thoracic soft tissues, often leads to inaccurate output [22,23]. This is 
also well reflected in lung density histograms of COVID patients with 
ARDS, which often appear largely modified with respect to healthy in-
dividuals because of the presence of a typical peak in the region around 
0 HU. Therefore, manual contouring remains the actual reference 
standard for lung segmentation [24]. As reported in the Internet Anal-
ysis Tools Registry [25] there several softwares developed for lung 
segmentation. Despite manual contouring is actually the standard, the 
automatic approach has the potential to minimize the operator vari-
ability, reduce the time for the contouring and extending studies to a 
larger quantity of images to be segmented [26]. Deep learning-based or 
atlas-based algorithms performances constantly improve, so it is ex-
pected that they will replace manual methods to become the standard 
[27–30]. Some of these methods have been proved to be very effective to 
produce accurate contours requiring minimal editing by physicians, but 
their implementation and training is very demanding. Even when neural 
networks are implemented in commercial software, hospitals usually do 
not have the possibility to collect an adequate training set of studies. In 
this context Atlas-based segmentation remains a reasonable option and 
it is implemented by several vendors. Beyond automatic segmentation, 
another critical aspect for quantitative CT consists in quantifying the 
impact of segmentations uncertainties on the quantitative CT results 
[31–33], even when automatic [34]. Accordingly, the purposes of this 
work are:  

1) To develop and validate an Atlas-based automated segmentation tool 
for COVID-19 lungs CT scans.  

2) To extract quantitative parameters [13,14] from histograms of 
manual and automatic contours in order to test if significant differ-
ences were present. 

3) To apply the suggested approach to quantify variations of densi-
tometry parameters along time from the admission to follow-up at 
few months after the discharge in a prospectively followed cohort of 
patients. 

Materials and methods 

Atlas-based automated segmentation tool development 

The Atlas workflow was developed using the MIM Assistant package 
of the MIM Maestro software (MIM 6 v 6.9.6) and trained with lungs on 
CTs of 250 first wave COVID-19 patients manually revised by experts 
[14] during the first phase of hospitalization. Importantly, all CTs were 
acquired at maximum inspiration. The Atlas development was based on 
the registration of each CT to a reference CT chosen as Atlas represen-
tative subject and also named “template”. The registration was per-
formed using a rigid algorithm, to determine a similarity index, which 
aims to quantify the anatomical affinity of each Atlas subject to the 
template. Once all the 250 subjects were registered with the template, 
the Atlas was ready to automatically extract contours for a new set of 
patients, but a validation was required. The workflow used to invoke the 
Atlas can be customize with the following settings: the deformable 
registration method, the finalization algorithm, and the number of 
subjects used by the multi-subject Atlas [35]. The chosen finalization 
method is the Majority Vote (MV): a voxel is assigned to a certain 
structure if that voxel belongs to the same structure for most k subjects. 
Five consecutive image registrations are performed for every patient (k 

= 5), to find the best matches within the Atlas images database. In order 
to regularize any odd shape of the contours, it is convenient to add some 
post-processing functions to the workflow. In this case smooth and fill 
holes tools were used. In Fig. 1S is reported the workspace of MIM for the 
Atlas workflow editor. During the segmentation procedure, before pro-
ceeding with each deformable image registration, the software asks 
users to confirm the rigid registration found by the algorithm. In this 
phase, when not satisfied with the performance of the software, the 
operator can interact and manually modify the overlap between the 
template and the new patient image. This step can also be skipped and 
the workflow would choose all the rigid registrations independently, 
without any confirmation request. About this, Casati et al. [35] showed 
that the approach used to register the Atlas’ subjects to the template did 
not influence the accuracy of auto-contours. 

Atlas-based automated segmentation tool validation 

To evaluate the performance of the Atlas automatic segmentation, a 
validation cohort of patients was defined. Three different samples of 
patients’ CT have been chosen: 10 CTs already used to build the Atlas 
(CT1 internal validation set), 10 new CTs of patients at the hospital 
admission (CT1 external validation set) and 10 CTs of new patients 
scanned during a follow-up exam, few months after the discharge (CT3 
external validation set). This last set was considered with the aim of 
extending its use, based on the assumption that an atlas trained on CTs of 
hospitalized patients should work in identifying lungs whose appear-
ance is more near to normal lungs, as the ones referred to CT3. 

