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Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances

unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely

unknown. There is emerging evidence of the presence of cell populations expressing

stemness-associated markers within many types of vascular tumors and vascular

malformations. The presence of these populations in VAs is supported, in part, by the

observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of

embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin

system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible

explanation for its spontaneous and accelerated involution induced by β-blockers and

ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor

SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade,

opens up exciting opportunities for novel treatment of IH without the β-adrenergic

blockade-related side effects. Gene mutations have been identified in several VAs,

involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing

cancer therapies that target these pathways engenders the exciting possibility of

repurposing these agents for challenging VAs, with early results demonstrating clinical

efficacy. However, there are several shortcomings with this approach, including the

treatment cost, side effects, emergence of treatment resistance and unknown long-term

effects in young patients. The presence of populations expressing stemness-associated

markers, including transcription factors involved in the generation of induced pluripotent

stem cells (iPSCs), in different types of VAs, suggests the possible role of stem

cell pathways in their pathogenesis. Components of the RAS are expressed by

cell populations expressing stemness-associated markers in different types of VAs.

The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK

pathways interact with different components of the RAS, which may influence cell

populations expressing stemness-associated markers within VAs. The potential of

targeting these populations by manipulating the RAS using repurposed, low-cost and

commonly available oral medications, warrants further investigation. This review presents

the accumulating evidence demonstrating the presence of stemness-associated
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markers in VAs, their expression of the RAS, and their interaction with gene

mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in

the pathogenesis of VAs.

Keywords: vascular anomalies, vascular tumor, vascular malformation, embryonic stem cells, induced pluripotent

stem cells, renin-angiotensin system, gene mutations, stemness-associated markers

INTRODUCTION

Vascular anomalies (VAs) consist of a heterogenous group
of disorders with infantile hemangioma (IH) being the most
common, affecting 4–10% of infants (1). VAs may cause
disfigurement and/or functional problems (2).

There has been a recent paradigm shift in the treatment of
IH using β-blockers (3, 4) and angiotensin-converting enzyme
(ACE) inhibitors (5, 6). One proposed mechanism of these agents
is by targeting stem cells by modulating the renin-angiotensin
system (RAS) (1, 7). For most other VAs, treatment remains
empirical and unsatisfactory, although sirolimus (rapamycin),
an mTOR inhibitor, is increasingly used for complex vascular
anomalies (8).

Nomenclature applied to VAs has confused clinicians and
patients, leading to incorrect diagnosis, improper treatment
and misdirected research efforts (9). In 1982, Mulliken and
Glowacki (10) first proposed a biologic classification for
VAs that differentiates (infantile) hemangioma from vascular
malformations. IH is characterized by an initial postnatal
rapid proliferation followed by a slow involution, in which
the cellular elements are gradually replaced by fibrofatty
tissues (10). Vascular malformations are present at birth, grow
commensurately throughout childhood and do not regress (10).

A biologic classification of VAs was created by the
International Society for the Study of Vascular Anomalies
in 1997, categorizing VAs into vascular tumors and vascular
malformations (11). Increasing knowledge of VAs led to a
revision of the classification in 2014 which further subcategorizes
vascular tumors into benign, locally aggressive or borderline,
and malignant tumors. Vascular malformations are categorized
as simple malformations which may be high-flow or low-flow
(2), combined, of major named vessels, or those associated with
other anomalies (9) (Figure 1). However, the term hemangioma
continues to be erroneously applied to different types of VAs,
despite them being distinct biological entities (12).

This review discusses accumulating evidence implicating a
role for populations of cells that express stemness-associated
markers, the RAS, and the influence of gene mutations on the
pathobiology of VAs, underscoring commonalities between VAs.
This includes a potential stem cell origin, genetic mutations,
treatment options such as sirolimus, and newer targeted therapies
in development and their potential shortcomings.

Gene Mutations in Vascular Anomalies and
Overgrowth Syndromes
Gene mutations have been identified in some VAs, although not
in IH despite intensive research (9, 13). A missense mutation

in TIE2 (Figure 2) that causes an arginine-to-tryptophan
substitution at position 849 on chromosome 9, was discovered
in familial venous malformation (VM) in 1996 (14). TIE2 (TEK
or HYK), an endothelial-specific receptor in the tyrosine kinase
sub-family (15), is critical for the regulation of vasculogenesis,
vascular remodeling, endothelial cell integrity and survival, upon
binding angiopoietin 1 (Ang-1) and angiopoietin 2 (Ang-2) (16).
Additional germline and somatic mutations have since been
identified in both familial and sporadic VM (15, 17–19).

Glomuvenous malformation, characterized by the presence of
glomus cells that represent immature vascular smooth muscle
cells (vSMCs) in the walls of affected venous channels, is
associated with mutations in the glomulin gene on chromosome
1p21-22, with 157delAAGAA being present in 48.8% of 23
affected families (20).

Fifty-four percent of VMs without detectable TIE2 mutations
are caused by somatic activating mutations in the PIK3CA
gene (Figure 2), which encodes a catalytic subunit of the
phosphatidylinositol 3-kinase (PI3K) enzyme p110α (21).
Somatic mutations in PIK3CA are also associated with lymphatic
malformation (LM) (22) (Figure 2). Disorders which feature LM,
including overgrowth syndromes such as congenital lipomatous
overgrowth with vascular, epidermal and skeletal anomalies
(CLOVES) and Klippel-Trénaunay syndrome (KTS), are also
frequently associated with somatic mutations in the PIK3CA
gene (22) (Figure 2). Mutations affecting PIK3CA also cause a
megalencephaly-capillary malformation (23) (Figure 2).

