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The classification of jets induced by quarks or gluons is important for New Physics

searches at high-energy colliders. However, available taggers usually rely on modeling

the data through Monte Carlo simulations, which could veil intractable theoretical and

systematical uncertainties. To significantly reduce biases, we propose an unsupervised

learning algorithm that, given a sample of jets, can learn the SoftDrop Poissonian

rates for quark- and gluon-initiated jets and their fractions. We extract the Maximum

Likelihood Estimates for the mixture parameters and the posterior probability over

them. We then construct a quark-gluon tagger and estimate its accuracy in actual

data to be in the 0.65–0.7 range, below supervised algorithms but nevertheless

competitive. We also show how relevant unsupervised metrics perform well, allowing

for an unsupervised hyperparameter selection. Further, we find that this result is not

affected by an angular smearing introduced to simulate detector effects for central jets.

The presented unsupervised learning algorithm is simple; its result is interpretable and

depends on very few assumptions.

Keywords: jets, QCD, unsupervise learning, inference, LHC

1. INTRODUCTION

As ongoing searches at the LHC have not succeeded in providing guidance on the nature of
extensions of the Standard Model, unbiased event reconstruction and classification methods
for new resonances and interactions have become increasingly important to ensure that the
gathered data is exploited to its fullest extent (Aarrestad et al., 2021; Kasieczka et al., 2021).
Unsupervised data-driven classification frameworks, often used as anomaly-detectionmethods, are
comprehensive in scope, as their success does not hinge on how theoretically well-modeled signal
or background processes are allowing for more signal-agnostic analyses (Andreassen et al., 2019,
2020; Choi et al., 2020; Dohi, 2020; Hajer et al., 2020; Nachman and Shih, 2020; Roy and Vijay, 2020;
Caron et al., 2021; d’Agnolo et al., 2021).

Here, we apply the unsupervised-learning paradigm to the discrimination of jets induced by
quarks or gluons. The so-called quark-gluon tagging of jets can be a very powerful method to
separate signal from background processes. Important examples include the search for dark matter
at colliders, where the dark matter candidates are required to recoil against a single hard jet
(CMS coll., 2015), the measurement of Higgs boson couplings in the weak-boson fusion process
(Dokshitzer et al., 1992; Rainwater et al., 1998) or the discovery of SUSY cascade decays involving
squarks or gluinos (Bhattacherjee et al., 2017). Thus, a robust and reliable method to discriminate
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between quark and gluon jets furthers the scientific success of
the LHC programme in precision measurements and searches
for new physics. Consequently, several approaches have been
proposed to exploit the differences in the radiation profiles of
quarks and gluons (Gallicchio and Schwartz, 2011; Larkoski et al.,
2013, 2014b; Bhattacherjee et al., 2015; Ferreira de Lima et al.,
2017; Kasieczka et al., 2019) and have been studied in data by
ATLAS coll (2014) and CMS coll (2013).

The discrimination of quarks and gluons as incident particles
for a jet poses a challenging task. Some of the best performing
observables to classify quark/gluon jets are infrared and/or
collinear (IRC) unsafe, e.g. the number of charged tracks of
a jet. Thus, evaluating the classification performance of IRC
unsafe observables from the first principles is an inherently
difficult task. Instead, SoftDrop (Larkoski et al., 2014a) has
been shown to achieve a high classification performance while
maintaining IRC safety. Further, at leading-logarithmic accuracy,
the SoftDrop multiplicity nSD exhibits a Poisson-like scaling
(Frye et al., 2017), allowing us to construct an entire data-driven
unsupervised classifier based on a mixture model. Although IRC
safety is in principle not necessary to construct an unsupervised
tagger, the fact that we are able to know the leading-logarithmic
behavior of the observable is what allows us to build a
simple and interpretable probabilistic model. To build a tagger
that discriminates between quark and gluon jets, we extract
the Maximum Likelihood Estimate (MLE) and the posterior
distributions for the rate of the Poissonians and the mixing
proportions of the respective classes. We find such a tagger
to have a high accuracy (≈ 0.7) while remaining insensitive
to detector effects. In a second step, we augment this method
by using Bayesian inference to obtain the full set of posterior
distributions and correlations between the model parameters,
which allows to calculate the probability of a jet being a quark
or gluon jet. The latter method results in a robust tagger with
even higher accuracy. Thus, this approach opens a novel avenue
to analyse jet-rich final states at the LHC, thereby increasing the
sensitivity in searches for new physics.