As already reported above, during the run of the Atlas on validation 
cohorts, the patient’s CT study was registered on the Atlas template and 
the similarity index was evaluated. This value was compared to the 
similarity indices of all the Atlas subjects in order to find the 5 subjects, 
which best matches the patient anatomy. For each validation cohort, the 
following material was available: two manual contours performed by 
two in-training radiologists (MAN), an automatic contour traced by the 
Atlas (AUTO), a manual revision of the automatic contour (AUTOMAN). 
In this last case, the same operator who generated the automatic con-
tours corrected them, if necessary, using the 3D brush tool provided by 
MIM, which allows to operate a correction on more slices simulta-
neously, and the smoothing tool. Right and left lungs were delineated 
separately for each patient. Importantly, the two radiologists providing 
MAN were not previously involved in the training of the Atlas, aiming to 
make the validation fully independent. For the same reason, the oper-
ator making corrections after running the automatic segmentation was 
not one of the two radiologists providing MAN. 

DICE computation for volumes segmented comparison 

Volumes defined by the different segmentation methods were 
compared computing Dice coefficients using the dedicated function 
“dice” in Matlab. For each validation subset, Dice indexes were 
computed between manual and automatic segmentation (MAN-AUTO), 
manual and corrected automatic segmentation (MAN-AUTOMAN), 
automatic and corrected automatic segmentation (AUTO-AUTOMAN). 
All the indexes were computed separately for right and left lungs. 
Having two references for the manual segmentation, a mean value of the 
two Dice coefficients was computed when MAN contour was involved. 
Moreover, to represent the volume agreement between the three 
methods, the DICE mean among all patients for each couple of methods 
was computed for the right and left lung separately. 

Lung sub-regions definition: Parameters extraction comparison 

To accomplish the second aim of the work, quantitative parameters 
were extracted from the density histograms, once lungs were segmented 
using the three approaches in order to quantify the differences derived in 
the case of MAN, AUTO and AUTOMAN segmentation. HU histograms of 
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the segmented contours were exported from MIM and quantitative pa-
rameters were extracted by applying a previously developed and tested 
method [12,13]. Having two references for the manual segmentation, 
the mean of the two histograms corresponding to each observer was 
computed when MAN contours were involved. The method refers to the 
typical HU-distribution of the lungs of COVID-19 patients, generally 
characterized by the presence of two peaks, one next to the air HU 
(− 1000 HU), which defines the aerated and therefore properly “func-
tioning” lung (Aerated Volume); and one next to the water HU (0 HU) 
corresponding to the lung component with consolidated disease 
(Consolidated Volume). Between these two peaks there is a quite evident 
and pronounced region corresponding to lung affected by the disease 
with highly variable patterns from patient to patient (Intermediate 
Volume). These volumes were extracted by the search of the HU 
thresholds which better separated the peaks from the intermediate 
plateau; other extracted parameters which are absent in healthy histo-
grams were the height and width of the intermediate volume area under 
the HU histogram (Height Intermediate, Width Intermediate), the shift 
of the Aerated Peak (Apeak) with respect to − 1000 HU (ShiftAirPeak) and 
the shift of Consolidated Peak (Cpeak) with respect to 0 HU (ShiftWa-
terPeak). Moreover, Aerated, Intermediate and Consolidated Volumes 
were also computed for the combined lungs (CL) together with their 
ratios (ConsolidatedVolume/AreatedVolume and IntermediateVolume/ 
AreatedVolume). Differences between all these extracted parameters for 
left, right and CL lungs were tested with the Wilcoxon and T-test (sig-
nificance level p = 0.05). In order to quantify the differences of Volumes 
between AUTO vs MAN and AUTOMAN vs MAN for CT1 and CT3 the 
absolute and percentage differences of the volume parameters were 
computed. 

Longitudinal densitometric study 

After the validation phase, the Atlas was exploited to obtain lungs 
segmentation of a sample of 50 patients with SARS-CoV-2 infection, 
confirmed by RT-PCR on nasopharyngeal swab. Of note, half part of this 
group of patients was used to train the Atlas. These patients referred to a 
secondary analysis of the COVID-BioB study (Clinical trials 
govNCT04318366) concerning the analysis of longitudinal changes of 
prospectively collected radiological, immunologic and medical features 
with time of survived patients. All patients underwent a first chest CT 
(CT1) in the first few days of hospitalization: in all cases, a follow up CT 
(CT3) acquired few months after the discharge was available. For a sub- 
group of 30 patients also a second CT (CT2) made during the hospital-
ization period was available. Time interval between CT1-CT2, CT2-CT3, 
CT1-CT3 were quantified and represented in histograms with mean, 
median times and standard deviations. Time intervals between consec-
utive CTs (CT1-CT2, CT2-CT3 and CT1-CT3) were also quantified. 
Qualitative and quantitative analysis of HU histograms variation and 
lung sub-regions through time were performed, by applying the sug-
gested AUTOMAN method. Total volumes of combined lungs were 
evaluated for CT1, CT2, and CT3 in order to follow variations and test 
their significance with T-test (significance level p = 0.05). Mean density 
variation was computed along time. Other parameters quantified were 
the aerated and the consolidated peak position variation and signifi-
cance was tested with the two-tailed T-test (significance level p = 0.05). 