Somatic mutations in the MAP2K1 gene, which encodes
MEK1, are associated with arterio-venous malformation (AVM)
(24) (Figure 2), and constitutively increased MEK1 activity is
observed in various cancer types (25, 26).

Capillary malformation-arteriovenous malformation (CM-
AVM) is an autosomal dominant vascular malformation,
associated with mutations in the RASA1 gene (Figure 2) which
have also been identified in capillary malformation (CM),
AVM, arterio-venous fistula, and Parkes-Weber syndrome (27)
(Figure 2). Germline loss-of-function mutations in EPHB4
are present in CM-AVM2, the second type of CM-AVM
characterized by intra- and extra-cranial AVMs, multifocal CMs
and telangiectasias (28).

Congenital hemangiomas are rare vascular tumors which are
fully developed in utero. They are subcategorized into rapidly
involuting congenital hemangioma (RICH), non-involuting
congenital hemangioma (NICH) and partially involuting
congenital hemangioma (PICH) (29, 30). RICH, NICH and
PICH are associated with somatic activating mutations in
GNAQ and GNA11 (31) (Figure 2). GNAQ, GNA11, and
GNA14 mutations are present in anastomosing hemangioma
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FIGURE 1 | The International Society for the Study of Vascular Anomalies classification of vascular anomalies. Vascular anomalies (VAs) are categorized as vascular

tumors, vascular malformations and unclassified VAs. Vascular tumors are categorized as being benign, locally aggressive or borderline, or malignant. Vascular

malformations are categorized as simple malformations, combined malformations, of major named vessels, or are associated with other anomalies. Simple and

combined malformations can be either high- or low-flow. AVF, arterio-venous fistula; AVM, arterio-venous malformation; CAVM, capillary-arteriovenous malformation;

CLAVM, capillary-lymphatic-arteriovenous malformation; CLOVES, congenital lipomatous overgrowth-vascular malformation—epidermal nevi-spinal anomaly

syndrome; CLVM, capillary-lymphatic-venous malformation; CM, capillary malformation; CVM, capillary-venous malformation; KTS, Klippel-Trénaunay syndrome; LM,

lymphatic malformation; LVM, lymphatic venous malformation; PWS, port-wine stain; SWS, Sturge-Weber syndrome; VM, venous malformation.

(32) (Figure 2). GNAQ mutations have also been identified in
Sturge-Weber syndrome (SWS) and CM (33, 34) (Figure 2).
The Gln209 missense mutation in GNAQ and GNA11 has also
been demonstrated in uveal melanoma, in which it constitutively
activates MAPK signaling (35).

Somatic activating mutations in GNA14, HRas, KRas, NRas,
and GNA11 are associated with certain vascular tumors (36)
(Figure 2), and somatic mutations in MAPK3 are associated
with verrucous venous malformation (VVM) (37) (Figure 2).
Furthermore, mutations in both BRAF and Ras genes have been
demonstrated in sporadic and secondary pyogenic granuloma
(PG) (38) (Figure 2), and mutations in PTEN are associated with
PTEN-hamartoma tumor syndrome (39) (Figure 2). A somatic
activating mutation in AKT has been associated with Proteus
syndrome (40) (Figure 2).

The identification of a range of somatic and some germline
mutations affecting different genes in different types of VAs
and overgrowth syndromes have improved our understanding
of these challenging conditions. The occurrence of identical
mutations in multiple VAs suggests it is not the type of mutation
that dictates which type of VA develops, but rather what
endothelial cell lineage or stem cell type the genetic alteration
occurs in during embryogenesis (41).

This review analyzes mutations in each type of VA, how they
may directly influence embryonic stem cell (ESC)-like cells, and

the possible interactions between these mutations and the RAS in
regulating the stemness of the primitive populations within VAs
(Figure 2).

Induced Pluripotent Stem Cells
Introduction of transcription factors OCT4, SOX2, c-MYC, and
KLF4 into adult mouse (42) and human (43) fibroblasts induces
pluripotent stem cell (iPSC) formation. This can also be achieved
with NANOG and LIN28 in place of c-MYC and KLF4 (44). The
master regulators of pluripotency—OCT4, SOX2, c-MYC, and
KLF4—are known as the “Yamanaka factors.” The expression
of stemness-associated markers by various types of VAs (45–
49) warrants further investigation including functional studies to
confirm if they possess ESC properties.

Populations of Cells Expressing
Stemness-Associated Markers in Vascular
Anomalies
Populations of cells expressing stemness-associated markers
have been identified in different types of vascular tumors
including IH (50) and PG (51), and vascular malformations
including VM (46), LM (45), VVM (47), AVM (48), and port-
wine stain (PWS) (49)—the most common form of CM. The
observation of the proliferative nature of vascular malformations
challenges the prevailing notion that they consist of quiescent
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FIGURE 2 | A proposed model for the role of gene mutations involving the Ras/BRAF/MEK/ERK and the PI3KCA/AKT/mTOR pathways by their interaction with

different components of the renin-angiotensin system, leading to the induction and/or maintenance of cells that express stemness-associated markers in vascular

anomalies. AH, anastomosing hemangioma; ATII, angiotensin II; AT1R, angiotensin II receptor 1; AT2R, angiotensin II receptor 2; PRR, pro-renin receptor; AVF,

arteriovenous fistula; AVM, arterio-venous malformation; CM, capillary malformation; CM-AVM, capillary malformation—arterio-venous malformation; CM-AVM2,

capillary malformation—arterio-venous malformation 2; CLOVES, congenital lipomatous overgrowth with vascular—epidermal and skeletal anomalies; HPWS,

hypertrophic port-wine stain; P-W syndrome, Parkes-Weber syndrome; PWS, port-wine stain; KTS, Klippel-Trénaunay syndrome; LM, lymphatic malformation; NICH,

non-involuting congenital hemangioma; PG, pyogenic granuloma; PICH, partially involuting congenital hemangioma; RICH, rapidly involuting congenital hemangioma;