The structure of this article is as follows: In section 2, we
present the datasets considered and describe the mixture model
method for the discrimination of quark and gluon jets. In section
3, we discuss the performance and uncertainties of the MLE
algorithm, detailing the viability of this algorithm in the presence
of detector effects. We use Bayesian inference to obtain the full
posterior probability density function in section 4. In section 5,
we offer a summary and conclusions.

2. MIXTURE MODELS FOR QUARK- AND
GLUON-JETS DATA

To showcase and benchmark our model performance in a way
comparable to other algorithms, we have considered two datasets
available in the literature, both considered initially in Komiske
et al. (2019b). These two datasets contain quark and gluon jets
after hadronization, and correspond to a set (Komiske et al.,
2019a) generated with Pythia (Sjöstrand et al., 2015) and a
set (Pathak et al., 2019) generated with Herwig (Bahr et al.,

2008; Bellm et al., 2016). The reason for using datasets from
different generators is to verify that the algorithm is independent
of the generator and from any specific tuning. As detailed in the
documentation, the quark- and gluon-initiated jets are generated
from qg → Z(→ νν)+ u/d/s and qq → Z(→ νν)+ g processes
in pp collisions at

√
s = 14 TeV. After hadronization, the jets

are clustered using the anti-kT algorithm with R = 0.4. For the
sake of validation and comparing supervised and unsupervised
metrics, we use the parton level information to define whether
a jet is a true quark or a true gluon. This definition is known
to be problematic and we emphasize that our model does not
depend on these unphysical labels and could instead provide an
operational definition of quark and gluon jets (Komiske et al.,
2018b). In addition, there is a very strict selection cut and all
the provided jets have transverse momentum pT ∈ [500.0, 550.0]
GeV and rapidity |y| < 1.7. We detail the impact of these cuts on
the tagging observable in the following paragraphs. Finally, the
dataset is balanced with an equal number of quark and gluon jets.

As a tagging observable, we have considered the Iterative
SoftDrop Multiplicity nSD defined in Frye et al. (2017). Once
defined the jet radius R used to cluster the constituents with
the Cambridge-Aachen algorithm (Dokshitzer et al., 1997), nSD
has three hyperparameters zcut, β , and θcut. The dependence
on these hyperparameters and the classification performance on
supervised tasks has been explored in Frye et al. (2017). In this
work and in agreement with Frye et al. (2017) we will consider
IRC safe parameter choices: zcut > 0, β < 0 and θcut = 0.

The choice of a well-known tagging observable allows
us to perform unsupervised quark-gluon discrimination by
considering interpretable mixture models (Štěpánek et al., 2015;
Metodiev et al., 2017; Komiske et al., 2018a;Metodiev and Thaler,
2018; Dillon et al., 2019, 2020, 2021; Alvarez et al., 2020, 2021;
Graziani et al., 2021), where we think of the measurement of
N jets and their nSD, values as originating from underlying
themes, which we would ideally match with quark and gluon jets.
In a probabilistic modeling framework, we want to obtain the
underlying quark and gluon distributions from the observed data