Results 

Atlas validation and critical points 

The time required for the automatic segmentation of COVID-19 pa-
tients’ lungs, comprehensive of an optional manual “start registration”, 
was of about 2 min with a workstation with a 2.10 GHz Intel® processor, 
32 GB RAM, Windows 10 Enterprise. Although Atlas automatic seg-
mentation recognized quite well the consolidated region of the lungs 
that is generally badly identified by most common region grow or 

thresholds-based segmentation algorithms, this tool presented some 
recurrent critical points, in particular:  

• Type 1 failure: Anterior segments of lower lobes were often not 
properly included in the automatic contour (Fig. 1A). 

• Type 2 failure: Right lung contour sometimes included a not negli-
gible slice of the liver (Fig. 1C).  

• Type 3 failure: In few cases, the left lung contour wrongly included 
the aorta (Fig. 1D). 

For these reasons, the manual correction was applied to the auto-
matic contours extracted by the Atlas workflow (Fig. 1B, D, F). The time 
required for the corrections, when needed, was about 5 ± 2 min for both 
lungs included. Statistically, the most frequent error regarded the type 2 
failure, namely in the segmentation of the lung near the liver, even if for 
few slices (55% of cases). At the second place for frequency was regis-
tered the type1 failure, in the segmentation of the anterior lobes (25% of 
cases), and last the type 3 failure surely more rare (15% of cases). In 40% 
of cases, manual correction was not considered to be necessary. Dice 
coefficients were computed to compare volumes defined by the different 
segmentation methods. First, Dice indices were computed between the 
two observers: mean values were 0.98, SD = 0.01 and 0.97, SD = 0.02 
for the CT1 and CT3 external validation groups respectively. Results are 
reported in Table 1 for CT1 external and CT3 external validation group 
and showed that the Dice coefficients were always > 0.90, excepting one 
case for CT1 and one case for CT3 external validation. Values were found 
to be a little higher for the CT1 internal validation with respect to the 
CT1 and CT3 external subsets, as expected. Instead, the lowest values 
were those related to the comparison between manual and automatic 
contours in the CT1 external validation (0.93 for the right lung, 0.92 for 
the left lung). Moreover, the mean Dice index for the left lung in most 
cases resulted lower than the value for the right lung. In Fig. 2 distri-
butions of DICE coefficients were represented for each validation cohort. 
Of note, the differences between MAN-AUTO vs MAN-AUTOMAN were 
statistically significant for the two-tailed T-test (significance level p =
0.05) for the external validation sets. 

HU histograms analysis 

With regard to the comparison between MAN, AUTOMAN and AUTO 
contours, having two references for the manual segmentation, the mean 
of the two histograms corresponding to each observer was computed 
when MAN contours were involved. The extracted histograms of a CT1 
were reported in Fig. 3A (right) and B (left). Similarly, the extracted 
histograms of a CT3 were reported in Fig. 3C (right) and B (left). Aside 
from differences between segmentations, in CT1 histograms the 
Consolidated Volume is clearly visible at densities around 0 HU. 
Differently it disappears in CT3 histograms after the recover. In most 
cases especially for the right lung (12 and 6 cases out of 20 for right and 
left lung respectively), the Cpeak for the AUTO contour tended to be 
higher with respect to MAN and AUTOMAN. This may be due to the 
already exposed Atlas critical point regarding the wrong inclusion of the 
liver for the right lung, which can normally be associated with Houns-
field Units within 40–60 as reported in Fig. 3A. Regarding the left lung 
the peak in the consolidated region was present for all contours, without 
differences as reported in Fig. 3B. Instead for CT3 no evidence of a peak 
for the consolidated region were reported in both MAN and AUTOMAN. 
In fact, several months after the critical phase of the infection, the lung 
prevalently restores its normal or almost normal functionality. Here, 
again, the automatic contour showed an enhanced peak compatible with 
the improper segmentation of the liver (Fig. 3C). In Fig. 3D a particular 
case of CT3 was reported, showing a residual Consolidated Volume. 
Mean values and standard deviation for absolute and percentage vari-
ation of the Aerated Volume, Intermediate Volume and Consolidated 
Volume for CT1 and CT3 validation samples were computed. As re-
ported in Table 2, values of Δ and Δ % obtained for Consolidated 