SWS, Sturge-Weber syndrome; VEGF, vascular endothelial growth factor; VM, venous malformation; VVM, verrucous venous malformation.

non-proliferating endothelium. It is interesting to speculate that
gene mutations (Figure 2) may play a key role in the induction
and/or maintenance of the primitive population by influencing
aberrant proliferation and differentiation, or de-differentiation of
mature cells by upregulating the Yamanaka factors (43).

The Renin-Angiotensin System and Its
Bypass Loops
Populations of cells expressing stemness-associated markers
within several types of VAs express components of the RAS (7,
52, 53). The classical RAS (Figure 3) is an endocrine cascade that
is crucial for blood volume and blood pressure homeostasis (54).
It is also a critical regulator of hematopoietic and mesenchymal
stem cells (55). Renin, an aspartyl protease converted from its
precursor pro-renin, cleaves angiotensinogen (AGT) to form
angiotensin I (ATI) (54, 56). Angiotensin-converting enzyme
(ACE) converts ATI to angiotensin II (ATII) (54, 56, 57), the
physiologically active component of the cascade that exerts its
physiologic effects by binding to ATII receptor 1 (AT1R) and
ATII receptor 2 (AT2R) (54). There are also bypass loops of the
RAS comprising enzymes such as cathepsins B, D and G and
chymase (57, 58). Cathepsin B belongs to a family of cysteine
proteases that converts pro-renin to renin (57). Cathepsin D, an
aspartyl protease and a renin analog, cleaves AGT to form ATI
(57). Cathepsin G, a serine protease, produces ATII directly from
AGT or from ATI while chymase, a mast cell protease, converts

ATI to ATII (57) (Figure 3). Cathepsins B, D, and G have been
demonstrated in IH (59) and LM (60).

VASCULAR TUMORS

Infantile Hemangioma
IH is characterized by rapid proliferation during infancy followed
by slow involution over the subsequent 5–10 years (1). The
identification of endothelial progenitor cells (EPCs) that co-
express CD133 and CD34 in proliferating IH tissues (61)
and the peripheral circulation (62) of IH patients, led to the
proposal of EPCs as the origin for IH (1). However, the
expression of markers associated with primitive hematopoietic
cells and the transcription factors brachyury and GATA-2 by
the endothelium of proliferating IH indicates an up-stream
primitive mesodermal origin (63). This suggests the immature
capillaries within proliferating IH are derived from a hemogenic
endothelium, downstream of hemangioblasts (64), capable of
undergoing mesenchymal (65, 66), neuronal (67), endothelial
(67), and hematopoietic (68) differentiation. The expression of
the stemness-associated markers OCT4, SSEA-4 and pSTAT3 on
the endothelium of proliferating IH, implies the presence of an
ESC-like population (50). STAT3 signaling plays an important
role in the maintenance and stemness of cancer stem cells
(69), and its activation maintains ESCs in an undifferentiated
state (70). The ESC markers NANOG, SALL4 and CD133 have
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FIGURE 3 | A Schema demonstrating the classical renin-angiotensin system, with cathepsins B, D, and G, acting as bypass loops. Activation of pro-renin occurs

upon binding with pro-renin receptor. Renin then converts angiotensinogen into angiotensin I (ATI), which is cleaved by angiotensin-converting enzyme (ACE) to

produce the active peptide angiotensin II (ATII). The actions of ATII are mediated through interactions with ATII receptor 1 (AT1R) and ATII receptor 2 (AT2R). Cathepsin

B and cathepsin D contribute to renin activation. Cathepsin D and chymase mediates conversion of angiotensinogen into ATI. Cathepsin G promotes generation of

ATII from ATI or directly from angiotensinogen. Reproduced with permission from Expert Rev Clin Pharmacol (6).

also been demonstrated on cells within the interstitium of
proliferating IH (50).

The distinctive expression of glucose transporter-1 (GLUT-
1) in IH (71) and syncytiotrophoblast membranes of the
human placenta (72) and the unique co-expression of placental
antigens FCγRIII, Lewis Y antigen and merosin, and type 3-
iodothyronine deiodinase on IH, led to the speculation of a
placental embolic origin of IH (1, 73–75). The presence of
human chorionic gonadotrophin, human placental lactogen,
but not human leucocyte antigen-G or cytokeratin 7, on
proliferating endothelium of IH, suggests a placental chorionic
villous mesenchymal core origin of IH (76).

The endothelium of the microvessels within proliferating IH
expresses embryonic hemoglobin ζ (HBZ) and erythropoietin
receptor (EPOR) (68). Erythropoietin is a crucial growth
factor for the proliferation, differentiation and survival of
erythroid progenitor cells (77). EPOR is found with HBZ in
extra-embryonic yolk sac blood islands (77) – the location
of primitive hematopoiesis during the first trimester of
pregnancy (78, 79). Cell culture of IH explants in vitro
form enucleated erythrocytes which express the erythrocyte-
specific marker glycophorin A (68). These findings suggest
that the endothelium of IH is a functional hemogenic
endothelium which may be a site of primitive extra-medullary
erythropoiesis (68).