X = {n(i)SD, i = 1, ...,N}, which has a likelihood function

p(X) =
N

∏

i=1

p(n(i)SD) =
N

∏

i=1

∑

k={q,g}
πk p(n

(i)
SD | k), (1)

where k is the jet class or theme. The mixing fraction πk denotes

the probability of sampling a jet from theme k and p(n(i)SD | k)
is the nSD probability mass functions conditioned on which
theme the jet belongs to. In principle, the number of themes
is a hyperparameter of the model and could be optimized with
some criteria (see, e.g., Celeux et al. (2018) for a review on
different methods to select the number of themes). In this work,
we consider only two themes that we identify with quark and
gluon jets. This choice is based on physical grounds. As we will
detail in the following paragraphs, for a sufficiently small pT
range we only expect two themes. The final ingredient to build

the probabilistic model is the specification of p(n(i)SD | k). Tomodel
these probability mass functions, we make use of the fact that at
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FIGURE 1 | Generative process for nSD due to a mixture of quark and gluon jets.

leading logarithmic (LL) order nSD is Poisson distributed (Frye
et al., 2017):

p(X) =
N

∏

i=1

∑

k={q,g}
πk Poisson(n

(i)
SD; λk), (2)

where λk is the Poisson rate for each theme, which fixes the
mean and variance of the nSD distribution. The departure of the
Poisson hypothesis by NLL corrections and Non Perturbative
effects can then be seen by examining the variance to mean ratio
for each class of jets. We see that deviations from the Poissonian
behavior are parameter-dependent, in agreement with previous
results detailed in Frye et al. (2017). Furthermore, we see that the
deviations are more substantial for quark jets than for gluon jets.
This is enhanced by the fact that quark jets usually have smaller
nSD values than gluon jets.

The behavior of nSD is also dependent on the kinematics of
the jet. For the samples considered, the limited pT and |y| ranges
ensure that all quark- and gluon-initiated jets follow the same
respective nSD distributions. In a more realistic implementation
of this model where the pT of the jets populates a much
wider range, the model implementation should be modified to
account for the variation of the nSD distribution with pT . A
straightforward strategy is to bin the pT distribution and infer the
mixture model parameters in each bin, effectively conditioning

the Poisson rates and the mixture fractions on the pT of the jets
populating such region. The pT dependence also implies that
the discriminating power of the mixture model will depend on
the pT of the jet as is usually the case for most quark/gluon
classification methods.

The likelihood in Equation (2) describes how for a given value
of the mixing fractions πq,g and the Poisson rates λq,g , each jet is
sampled or generated. This is called a generative process and it
is often useful to represent it as a plaque diagram (Bishop, 2013).
The corresponding plaque diagram to Equation (2) can be seen
in Figure 1.

In the figure, we have introduced a hidden or latent class
variable, the theme assignment z, which dictates whether the
generated jet is a quark or a gluon jet. This class assignment
is necessary to think of the likelihood as a generative process
and it is useful when performing inference and when building
a probabilistic jet classifier. Having defined the probabilistic
model and the relevant parameters π and λ, finding the
underlying themes becomes synonymous with finding the
posterior probabilities for π and λ. These posterior probabilities
can then be used to build a quark/gluon classifier. Instead of
tackling the Bayesian Inference problem head-on, one can first
obtain point estimates for π and λ. Because we consider a
statistically significant dataset and a straightforward model, at
this stage we consider theMaximum Likelihood Estimates (MLE)
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of π and λ instead of Maximum A Posterior (MAP) estimates.
These estimates can be obtained easily through Expectation-
Maximization (EM) or with Stochastic Variational Inference
through dedicated software such as the Pyro package (Bingham
et al., 2018; Phan et al., 2019). We need to be careful when
estimating the point parameters as they can suffer from mode
degeneracy and mode collapse. The former occurs due to the
permutation symmetry of the classes and can be fixed by
requiring that λq < λg as dictated by basic principles. The latter
occurs when one theme is emptied of samples. Because we only
consider two classes, collapse is avoided for good hyperparameter
choices because of the multimodality of the data distribution.

With the MLE point estimation of πMLE and λMLE, we
can construct a probabilistic jet classifier by computing the
assignment probabilities or responsibilities,

p(z = quark | nSD,πMLE, λMLE)

=
πMLE
q Poisson(nSD, λMLE

q )
∑

k={q,g} π
MLE
k

Poisson(nSD, λMLE
k

)
, (3)

with p(z = gluon) = 1− p(z = quark). The classifier is obtained
by selecting a threshold 0 ≤ c ≤ 1.0 and labeling any jet with
p(z = quark | nSD,πMLE, λMLE) ≥ c as a quark jet. This classifier
has a clear probabilistic justification and it is interpretable, which
is a considerable asset for an unsupervised task.