M. Mori et al.                                                                                                                                                                                                                                    



Physica Medica 100 (2022) 142–152

145

Volume CL in the CT1 validation sample are shown. There is an 
improvement moving from AUTO to AUTOMAN because the absolute 
value of Δ Consolidated Volume CL and Δ % Consolidated Volume CL 
were smaller for MAN vs AUTOMAN respect to MAN vs AUTO: all the 
values found for variation of consolidated volume were on average 
negative. This means that, as already reported in the qualitative analysis 
of the HU histograms, automatic segmentation tended to overestimate 

the ConsolidatedVolume, including in the contours some tissues which 
do not belong to the lung. The values obtained for the percentage 
variation between MAN and AUTOMAN were − 19% (− 36 cc) for CT1 
and –32% (–32 cc) for CT3. For Aerated and Intermediate Volumes, 
differences between AUTO and AUTOMAN in approaching the manual 
contour were less evident and an improvement was constantly observed 
as reported in Table 2 (from 5% to 2% and from 6% to 4% for Aerated 

Fig. 1. A) Automatic Contour. Anterior segments of lower lobes are often not included in the automatic contours, as happens for the left lung in this image. Type 1 
error. B) Manually corrected contour. C) Automatic contour. The right lung contour wrongly includes an important portion of the liver. Type 2 error. D) Manually 
corrected contour. E) Automatic contour. The left lung contour wrongly includes the aorta. Type 3 error. F) Manually corrected contour. 

M. Mori et al.                                                                                                                                                                                                                                    



Physica Medica 100 (2022) 142–152

146

and Intermediate Volume respectively). In Table 1S-4S of the Supple-
mentary Material are reported the p-values obtained for Wilcoxon and 
two tails T-test between AUTOMAN and MAN, and between AUTO and 
MAN, for the validation samples. 

Longitudinal densitometric study 

Time intervals between CT1-CT2, CT2-CT3 and CT1-CT3 were found 
to have a mean/SD of 30/30 days for CT1-CT2, 193/92 for CT2-CT3 and 
202/94 for CT1-CT3. Distributions are reported in the Fig. 2S. Most of 
the changes during time were similar to the three examples reported in 
Fig. 4; in a fraction of patients, with a mean interval of 17 days between 
CT1-CT2, Cpeak (next to HU = 0) was more evident in CT2 (Fig. 4C) scans 
than in CT1, proving that CT1 not always represented the most critical 
phase of the infection. Second, the position of Apeak shifts from higher 
HU values to lower ones, as attended when the disease regresses 
(Fig. 4A, B, C). In almost all cases, Cpeak completely or almost dis-
appeared in CT3. As reported in Table 3, the mean CL volume was 3549 
± 979 cc, 3685 ± 947 cc and 4621 ± 1136 cc for CT1, CT2 and CT3 
respectively: the difference between CT1 and CT2 was not significant (p 
= 0.42) while the differences between CT1 and CT3 and between CT2 
and CT3 were significant (p < 0.0001). The changes of Aerated, Inter-
mediated and Consolidated Volumes between CT1 and CT2 had not a 
clear trend, as shown in Fig. 5. Then, in order to better point out the 
differences against CT3, the “Worst CT” between CT1 and CT2 (corre-
sponding to the CT with the smaller Aerated Volume) was considered for 
each patient and named “Worst CT”. Instead CT3 was named “Follow UP 
CT”. Aerated, Intermediate and Consolidated mean CL Volumes mean 
variations between Worst CT and Follow UP CT were + 1517 ± 967 cc, 
− 88 ± 436, and − 302 ± 369. Absolute and percentage variations are 
reported in Fig. 6. Median/mean variation of total CL volume between 
Worst CT and Follow UP CT was 1265 cc (39%)/1127 cc (36%) (p <
0.0001): only 6/50 patients showed a decrease of − 636 cc (− 15%). 
Median/mean variations of mean CL density were − 177HU/− 186HU (p 
< 0.0001). Histograms showing the distributions of mean density ab-
solute and percentage variations for both left and right lung are shown in 
Fig. 3S. From the T-test performed for the total volume of CL between 
Worst CT and Follow Up CT, p-values were found significative different 
(p < 0.001). In Table 3, values of Apeak obtained for CL in the Worst and 
Follow Up CTs are shown and distributions are depicted in Fig. 4S. The 
differences were found statistically significant (T-Test p = 0.0001 and 
0.017 for right and left lung respectively). Regarding the Cpeak position, 
the T-Test performed between distributions in Worst CT and Follow Up 
CT did not give significant differences. In Table 3 values of Cpeak position 
are reported and distributions are depicted in Fig. 5S. 