The endothelium of proliferating IH also expresses the neural
crest markers p75 (a neurotrophin receptor), SOX9 and SOX10
(63), NG2 and nestin (80), suggesting a primitive mesoderm with
a neural crest phenotype (63). The segmental distribution of the
IH seen in PHACES syndrome (63, 81), is reminiscent of the
migratory paths of neural crest cells during embryogenesis (82).

Accelerated involution of proliferating IH induced by
propranolol (83), acebutolol (84), other β-blockers (85, 86) and
captopril (5), suggests a role for the RAS in the pathogenesis for
IH (1, 6). The CD34+ hemogenic endothelium of proliferating
IH expresses components of the RAS: ACE and AT2R, but not
AT1R (7). Pro-renin receptor (PRR), another component of the
RAS, is expressed on both endothelial and non-endothelial cell
populations of IH. Renin has been demonstrated to promote
proliferation of the endothelial cell population that may be
blocked via inhibition of the canonical Wnt signaling pathway,
using the Wnt receptor blocker dickkopf-1 (87). These findings
suggest there are interactions between renin, PRR and Wnt
signaling (88). This is unsurprising given PRR is a part of the
Wnt/frizzled receptor complex (89).

Explants of proliferating IH form blast-like structures in
media upon administration of ATII in a dose-dependent
manner (90), which could explain the accelerated involution of
proliferating IH induced by propranolol (7). This is supported by
the observation that serum renin levels are five times higher in
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the first 3 months of life and remain three times higher at 3–12
months old, when compared to adults. Serum renin levels then
taper to normal adult levels from 8 years of age (91). This gradual
decline in serum renin levels reflects the programmed biologic
behavior of IH (1, 92). Patients with proliferating IH treated
with surgery or propranolol have significantly decreased plasma
renin levels (82), whereas surgery and captopril administration
significantly reduce the mean levels of ATII. However, none of
these interventions significantly affect the mean serum levels of
ACE (93). The significant changes in renin and mean levels of
ATII following these interventions further evidences the crucial
role of the RAS.

The observation that the angiotensin peptides significantly
influence cellular proliferation of IH underscores a central role of
the RAS in the pathobiology of IH. While explants of IH treated
with an ACE or AT2R antagonist demonstrate a significant
reduction in the nuclear expression of Ki67, a marker of cellular
proliferation, the addition of an AT2R agonist increases the
number of Ki67+ cells (90). ACE is expressed on the endothelium
of IH (7). The ACE inhibitor ramipril blocked AT1-induced
proliferation on IH explant in vitro (90). This shows that ATI and
ATII promote cellular proliferation in proliferating IH through
AT2R signaling (90). This suggests that conversion of ATI to the
vasoactive peptide ATII occurs in a paracrine fashion within IH,
i.e., the presence of a local (paracrine) RAS (7).

Phosphorylated forms of STAT1, STAT3, and STAT5 have
been demonstrated in proliferating IH (94). This is significant
as the STAT family consists of intracellular signaling molecules
with multiple influences on stem cell populations, particularly
hematopoietic stem cells (95). They translocate to the nucleus
to influence gene expression upon latent STATs undergoing
Janus-kinase (JAK)-mediated phosphorylation and subsequent
dimerization (96). STAT activation decreases markedly and is not
expressed by some cells in involuted IH. This decrease may reflect
depleting stem cell numbers present within involuting IH as it
transitions to a fibro-fatty residuum, and suggests that reduced
STAT expression decreases stem cell maintenance (94). Binding
of ATII to AT2R increases activation of STAT3 (94). This may
explain the widespread activation of STAT3 in proliferating IH,
underscoring the role of the RAS in spontaneous involution and
accelerated involution of IH induced by RAS modulators (94).
Functional work is needed to determine if accelerated involution
induced by RAS-modulating therapies is due to decreased STAT3
signaling which has been thought to cause the loss of stem cell
maintenance (94).

Propranolol is administered as a 1:1 racemic mixture of both
R(+) and S(–) stereoisomers (97). Recent evidence demonstrates
that the R stereoisomer of propranolol which is inactive
against the β-adrenergic receptor, inhibits the growth of bEnd.3
hemangioma cells in vivo (98). R-propranolol is a small molecule
inhibitor of the transcription factor SOX18 (97). Mutations
in SOX18 cause hypotrichosis-lymphedema-telangiectasia and
renal syndrome (HLTRS), which feature vascular and lymphatic
defects (99). Long-term use of propranolol is effective for
treating HLTRS (100), providing further evidence propranolol
does not only act via β-adrenergic pathways (97). Induced
differentiation of hemangioma-derived stem cells (HemSC) into

hemangioma endothelial cells with VEGF-B, increases SOX18
expression. Treatment of HemSC with propranolol significantly
reduces VEGF-B-induced upregulation of all endothelial markers
investigated to a magnitude similar to the SOX18 inhibitor Sm4
(97). Moreover, when repeated with purified R(+) and S(−)
enantiomers, only R-propranolol reproduces the endothelial cell
marker inhibition seen with racemic propranolol. This indicates
there may be a SOX18-dependent pathway, independent of β-
adrenergic blockade, influencing HemSC differentiation (97).
This suggests the possibility of treating IH independent of
β-adrenergic blockade, thereby avoiding side effects of β-
blocker therapy.

These findings have led to the proposal that IH originates
from aberrant proliferation and differentiation of primitive
mesoderm-derived hemogenic endothelium (63) with a neural
crest phenotype (101) and a placental chorionic villous
mesenchymal core origin (76), regulated by the RAS (3). Further
functional studies are needed to fully determine the role of
the RAS in the programmed biologic behavior of IH, and its
accelerated involution induced by β-blockers and ACE inhibitors
(3, 6, 102).