For validation, we compute the usual supervised metrics: the
accuracy obtained by assigning classes using the probabilistic
working point c = 0.5 chosen because we have a binary
classification problem and a probabilistic algorithm, the mistag
rate at 50% signal efficiency ǫ−1

g (ǫq = 50%) and the Area-Under-
Curve (AUC). The accuracy is defined as the number of fraction
of well classified samples, ǫq,g are the fraction of well classified
quark/gluon jets and the AUC is the integral of the Receiver
Operating Characteristic (ROC) curve ǫq(ǫg) with a higher AUC
usually signaling a higher overall performance. However, because
we are interested in an unsupervised classifier trained directly on
data, we also define unsupervised metrics. These metrics need to
be correlated with the unseen accuracy so as to substitute it as a
measure of performance in a fully data-driven implementation of
the model. In an unsupervised metric wemeasure how consistent
is the learned model with the measured data. We investigate two
metrics that encode such consistency:

dH(p, q) =
1
√
2

√

√

√

√

∞
∑

nSD=0

(
√

p(nSD)−
√

q(nSD))2

KL(p||q) = −
∞
∑

nSD=0

p(nSD)Ln

(

q(nSD)

p(nSD)

)

, (4)

where dH is the Hellinger distance (Deza and Deza, 2009)
and KL is the Kullback-Leibler divergence between the learned
data density and the measured data density. The latter
can be interpreted as the amount of information needed
to approximate samples that follow the distribution p with
samples generated by a model q. In this article, p will be
the measured data density obtained by the nSD frequencies

and q will be the posterior predictive distribution q(nSD) =
∑

k={q,g} π
MLE
k

Poisson(nSD, λMLE
k

). Other metrics such as the
Energy Mover’s Distance (Komiske et al., 2019c) could also be
applied. We emphasize that this takes advantage of the fact that
we are learningmore than a classifier, as we are modeling the data
density itself and the underlying processes that generate it. If we
can match the learned models to quark and gluon jets, it means
we can understand the data beyond merely a good discriminator.

In section 3, we apply this model to the two quark
and gluon datasets (Komiske et al., 2019a), (Pathak et al.,
2019) and obtain the different MLE point parameters
and derived metrics for other choices of SoftDrop
hyperparameters. We then go beyond the point estimate
calculation by introducing priors for π and λ and obtain the
corresponding posterior through numerical Bayesian inference
in section 4. These priors can encode our theoretical domain
knowledge, such as the LL estimates of λq and λg and also
regularize our model and thus avoid mode degeneracy and
mode collapse.

3. RESULTS

Having detailed the data and our model in section 2, we proceed
to obtain point estimates for the parameters of the mixture
model. In section 3.1, we study the model performance at the
generator level for the two generator choices available, and we
include a brief study of detector levels in section 3.2. All results
are reported on a test set which was separated from the train set
prior to the model training.

3.1. Model Performance at Generator Level
As detailed in section 2, we model the nSD distribution as
originating from a mixture of two Poissonians, which we
aim to identify with gluon and quark jets (or, should we
want to get rid of perturbative definitions, to operationally
define gluon or quark enriched samples). For each choice of
hyperparameters, we obtain the Maximum Likelihood Estimates
(MLE) of the rates of the Poissonians. λMLE

g and λMLE
q , and

the mixing fraction between the two πMLE
g . We define the

gluon theme as the theme with the larger rate, as oriented
by the perturbative calculations. We obtain the MLE of the
parameters with the help of the Pyro package (Bingham et al.,
2018; Phan et al., 2019), which we have verified to coincide
with the results obtained through Expectation-Maximization but
provide us with a more flexible framework that can incorporate
additional features to the generative model and optimize the
code appropriately.