Discussion 

In the current study, an Atlas for the automatic segmentation of lungs 
in chest CT images of COVID-19 patients was developed with the aim of 
assessing its accuracy and suitability in a fully integrated workflow of 
image analysis. The impact of auto-segmentation uncertainty on quan-
titative densitometry analyses was also computed, aiming to make 

available an almost completely automatic framework to extract pa-
rameters characterizing the severity of pulmonary symptoms of COVID- 
19 patients as well as functioning as robust imaging-based predictors. 
Concomitantly, the temporal changes of parameters from the admission 
to the follow-up at few months after the discharge in a prospectively 
followed cohort of patients were quantified as an example of relevant 
application of the suggested approach. Particularly the total CL volume 
between Worst CT and Follow UP CT was found to increment on average 
of 1265 cc (39%)/1127 cc (36%) (p < 0.0001): only 6/50 patients 
showed a decrease of − 636 cc (− 15%). The CL volume distributions 
along time were reported in the last plot of Fig. 5. This difference was 
probably due to a different ability in respiration, improved at the follow 
up respect to previous times as clear evidence of the functionality re-
covery. The decrease of CL volume is likely associated to a compromised 
lung functionality. 

The Atlas developed and validated at our Centre could be easy 
adopted on CTs coming from other Institutes, because the only input 
required consists in the CT image scanned at maximum inspiration. 
There are many papers in the literature on automatic segmentations for 
lung abnormalities [36–42], several also dedicated to the topic in 
COVID-19 diagnostic imaging field, mostly based on AI-based ap-
proaches including neural networks [43–47]. On the other hand, atlas- 
based approaches were rarely reported for COVID-19 lung segmenta-
tion [48]. Differently from AI-based methods, Atlas-based segmentation 
may be easily implemented using commercially available solutions, as 
the one we used. 

The recent study by Berta et al. [48] reported the accuracy of several 
segmentation tools applied on COVID-19 lungs with qualitative and 
quantitative assessment, including an Atlas-based approach, using a 
commercial system different from ours. Authors reported a non- 
inferiority result in terms of contouring accuracy between Atlas-based 
against several AI-based methods in an internal validation loop. Un-
fortunately, the limited number of patients and the lack of external 
validation limits the possibility of comparing these results with ours, 
despite the quite positive findings with using an Atlas-based approach. 
Interestingly, the cited article reported similar issues for Atlas-based 
tools, unveiling the weak point of including in segmentation more 
dense areas (e.g. part of the liver). 

Focusing on our major results, the high values of the Dice coefficients 
(even in the “different” situation of follow-up CTs) are very encouraging, 
but they may be also attributed to the fact that lungs are in general very 
large anatomical volumes. Therefore, relatively large differences be-
tween automatic and manual segmentation may go “unnoticed” 
computing the Dice coefficient. These differences are indeed still small 
compared to the total volume of the lung but they can translate into 
relatively large errors when estimating the consolidated part of the 
lungs, mostly due to the failures occurring at the interface between lung 
apex and liver and, secondarily, at the edge between lung and aorta. In 
other words, the Atlas developed for COVID-19 automatic segmentation 
is still not completely stand-alone for all patients and frequently 
(roughly in 60% of cases) needs manual correction to be consistent with 
the manual lungs’ delineations. However, the manual correction is fast 
(around 5 min, both lungs included) making the approach suitable for 
clinical use. Improving the performances of the methods by automa-
tizing at least in part the corrections of the automatically generated 
contours could be a further refining task for the future. A solution could 
consist in running the Atlas on the entire set of CT available after 
selecting only better segmentations without or with minimal errors of 
type 1, 2, 3. With this smaller set of images more correctly segmented, 
the Atlas could be re-trained to better learn the correct anatomy of 
COVID-19 lungs. 

A limit of this work regards the relatively small number of patients 
involved in the validation procedure especially because the differences 
in Consolidated Volume between the AUTOMAN and the reference 
segmentation method (MAN) were found significative. On the other 
hand, these differences effectively represented by tens cubic centimeters 

Table 1 
Dice coefficients for comparisons between various contouring methods in CT1 
internal, CT1 and CT3 external validation (R = right, L = left).   