Pyogenic Granuloma
Populations of cells that express stemness-associated markers
have been identified in the endothelium of the microvessels and
the interstitium of PG, another common type of benign vascular
tumor (51). The primitive subpopulation on the endothelium
expresses the ESC markers OCT4, SOX2, NANOG, and pSTAT3,
whereas a subpopulation within the interstitium expresses
SOX2, NANOG, and pSTAT3 (51). These subpopulations in
PG also express components of the RAS (52). The expression
of ACE on the endothelium of the microvessels suggests
paracrine conversion of ATI to ATII, which may impact
cellular proliferation and angiogenesis within PG (54, 103).
It has been proposed that the presence of AT1R on the
microvessels within PG may contribute to immature microvessel
formation by influencing the ESC-like population to differentiate
down an endothelial phenotype (52, 104). If cells expressing
stemness-associated markers preferentially differentiate toward
an endothelial phenotype under the influence of the RAS, this
could be targeted by RAS modulators (52).

Somatic gain of function mutations of HRas (Figure 2)
have been identified in PG (105) with Ras signaling being
associated with microvessel proliferation and angiogenesis
(105). Further, KRas activation increases VEGF synthesis (106)
(Figure 2), which at increased levels stimulates mobilization of
hematopoietic stem cells and hematopoietic progenitor cells,
and a cell population capable of rapid endothelial colony
formation. This suggests an immature endothelial cell phenotype
within PG (107). These mobilized hematopoietic stem cells
and hematopoietic progenitor cells are comparable to the
KDR+/CD34+/AC133+ cells seen in G-CSF mobilized blood,
bone marrow and umbilical cord (108). It is interesting to
speculate whether elevated VEGF expression caused by Ras
mutations leads to increased levels of circulating precursor cells,
and whether these are a source of the previously identified
primitive cells within PG.
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VASCULAR MALFORMATIONS

Venous Malformation
Venous malformation (VM) represents the most common
vascular malformation (109), whereby affected veins consist

of a thin endothelial cell lining surrounded by sparsely and

erratically distributed vSMCs which are sometimes absent (21).

This, and the disordered extracellular matrix deposition, lead to

dysfunctional basement membrane development and irregular
endothelial cell monolayer arrangement, forming irregularly

shaped ectatic vessels prone to thrombosis (21, 110). There

are four subtypes of VM: sporadic VM, cutaneo-mucosal VM

(CMVM), multifocal VM, and blue rubber bleb nevus syndrome

(BRBN) (9).
Populations of cells that express the stemness-associated

markers OCT4, NANOG, SOX2, SALL4, pSTAT3, and CD44

have been demonstrated within the endothelium of the lesional

vessels and the interstitium in both subcutaneous VM (SCVM)

and intramuscular VM (IMVM) (46). The endothelial sub-
population which expresses OCT4, sitting atop the stem cell

hierarchy, may differentiate and give rise to the interstitial

subpopulation (46). c-kit, a stem cell growth factor receptor, has

also been identified in the smaller lesional vessels in BRBN (111).

This suggests that the growth of VM is associated with the c-kit

signaling axis (111).

ACE and PRR have been demonstrated on the endothelium

of the lesional vessels in VM (112). PRR binds pro-renin

which facilitates increased local conversion of AGT to ATI
(112) (Figure 3). PRR also functions in downstream signaling
through theMAP kinases ERK1 and ERK2 to upregulate TGF-β1,
PAI1, collagens, fibronectin (87, 113, 114) and cyclooxygenase-
2 (115) (Figure 2). Some of these downstream effectors,
particularly TGF-β1 and fibronectin, play a role in cellular
growth, proliferation and differentiation (116) (Figure 2).
These functions highlight the potential role of PRR in VM
pathobiology (112).

The proangiogenic effects of ATII occur through its
interactions with AT1R (117) (Figure 2). The endothelium
of SCVM and IMVM expresses AT1R, and the endothelium
of smaller vessels stains more strongly than that of dilated
vessels by immunohistochemical staining (112). ATII has
proangiogenic effects, when acting through AT1R, providing
a possible explanation for the increased density of abnormal
venous channels in VM (112). Further, AT2R is expressed on
both endothelial and non-endothelial cells (112) and signaling
through this receptor stimulates blast cell proliferation and
their differentiation into either endothelial or hematopoietic
progenitor cells (104).

Germline or sporadic gain of function mutations in TIE2
have been identified in ∼60% of VM cases (18, 118) (Figure 2).
PIK3CA mutations have also been demonstrated in about 25%
of VM cases (119) (Figure 2). Although co-occurring mutations
in TIE2 and PIK3CA are rare, they both result in PIK3 signaling
and subsequent AKT activation (41) (Figure 2). TIE2, through its
interaction with its ligand Ang-1, is involved in the recruitment
of both pericytes and vSMCs (120). Ang-1, a glycoprotein, is
a member of the angiopoietin family of growth factors and