For the sake of validation and understanding, we
consider three supervised metrics: the accuracy using the
probabilistic decision boundary p(g | nSD) = p(q | nSD),
the inverse gluon mistag rate at 50% quark efficiency
ǫ−1
g (ǫq = 50%) and the AUC. Since we are dealing with
an unsupervised algorithm, and as discussed above, we
also apply the unsupervised metrics defined in section 2:
the Hellinger distance (Deza and Deza, 2009) and the
Kullback-Leibler divergence. These metrics compare the
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FIGURE 2 | SoftDrop multiplicity distributions for the learned quark and gluon jet themes and the correct “true” answer based on the Pythia generated sample. The

upper (lower) row corresponds to a good (bad) choice of hyperparameters. This can be seen from the supervised side by the accuracy metric and from the

unsupervised side by the Hellinger and KL divergence metrics which measure the consistency between the real data and pseudo-data sampled with the learned

model parameters. On the left plots, we show with vertical lines the different Poisson rates while on the right plots we show with a vertical line the threshold

corresponding to p(z = quark | nSD) = 0.5. See text for details.

measured nSD distribution (without any labels) to the learned
total distribution

p(nSD | data) = πMLE
g Poisson(λMLE

g )

+ (1.0− πMLE
g ) Poisson(λMLE

q ). (5)

We show two examples of the results we obtain for different
SoftDrop hyperparameters in Figure 2. In the left column,
we show the true underlying distributions and the two
learned Poissonians, their respective means and Poissonian
rates, and the supervised metrics. In the right column, we
show the data distribution, the learned data distribution and
the default decision boundary, along with the unsupervised
data-driven metrics. In the top row, we show a good
hyperparameter choice that leads to a data distribution that
is well modeled by a mixture of Poissonians, and thus
we obtain good supervised and unsupervised metrics. In
the bottom row, we show a bad hyperparameter choice

leading to a data distribution that is not well modeled by
a mixture of Poissonians, and thus we obtain mostly bad
supervised and unsupervised metrics, with the exception of the
AUC score.

The supervised metrics show that the accuracy and the AUC
do not necessarily favour the samemodels. As shown in Figure 2,
two very different cases can lead to high AUC, with the accuracy
being able to reflect more the true performance of themodel. This
is due to the fact that the AUC is a more global metric which
takes into account every possible threshold in p(z = quark | nSD)
including the default threshold used for computing the accuracy,
p(z = quark | nSD) = 0.5, and can be fooled by moving
said threshold. Because the default threshold is theoretically
well-motivated, as it takes full advantage of the probabilistic
modeling to define a specific boundary between the two classes,
it tends better to reflect the goodness of the modeling than the
AUC. As we use probabilistic models for an unsupervised task,
interpretability and consistency are important features to keep
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FIGURE 3 | Comparison of supervised and unsupervised learning performance metrics for various hyperparameter choices using the same input data. The color

code reflects the goodness of the metrics by coloring in green high accuracies and low KL divergences and vice versa in red. We note that the best hyperparameter

choice is consistent with the results reported in Frye et al. (2017). Moreover, since there is a fair agreement of the best regions in the upper (supervised) and lower

(unsupervised) panels, this suggests that an unsupervised optimization in real data would select a region of good accuracy. Observe that right and left plots

correspond not only to different generators, but also to the different setup of the generator parameters.

in mind. In that sense, the accuracy is more aligned with the
unsupervised metrics, which cannot be fooled by moving the
decision threshold. The Hellinger distance and the KL divergence
see whether the generated dataset is consistent with the measured
dataset, taking advantage of the generative procedure.