CT1 internal 
validation 

CT1 external 
validation 

CT3 external 
validation 

MAN-AUTO R 0.95 0.01 0.93 0.02 0.95 0.02 
MAN-AUTO L  0.95  0.02  0.92  0.02  0.94  0.02 
MAN-AUTOMAN R  0.96  0.01  0.95  0.01  0.96  0.01 
MAN-AUTOMAN L  0.96  0.01  0.95  0.01  0.96  0.01 
AUTO-AUTOMAN R  0.98  0.01  0.96  0.02  0.97  0.02 
AUTO-AUTOMAN L  0.98  0.02  0.96  0.02  0.97  0.02 
Inter-observer variability  0.98  0.02  0.97  0.02  

M. Mori et al.                                                                                                                                                                                                                                    



Physica Medica 100 (2022) 142–152

147

Fig. 2. Box-plots of Dice coefficient distributions among patients from the CT1 internal (A), CT1 external (B) and CT3 external validation subsets (C) for right and left 
lungs. The horizontal blue line represents the value of the mean inter-observers Dice coefficient found for CT1 (0.98 ± 0,01) and CT3 (0.97 ± 0.02) external 
validation subsets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and included in the uncertainties of vascular structures volume are 
systematic and had little relevance to characterize the severity of pul-
monary symptoms of COVID-19 patients (considering that the total 
lungs volume for the CT1 sample is on average about 3500 cc). As re-
ported by Fig. 6S of Supplementary Material the higher Consolidated 
Volumes resulted associated to the smaller percentual differences be-
tween AUTOMAN and MAN segmented and vice-versa, proving that the 
manual correction introduced a systematic error which is percentage 
significatively large only in the less serious cases of small Consolidated 
Volumes. To corroborate this, in our previous work [14] when the same 
procedure to extract histogram parameters was used and a model for 
mortality prediction was developed and validated with 80% of accuracy 
(90% when combining histogram parameters with clinical parameters), 
patients with high risk of mortality were found to have too much high 
consolidated fractions in CT1. Surely the systematic error reported of 
about 36 cc in CT1 could not impact the predictive power of the model. 

Moreover, it is worth to underline that the combination of the Atlas- 
based segmentation with our previously developed fully automatic 
method to quantify the fractions of Aerated, Intermediate and Consoli-
dated Volumes, makes the whole process (from CT acquisition to 
assessment of densitometry quantitative features) fast and robust. 

Thanks to this, the approach was applied to a longitudinal study 
based on data of 50 prospectively followed patients. Although it was 
referred to a relatively small population, different and interesting as-
pects were investigated. A first, exploratory comparison between Worst 
CT and Follow Up CTs was performed. It was pointed out that the 
Aerated Volume largely increased with time, as expected [49,50], while 
Apeak position shifted towards air reference HU value. 

In most cases especially for the right lung, the Cpeak for the AUTO 
contour tended to be higher with respect to MAN and AUTOMAN in both 
Worst and Follow UP CTs (infact differences in in Cpeak were found not 
significative at the T-Test). This may be due to the already exposed Atlas 
critical point regarding the wrong inclusion of the liver for the right 
lung, which can normally be associated with Hounsfield Units within 
40–60 as reported in Fig. 3A. Regarding the left lung the peak in the 
consolidated region was present for all contours, without differences as 
reported in Fig. 3B. Instead for Follow UP CT for the right lung (Fig. 3C) 
no evidence of a peak for the consolidated region were reported in both 
MAN and AUTOMAN. In fact, several months after the critical phase of 
the infection, the lung prevalently restores its normal or almost normal 
functionality. In Fig. 3D a particular case of Follow UP CT was reported, 
showing a residual Consolidated Volume. In this case the manual revi-
sion with AUTOMAN has removed the Cpeak, instead the histogram 
extracted by AUTO segmentation reproduced as well the MAN reference 
histogram. The recovery trend was obtained also by mean lung density 
which evolved toward air density values. Total volume variation, mean 
density variation, Apeak and Cpeak position shift, together with other 
possible parameters extracted from HU histograms, could be used in the 
future to assess a quantitative relationship between CT findings and 
clinical outcomes in patients suffering from the so called “Long Covid”. 
The quantitative approach used to follow changes in COVID-19 lungs in 

Fig. 3. A) CT1 example of right lung, with Consolidated region overestimated by AUTO probably because of error type 2 B) CT1 example of left lung C) CT3 example 
of right lung: the Consolidated region decreased for MAN and AUTOMAN because of recovery, instead was overstimated by AUTO probably because of error type 2 D) 
CT3 particular case of left lung still showing a residual Consolidated Volume. In this case the manual revision with AUTOMAN has removed the Cpeak, instead the 
histogram extracted by AUTO segmentation reproduced as well the MAN reference histogram. 