promotes vascular quiescence and structural integrity (121).
Given the functional role of Ang-1 in vascular quiescence, we
speculate that TIE2 dysregulation plays a role in the loss of
quiescence, hence challenging the notion that VM is not a
proliferative lesion. Dysfunction in TIE2 precipitates activation
of STATs (120) and activation of the AKT phosphorylation
pathway (122) (Figure 2). As a result, the affected vessels lack
vSMCs, resulting in ‘blow-out’ of the affected channels in
VM (123). STAT1 is involved in inhibition of endothelial cell
growth, while STAT3 is involved in angiogenesis and endothelial
activation (124). Both are induced by the TIE2 mutant variant
R849W; however, STAT3 is implicated in the pathogenesis
of many cancer types (124). STATs have also been identified
in proliferating IH and their role in stem cell maintenance
has been suggested (94). Given subpopulations of cells that
express stemness-associated markers have been identified in
VM, it would be interesting to investigate whether the stem
cell maintenance function of STATs also play a role in the
pathogenesis of VM. Additionally, components of the RAS have
been implicated in STAT expression, as the binding of ATII
to AT2R activates STAT3 (94) (Figure 2). This provides some
evidence for the interaction between geneticmutations, including
those of TIE2, and the RAS, suggesting they act synergistically
on STAT pathways to influence stemness. R849W, the most
common germline mutation affecting TIE2, causes an arginine-
to-tryptophan substitution at position 849 (19). It causes partial
hyper-phosphorylation of TIE2 and requires a second somatic
mutation for phenotypic penetration (19). TIE2 mutations have
been implicated in ∼60% of sporadic VM cases (125). Sixty
percent of these have been attributed to L914F, a somatic
mutation that causes a phenylalanine-to-leucine substitution at
position 914 resulting in dysfunctional vascular development and
cell migration (126). Approximately half of the remaining 40%
of sporadic VM cases are attributed to mutations in PIK3CA
(Figure 2), and the resultant PI3K signaling dysfunction (21),
leading to upregulation of the protein kinase AKT (21). Somatic
mutations in this gene have been identified in overgrowth
syndromes including VM, and many cancer types (21). Increased
AKT signaling has been suggested to promote endothelial cell
survival and proliferation in vSMC-deficient malformed veins
typically found in VM (119, 126–128).

There is increasing evidence demonstrating interactions
between gene mutations and the RAS in VM (129, 130). Cheng
et al. (131) demonstrate the role of renin in activating the PI3K
signaling pathway (Figure 2). ATII, acting downstream of renin
also activates the PI3K pathway by binding to AT1R, as well
as stimulating G protein subunit q (131) (Figure 2). Further
research is needed to determine whether the same interaction
occurs between RAS and the PI3K signaling pathway in VM.

The expression of components of the RAS by ESC-like
subpopulations within VM may underscore the observed effect
of propranolol, a RAS inhibitor (132), and celecoxib, a COX-2
inhibitor which causes upregulation of PRR (133), on a patient
with troublesome VM (134). The clinical response to β-blockers
has been hypothesized to be caused by a reduction in plasma
renin levels (135), while COX-2 inhibitors potentially act to
prevent ATII-induced expression of PRR (133). Additionally,

Frontiers in Surgery | www.frontiersin.org 7 February 2021 | Volume 7 | Article 610758

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Kilmister et al. Stemness-Associated Markers in Vascular Anomalies

pharmaceuticals targeting the PI3K pathway, such as sirolimus
(an mTOR inhibitor), have proved effective in refractive cases
of VM (21). Lesion growth and vascular volume of VM have
been shown to decrease in mice following sirolimus treatment,
whilst radiological lesion size, bleeding, pain and esthetic
impairment are reduced following administration of sirolimus
in a small number of patients (136, 137). Sirolimus binds to
and interferes with the intracellular receptor on mTOR, FKBP12
(138). GivenmTOR’s role in cellular growth and proliferation, the
response of VM to sirolimus challenges the notion that vascular
malformations contain a quiescent endothelium (10).

Verrucous Venous Malformation
VVM, formerly known as verrucous hemangioma (9), is a subtype
of VM that presents clinically as a vascular malformation but
with histopathological characteristics of a vascular tumor (139).
A significant proportion of these non-hereditary, congenital
lesions contain a somatic missense mutation in MAP3K (37).
These lesions are present at birth and grow commensurately
throughout infancy (140). They eventually form friable, dark
black-blue, hyperkeratotic plaques which bleed easily with minor
trauma (140). The endothelium of VVM expresses GLUT-1, the
transcription factor OCT4 and brachyury—amarker of primitive
mesoderm, and also ACE—the central component of the RAS (9).

Lymphatic Malformation
LM affects 1:5,000 births (141) and may be identified prenatally,
at birth, or during childhood (142). LMs fall under three of the
four groups of vascular malformations: simple malformations,
combined malformations, and malformations of major named
vessels (9). LMs are further categorized into microcystic or
macrocystic, or mixed subtypes (9). LM commonly affects the
cervicofacial and axillary regions (9). LMs consist of thin-walled
dilated channels or cysts with a lymphatic morphology lined
by flat endothelial cells and few pericytes (9) surrounded by
stroma (141). Somatic activating mutations in PIK3CA have been
identified in both isolated LMs and those associated with several
overgrowth syndromes (22) (Figure 2).

A cell population that expresses the stemness-associated
markers OCT4, NANOG, SOX2, KLF4, and c-MYC on the D2-
40+ endothelium of the lesion vessels, and c-MYC and SOX2
within the fibrous stroma have been demonstrated in microcystic
LM (45). Further, endothelial cells lining aberrant lymphatic
vessels within LM and in surrounding stroma express CD133
(143). Isolated CD133+ cells express NANOG and OCT4, and
markers found on circulating endothelial precursor cells such as
CD90, CD146, c-kit and VEGFR2 (143). These CD133+ cells also
express the lymphatic endothelial markers D2-40 and VEGFR3
(45, 143). CD133 is expressed by hematopoietic stem cells and
EPCs, but not ESCs (45, 144). These CD133+ progenitor cells
are multipotent, and are able to differentiate into bone, smooth
muscle, fat, and lymphatic endothelial cells in vitro (143). In vivo,
CD133+ LM cells differentiate into lymphatic endothelial cells
giving rise to dilated lymphatic channels characteristic of human
LMs (143). Further, LM-derived cells demonstrate increased
proliferation, migration, and resistance to apoptosis, in vitro
(145). The presence of progenitor cells capable of multipotent

differentiation supports a potential role for aberrant ESC-like
cells in the pathogenesis of LM. We speculate that these aberrant
progenitor cells are downstream to a more primitive ESC-like
population, which may include a cell population that expresses
stemness-associated markers in microcystic LM (45).