As a next step, we scan the hyperparameter values to study the
algorithm performance and how unsupervised metrics can assist
us in having a good (unseen) supervised metric. We show the
accuracy and the KL divergence for an array of hyperparameter
values in Figure 3. We observe that the accuracy and the KL
divergence have a fair agreement in qualifying a good model for
a given SoftDrop parameter choice. Although their respective
maximum and minimum do not match exactly, the regions of
high accuracy coincide with the regions of low KL divergence.
Therefore, we can trust that the accuracy will be increased for a
reasonable parameter choice by inspecting the KL divergence and

verifying that the obtained quark and gluon themes are suitable.
As for the other metrics (not shown in the plot), we find that the
Hellinger distance is consistent with the KL divergence and the
mistag rate is consistent with the accuracy. The AUC presents the
caveat discussed above and thus is less relevant for this study.

From the above results, we see that, by choosing the accuracy
as the relevant metric, there is a significant overlap of the good
regions in hyperparameter space according to the unsupervised
and supervised metrics. This indicates that classification
performance coincides with generative performance, and
therefore opens the door for exploring a fully unsupervised
approach where the quark/gluon tagging is defined by a relatively
simple parameter scan—yielding an unsupervised, interpretable
and simple model for classification.

To study the performance of the proposed unsupervised
classifier in some more detail, we compute the ROC and
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the accuracy as a function of the threshold c to which the
classes are defined. We show in Figure 4 both results for a
good point in hyperparameter space. In a real case scenario,

one would only have access to the bottom panel in Figure 3,
and choosing a point with small KL divergence would yield
a tagger that for the threshold p(z = quark) = 0.5

FIGURE 4 | Left: ROC curve for a good hyperparameter choice (AUC = 0.77). Right: Accuracy as a function of threshold for the same hyperparameter choice. We

observe that the accuracy is constant in regions and that it is maximum in the region that contains the default decision boundary p(z = quark) = 0.5. The coarse

behavior of the accuracy can be traced back to the probabilistic classifier dependence on the discrete nSD. A jet can have a discrete set of nSD and thus a discrete set

of p(z = quark) values.

FIGURE 5 | Smeared nSD distributions obtained by applying the pT -dependent emulation of detector effects/response detailed in Equation (6) and in Buckley et al.

(2020) with different scaling factors. A scaling factor of 0 indicates no smearing while a scaling factor of 1 indicates the same smearing factor as in Buckley et al. (2020).
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FIGURE 6 | Model performance as a function of the angular smearing. In the left plot we show the obtained Maximum Likelihood Estimates for each Poisson rate and

compare them with the means of the true underlying distributions. In the right plot, we show the accuracy and the AUC as a function of the scaling factor.

has an accuracy of roughly ∼ 0.65–0.73 (Pythia) and 0.62–
0.70 (Herwig).

3.2. Detector Effects
To study the sensitivity of our tagger to detector effects, we
used the procedure outlined in section 6 in Buckley et al.
(2020) and smeared the η,φ distribution of each jet constituent.
We considered the same smearing as in Buckley et al. (2020),
where they spread the η and φ values of a constituent by
sampling Gaussian noise with mean zero and standard deviation
given by:

σ0(pT) =
0.028

1+ e(pT−25 GeV)/0.1 GeV
, (6)

where pT is the pT of the constituent. We consider different
smearing noise factors σ obtained by re-scaling σ0 by a global
multiplicative factor. The results are shown in Figures 5, 6.
Although there is a difference in the MLE due to the change
in the distributions, we find no significant alteration in the
supervised metrics, and hence in the model performance. It
seems that generator effects as simulated are not challenging the
model. This may not be surprising since the model only relies
on the assumptions that the integer value nSD are composed
of a mixture of approximately Poissonian distributions. In any
case, a more realistic detector simulation should be implemented
to verify this analysis, which includes modeling the energy
response of various jet constituents, should be implemented. A
different and interesting extension is to extend the |y| range to
include forward jets. For forward jets, the detector granularity
changes and thus the nSD becomes more dependent on |y|.
It would then be necessary to introduce similar strategies as
the ones detailed for dealing with a large pT range. Finally,
we should mention that potential pile-up issues would only

have a minor effect on the tagger, not only because nSD
is a robust observable as it discards soft emission, but also
because we are keeping a small radius (R = 0.4) in the jet
clustering algorithm.