Table 2 
Percentage differences in consolidated, aerated, and intermediate volumes for 
CT1 and CT3 between different segmentation methods (Man = manual; AUTO =
atlas-based automatic; AUTOMAN = atlas-based automatic + manual correc-
tion); for consolidated volume, also absolute changes are shown. *p < 0.05. CL=
(Combined Lungs).   

MAN vs 
AUTO CT1 
(Δ (Δ%)) 

MAN vs 
AUTOMAN CT1 
(Δ (Δ%)) 

MAN vs 
AUTO CT3 
(Δ (Δ%)) 

MAN vs 
AUTOMAN CT3 
(Δ (Δ%))  

Consolidated Volume CL 
mean − 53%* 

(− 74 cc) 
− 19%* (− 36 cc) − 89%* 

(− 95 cc) 
–32%* (–32 cc) 

SD 59% (49 cc) 12% (25 cc) 63% (72 cc) 22% (24 cc)  
Aerated Volume CL 

mean 5%* 2%* 3%* 2%* 
SD 3% 1% 2% 1%  

Intermediate Volume CL 
mean 6% 4%* 2% 6%* 
SD 6% 3% 7% 3%  
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terms of Aerated, Intermediate, Consolidated Volumes, mean density, 
Apeak position shift etc. differs from the methods generally used in other 
studies reported by literature. In fact, they are often strictly related to 
the temporal changes in CT of specific findings described by using 
internationally standard nomenclature defined by the Fleischner Society 
glossary and peer-reviewed literature on viral pneumonia, using terms 
including ground-glass opacity, crazy-paving pattern, and consolidation 
[51,52]. Moreover, the assessment of temporal changes of these findings 
in general are reported by a qualitative definition of visual scores 
[53–55]; instead, in this work the temporal changes of parameters 
extracted are objective and operator-independent. 

Fig. 4. Example of HU histograms time evolution for three patients in the longitudinal study population, A), B), C).  

Table 3 
. Combined Lung (CL) mean total volume for CT1, CT2 and CT3. Position of 
Areated Peak (Apeak) and Consolidated Peak (Cpeak) in the Worst CT and in the 
Follow UP CT.  

CL Parameters CT1 CT2 CT3 

Mean volume (±SD) 3459 (±979) cc 3685 (±947) cc  4261 (±1136) cc  

Worst CT Follow UP CT 
Apeak (±SD) − 836 (±55) HU 862 (±40) HU 
Cpeak (±SD) 8 (±32) HU 4 (±39) HU  
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In summary, AI-based medical imaging has played an important role 
in fighting against COVID-19 and image segmentation is the first step for 
each study, so it needs to be accurate and fast to permit the analysis of 
large amounts of data. 

The method described has surely an evident weak point in 

segmenting consolidated regions but we also demonstrate that it consists 
in a systematic error which becomes negligible in the most serious cases 
of larger consolidated zones. The encouraging results of current study 
suggest that our Atlas-based segmentation method combined with 
automatic extraction of densitometry information may be a useful tool in 

Fig. 5. Aerated, Intermediate, Consolidated and total lung Volume temporal variations in combined lungs from CT1, CT2 and CT3. The changes between CT1 and 
CT2 had not a clear trend. 

Fig. 6. A) Absolute and B) percentage variations in Aerated, Intermediate and Consolidated Volume between Worst CT and Follow UP CT. Boxplots for right, left and 
combined lungs are shown. Outliers were removed to simplify the graphic representation, but still contribute to the mean (black cross) and median (black 
line) values. 
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supporting studies with large cohorts of patients. Also, differently from 
fully AI-based approaches, it keeps high interpretability of the results 
and potentially higher generalizability and clinical usability. Never-
theless, and interestingly, its performances could also be investigated in 
the future on patients affected by pathologies other than COVID-19 
pneumonia. 
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[11] Tomé MH, Gjini M, Zhu S, Kabarriti R, Guha C, Garg MK et al. Using Statistical 
Measures and Density Maps Generated From Chest Computed Tomography Scans 
to Identify and Monitor COVID-19 Cases in Radiation Oncology Rapidly. Cureus 
2021 Aug 25;13(8):e17432. 10.7759/cureus.17432. eCollection 2021 Aug. 