Arterio-Venous Malformation
AVM consists of a tangle of arteries and veins providing
direct connections between high-flow and low-flow vessels
(146) forming the central nidus, bypassing the normal capillary
network (146).

Although the pathogenesis of AVM remains unclear, there
is evidence showing that AVM may arise from errors in
angiogenesis during 4th−6th week of gestation that leads to
aberrant vessel remodeling (147–149). It has been proposed that
a gene mutation causes aberrant signaling in pathways, such as
the PI3K/AKT and mTOR pathways, which are associated with
angiogenesis and vascular development (24) (Figure 2). Ras (not
to be confused with the RAS), a series of GTPases and a variety
of tyrosine kinase receptors, modulate the PI3K/AKT pathway
to enable generation of lipid products (24, 150, 151). These
lipid products contribute to normal vascular development and
angiogenesis, and play a role in cellular survival, proliferation,
and cytoskeletal re-organization (24, 150, 151). The mTOR
complex lies downstream of PI3K signaling, and collectively
the PI3K/AKT/mTOR pathway is a major regulator of cell
survival (150–152) (Figure 2). Ras proteins also play a role in
the activation of the MAPK cascade (24). The role of MAPK
is extensive in regulating gene expression and cell proliferation,
differentiation and survival (24, 153). Several studies have
revealed pathogenic variants in the Ras/MAPK pathways in
patients with AVM (24, 154, 155) (Figure 2). Further, somatic
mutations have been identified in MAP2K1, which encodes for
MEK1, in AVM (24) (Figure 2). MEK inhibitors are in clinical
use for the treatment of several cancer types (156, 157), and
result in clinical improvement in patients with central conducting
lymphatic anomalies with recurrent ARAF mutations (158).
These mutations in MAPK’s negative regulatory domain (24) are
similar to those seen in malignant melanoma (159) and lung
cancer (160, 161). The potential use of this targeted therapy in
AVM warrants investigation.

Populations of cells that express the stemness-associated
markers OCT4, SOX2, KLF4, and c-MYC have been identified
on the endothelium and media of the lesional vessels, as well
as cells within the stroma of the nidus of AVM (48). Zheng
et al. (162) propose that the PI3K/AKT pathway lies downstream
of ATII receptors in ESCs, as ATII upregulates phospho-Akt,
and show that ATII promotes differentiation of mouse ESCs
to form SMCs through activation of ATR1 (162). We propose
that an interaction may exist between gene mutations and the
cells that express stemness-associated markers that may influence
the pathophysiology of AVM (Figure 2), similar to VM. The
precise relationship between the ESC-like population and the
RAS warrants further investigation including the expression of
components of RAS, particularly ATII, in AVM. Further, over-
activation of the MAPK pathway affects SOX2 in pre-gestational
models, increasing cellular proliferation and impairing terminal
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differentiation (163). Increased clonogenic capacity of SOX2
may be prolonged, in part, by the MAPK pathway (163) and
errors causing dysregulation in this pathway, including the
aforementioned pathogenic variants, contribute to the inexorable
nature of AVM.

Port-Wine Stain
PWS, or nevus flammeus, is the most common type of CM (164).
It affects about 26 million people globally (164, 165) and is
characterized by an increased number of dilated venular-capillary
vessels within the dermis (9). Fifteen to Twenty percent of PWS
affecting the V1 dermatome of the trigeminal nerve are associated
with SWS (165). PWS is also part of KTS and Parkes-Weber
syndrome (166).

The standard treatment of PWS is pulsed dye laser requiring
multiple treatment sessions (167), with persistence remaining
a challenge (168). Surgical de-bulking is used for hypertrophic
PWS (HPWS) with modest results (169).

There are two main hypotheses for the pathogenesis of
PWS: denervation and gene mutations (165). Most facial PWS
show trigeminal nerve dermatomal distribution, along V2
(32%), combined V1-V2 (41%), combined V2-V3 (5%), and
involvement of V1-3 (10%) (170). Microvessels within themiddle
and deep dermis of PWS lack normal innervation (171, 172).
Also, the nerve fibers in PWS do not respond to epinephrine
administration in vitro, implying a defective sympathetic basal
tone as a cause for the vessel dilation seen in PWS (165, 173).
“Denervation” leads to decreased basal sympathetic tone, and
the loss or decrease of neuronal factors has been postulated
to cause PWS (165). Alternatively, it is interesting to speculate
that aberrant neural differentiation from sympathetic neuronal
progenitor cells may have caused deficient innervation and
sympathetic tone.