4. BAYESIAN ANALYSIS

As a final study for the model, we perform Bayesian
inference to obtain the full posterior probability density
function over the parameters. Introducing uniform priors
and performing numerical Bayesian inference, we obtain the
posterior probabilities of π and λ. In order to achieve this
goal, we employ the dedicated emcee package (Foreman-
Mackey et al., 2013). We show the resulting corner plot for a
justified hyperparameter choice in Figure 7. Because we have
so many jets and we consider uniform priors, the inference
is likelihood dominated with a prominent posterior peak in
the MLE. However, one should not lose sight of the fact that
the posterior distribution includes more information than the
MAP point estimates since we can quantify the uncertainty
of the π and λ estimation and their correlation. Suppose the
generative model for the data is precise enough. In that case,
this is a potentially useful application as one could establish a
distance between the data-driven posterior distribution and the
different Monte Carlo tunes one needs to consider to relate data
with Standard Model predictions. In the specific case of the LL
approximation for the nSD distribution as Poissonians, we find
by inspecting the MC labeled data that the agreement is not
good enough to perform such a task (see Figure 8). However,
the approximation is good enough to distinguish the quark
from the gluon nSD distributions, and therefore to create a good
unsupervised classifier.
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FIGURE 7 | Corner plots for the model parameters πg, λq, and λg. The diagonal plots are the 1D marginalized posterior distributions for each parameter while the

off-diagonal plots are the pairwise 2D distributions marginalized over the third parameter. The πq distribution can be obtained by considering 1− πg.

Another feature of Bayesian computation is that we can
compute the probability of a given measurement nSD belonging
to class z integrated over the λg , λq, and πg posterior distribution.
Using our Monte Carlo samples, we calculate

p(z | nSD,X) ≈
1

T

T
∑

t=1

p(z | nSD,π (t)
g , λ(t)g , λ(t)q ) (7)

where X represents the training dataset and t is the posterior
sample index. We show this probability for both classes in
Figure 9. Although the MLE dominates the likelihood because
of our uniform priors and the amount of data, this probability
is a more solid estimate when we only care about classifying
samples as it considers all possible values of the underlying
model parameters weighted by previous measurements through
the posterior. The performance of this tagger using the decision
threshold of p(z = quark) = 0.5 yields an accuracy of 0.71.

5. DISCUSSION AND OUTLOOK

We have proposed an unsupervised data-driven learning
algorithm to classify jets induced by quarks or gluons. The key of
the method is to approximate that each class (quark and gluon)
has a Poissonian distribution with a different rate for the jets’ Soft
Drop observable, nSD. Therefore, the nSD distribution of a sample
of an unknown mixture of quark and gluon jets correspond
to a mix of Poissonians. This observation, which is only for
approximately constant jet pT , allows to set up an unsupervised
learning paradigm that can extract the Maximum Likelihood
Estimate (MLE) and the posterior distributions for the rate of
each Poissonian (λq and λg) and the fraction of each constituent
in the sample (πq,g) and thus, with this knowledge, one can
create a tagger to discriminate quark and gluon induced jets. This
is all achieved without relying on any Monte Carlo generator,
nor any previous knowledge other than the assumption that
nSD is Poisson distributed for each class. We use the basic
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FIGURE 8 | nSD distribution comparison between pseudo-data generated

through MC (solid) and Poissonians estimates using as rates the mean of the

data (dashed) and the Maximum a Posteriori MAP from the Bayesian inference

(dashed). We see that the Poissonian approximations are good enough to

distinguish quark from gluon, but there are slight differences when comparing

each approximation to its corresponding data.

FIGURE 9 | Class assignment probabilities for each nSD possible value

obtained after marginalizing over π and λ. Note that each nSD has its own

probability mass function with two possible outcomes with no constraint

arising from summing over nSD.

principle knowledge that λg > λq to assign the tagging of the
reconstructed themes.