[12] Ash SY, Harmouche R, Vallejo DLL, Villalba JA, Ostridge K, Gunville R, et al. 
Densitometric and local histogram based analysis of computed tomography images 
in patients with idiopathic pulmonary fibrosis. Respir Res 2017;18:1–11. https:// 
doi.org/10.1186/s12931-017-0527-8. 

[13] Mazzilli A, Fiorino C, Loria A, Mori M, Esposito PG, Palumbo D, et al. An automatic 
approach for individual HU-based characterization of lungs in COVID-19 patients. 
Appl Sci 2021;11(3):1238. 

[14] Mori M, Palumbo D, De Lorenzo R, Broggi S, Compagnone N, Guazzarotti G, et al. 
Robust prediction of mortality of COVID-19 patients based on quantitative, 
operator-independent, lung CT densitometry. Physica Med 2021;87:115–22. 
https://doi.org/10.1016/j.ejmp.2021.04.022. 

[15] Wei W, Hu XW, Cheng Q, Zhao YM, Ge YQ. Identification of common and severe 
COVID-19: the value of CT texture analysis and correlation with clinical 
characteristics. Eur Radiol 2020;30(12):6788–96. https://doi.org/10.1007/ 
s00330- 020-07012-3. 

[16] Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, et al. Quantitative computed 
tomography analysis for stratifying the severity of Coronavirus Disease 2019. 
J Pharm Anal 2020;10(2):123–9. 

[17] Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of 
deep learning technique to manage COVID-19 in routine clinical practice using CT 
images: Results of 10 convolutional neural networks. Comput Biol Med 2020;121: 
103795. 

[18] Huang Lu, Han R, Ai T, Yu P, Kang H, Tao Q, et al. Serial Quantitative Chest CT 
Assessment of COVID-19: A Deep Learning Approach. Radiol Cardiothorac Imaging 
2020;2(2):e200075. 

[19] Lessmann N, Sánchez CI, Beenen L, Boulogne LH, Brink M, Calli E, et al. Automated 
Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores 
in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology 
2021;298(1):E18–28. 

[20] Mascalchi M, Camiciottoli G, Diciotti S. Lung densitometry: Why, how and when. 
J Thorac Dis 2017;9(9):3319–45. 

[21] Pirozzi S, Horvat M, Piper J, Nelson A. SU-E-J-106: Atlas-based segmentation: eval- 
uation of a multi-atlas approach for lung cancer. Med Phys 2012;39:3677. https:// 
doi.org/10.1118/1.4734942. 

[22] Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, 
Malyarenko D, et al. Quantitative imaging biomarkers alliance (qiba) 
recommendations for improved precision of dwi and dce-mri derived biomarkers in 
multicenter oncology trials. J Magn Reson Imaging, 49(7):e101–e121, 
2019. 10.1002/jmri.26518. 

[23] Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological 
society of north america expert consensus document on reporting chest ct findings 
related to covid-19: endorsed by the society of thoracic radiology, the american 
college of radiology, and rsna. Radiol Cardiothor Imaging, 2(2):e200152, 2020. 
10.1148/ryct.2020200152. 

[24] Piper J, Nelson A, Harper J. Deformable image registration in mim maestro 
evaluation and description. Cleveland, OH: MiM Software Inc; 2013. 

[25] Kennedy DN, Haselgrove C. The Internet Analysis Tools Registry: A Public 
Resource for Image Analysis. Neuroinformatics 2006;4:263–70. https://doi.org/ 
10.1385/NI:4:3:263. 

[26] Withey DJ, Koles ZJ. A Review of Medical Image Segmentation: Methods and 
Available Software. IjbemOrg 2008;10:125–48. 

[27] Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in Auto- 
Segmentation. Semin Radiat Oncol 2019;29:185–97. https://doi.org/10.1016/j. 
semradonc.2019.02.001. 

[28] Xie W, Jacobs C, Charbonnier JP, van Ginneken B. Relational Modeling for Robust 
and Efficient Pulmonary Lobe Segmentation in CT Scans. IEEE Trans Med Imaging 
2020;39:2664–75. https://doi.org/10.1109/TMI.2020.2995108. 

[29] Maffei N, Fiorini L, Aluisio G, D’Angelo E, Ferrazza P, Vanoni V, et al. Hierarchical 
clustering applied to automatic atlas based segmentation of 25 cardiac sub- 
structures. Phys Med 2020;69:70–80. 
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