In the first part of the work, we have defined the
generative process of the data according to the above hypothesis
and obtained the MLE for the parameters using Stochastic
Variational Inference and Expectation-Maximization techniques
independently. We have then designed a quark-gluon tagger and
discussed a method to find the best hyperparameters choice for

the SoftDrop algorithm that optimise the tagger accuracy. Since
one cannot measure the accuracy in actual data because one does
not have access to the labels, we have shown that minimizing the
KL divergence between the real data and generated data sampled
with the generative model improves the tagger accuracy.We have
verified that the procedure works for different Monte Carlo with
different tunes. One can expect that the described unsupervised
tagger can have an accuracy in the range≈ 0.65− 0.70.

We have performed a simple detector effect simulation by
smearing the angular coordinate of each jet constituent, and
we find that the tagger accuracy remains approximately the
same. This is not surprising since, despite the detector effects,
the nSD observable is still a counting observable that may vary
its value but still be Poissonian distributed with shifted rates.
Therefore the whole machinery of the unsupervised algorithm
works essentially the same.

In a second part of the article, we have performed a
Bayesian inference on the parameters to extract the full posterior
distribution and the correlation between the model parameters,
namely λq, λg , and πg . In particular, we have found that the
Maximum a Posterior (MAP) approximately coincides with
the MLE of the parameters. Furthermore, we have found that
although the reconstructed Poissons for each class does not
match the labeled data within the posterior uncertainty, the
classifier still works quite good. The reason for this is that,
although we can see a slight departure of the approximation
of the nSD being Poissonian distributed, the two inferred
Poissonians for quark and gluon still show a more pronounced
difference between them than its corresponding labeled data.

With the posterior obtained through Bayesian inference, we
have designed a quark-gluon tagger based on computing the
probability of a jet being induced by either quark or gluon using
all the observed data. This is a more robust tagger since it sees
the posterior and hence the correlation between the parameters
rather than the point MLE. With this tagger, we obtain an
accuracy of 0.71.

There are potential improvements and limitations on the
proposed algorithm. For example, suppose one could have
a model for the nSD that goes beyond the LL Poissonian
approximation. In that case, one could modify the likelihood
and obtain the posterior for the new likelihood parameters.
Although we do not expect this to improve the tagger
accuracy considerably, it could help tune a Monte Carlo using
unsupervised learning. If one could have a reliable posterior
for specific signal distribution, then one could check whether a
Monte Carlo is compatible or not with it. Observe that, since
Monte Carlo generators do not have a handle to set the value
for each observable, having a prediction for some observable
and its uncertainty provides the necessary information to check
whether the Monte Carlo sampling is within the allowed regions
defined by the posterior. On other aspects, we have performed
simple modeling for the detector effects, which apparently would
not affect the tagger performance. Further investigation in this
direction would be helpful to find the actual limitations of
the algorithm.

Finally, we should comment on the challenges that may
arise when applying this algorithm in real data. A balanced
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quark/gluon dataset is far from guaranteed. However, we have
verified that the classification and generative powers of the model
are robust against a change in the classes fractions up to a 80% in
any class. There is also the possibility of sample contamination
with, for example, charm- and bottom-quarks. If there is no need
to disentangle charm- and bottom- from light-quarks, then no
modification is needed as nSD is mostly agnostic to quark flavor
for relatively fixed jet kinematics. In particular, for jets with pT≫5
GeV c- and b-jets are as massless as light-jets and they have a
similar nSD behavior. If b-tagging and c-tagging is needed, then
themodel should be extended by incorporating other observables
which are sensitive to quark flavor, like the number of displaced
vertices in the jet, before searching for three themes instead
of two.

Current supervised algorithms to discriminate jets induced
by quark or gluon have a non-negligible dependence on
Monte Carlo and their tunes, which may hide some intractable
systematic uncertainties or biases. Therefore, we find that
proposing an unsupervised paradigm for quark-gluon
determination is an appealing road that should be transited.
In addition to being interpretable and straightforward, the

presented algorithm yields an accuracy in the 0.65–0.7
range, which is a good achievement for the small number
of assumptions on which it relies.
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