There may be a link between the gene mutations and the ESC-
like population in PWS (49). Mutations in GNAQ (R183Q) (33)
and PI3K (G1049N) (165, 174) have been demonstrated in PWS,
and aberrant MAPK and/or PI3K signaling during embryonic
development may contribute to PWS formation and SWS (165)
(Figure 2). Further, a somatic mutation in GNAQ activates ERK
via MEK, which may contribute to PWS development (33). Like
ERK, c-Jun N-terminal kinases (JNK) are activated in PWS,
which is also associated with the development of PWS (175).
Activation of ERK via Ras signaling induces phosphorylation
of KLF4 (176) and c-MYC (177). Activation of JNK via the
Rac pathway induces expression of Wnt and BMP-signaling,
both of which are critical in the self-renewal capability of
ESCs. Wnt signaling upregulates the transcription factors OCT4,
SOX2, and NANOG, whilst BMP limits NANOG activity to
cause differentiation of ESCs (178) (Figure 4). VEGF, which is
overexpressed in PWS (179), significantly increases Ras signaling
which activates ERK, thus increasing the expression of stem cell
markers which may bolster and sustain the resident ESC-like
population in PWS (49) (Figure 4).

Mutations in EphB4, RASA1, TIE2, and co-expression of Eph
receptor B1 (EphB1) and ephrin B2 (EfnB2) lead to MAPK
activation (165) (Figure 2). EphB1 forward signaling and EfnB2
reverse signaling activate MAPK pathways (165). Nguyen et al.

(165) propose that EphB1 and EfnB2 co-expression lead to
MAPK activation. A mutation in PI3K causes activation of the
AKT/mTOR pathway, as does the overexpression of VEGF-
A and VEGFR2 (165). Defective signaling in the MAPK and
PI3K pathways leads to abnormal cellular proliferation, survival,
migration, cytoskeletal arrangement and vascular permeability
(165). These changes ultimately lead to the development of
PWS/SWS (165).

RASA1 mutations have been demonstrated in familial AVM,
SWS, KTS and Parkes-Weber syndrome (166, 180, 181)
(Figure 2), suggesting that germline mutations in RASA1 are
associated with familial susceptibility to these VAs (165). A
somatic mutation in PIKC3A (G1049N) has been demonstrated
in HPWS (174) (Figure 2). PIKC3A (G1049N) mutation
increases endothelial cell proliferation in vitro (182), which may
occur in PWS (165, 182). Somatic mutations in SMARCA4,
EPHA3, KRas, NRas, MAP2K1, and PDGFR-β have also been
identified in PWS (165, 174) and they may act as “second hit”
mutations for germline mutations such as RASA1, to create the
PWS phenotype (165).

Populations of cells expressing the stemness-associated
markers OCT4, SOX2, KLF4 and c-MYC but not NANOG,
have been demonstrated in HPWS (49). It is proposed that
the absence of NANOG in PWS supports the potential role of
JNK in PWS, since JNK activates BMP, a NANOG suppressor
(49). The presence of primitive populations within PWS is
also supported by evidence demonstrating that endothelial
cells within PWS co-express CD133 and CD166, markers
shown to also be co-expressed by cells with EPC-like function
(183). These cells displaying an EPC phenotype also express
both the venous and arterial markers EphB1 and EfnB2,
respectively. Co-expression of these markers on normal human
dermal endothelial cells induces morphologic characteristics
of PWS in vitro (183). It is thought that co-expression of
EphB1 and EfnB2 prevents normal differentiation of arterioles
and venules from the primitive capillary plexus, resulting in
a pre-determined fate to form venule-like channels (183).
PWS may result from these differentiation-impaired EPCs
that co-express EphB1 and EfnB2, to develop into venule-like
structures that progressively dilate (165). Further, cells from
connective tissues, hair follicles and glands in PWS also have
a GNAQ mutation, suggesting pluripotent cells may give rise
to multiple lineages in PWS (184). The presence of GNAQ
mutation in cells within different tissue types suggests these
cells originate from an upstream ESC-like subpopulation recently
identified (49).

mTOR INHIBITION IN VASCULAR
MALFORMATIONS

Sirolimus is increasingly used for complex vascular anomalies.
mTOR is a conserved serine/threonine protein kinase that
regulates cellular proliferation, cell growth, motility and survival,
protein synthesis, and transcription (185, 186). It consists of
two functionally distinct complexes—mTORC1 and mTORC2,
each processing different substrates (187). mTOR coordinates
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FIGURE 4 | A proposed model portraying how gene mutations identified within vascular anomalies affect the expression of the stemness-associated markers OCT4,

SOX2, NANOG, KLF4, and c-MYC. OCT4, SOX2, and NANOG are upregulated through Wnt signaling, and NANOG is down regulated through BMP-signaling. KLF4

and c-MYC are upregulated by ERK activation under the influence of GNAQ, VEGF, and RAS signaling via activation of angiotensin II receptor 1 (AT1R) and pro-renin

receptor (PRR).

normal cellular growth through regulation of ribosome
creation and protein synthesis by integrating signals from the
PI3K/AKT pathway. Increased activation of these pathways has
been demonstrated in overgrowth syndromes which include
VAs (150).

Sirolimus was first administered to an infant with
kaposiform hemangioendothelioma (KHE) with Kasabach-
Merritt phenomenon (KMP) refractory to other therapies
(8), based on the high lymphatic component within this
tumor, and that the PI3K/AKT/mTOR pathway is activated in
angiogenesis and lymphangiogenesis. Sirolimus has also been
used to treat lymphangioleiomyomatosis, tuberous sclerosis
and neurofibromatosis (8). Subsequent discovery of somatic
mutations in the PI3K/mTOR (PIK3CA) pathway (188), and
both germline and somatic mutations in related pathways in VAs,
provide further rationale for inhibiting mTOR in the treatment of
isolated complex VAs not associated with overgrowth syndromes
(126, 189, 190).

Since its initial use in KHE, several case reports, retrospective
case series and clinical trials have shown positive results with
sirolimus (137, 150, 191, 192). A recent systematic review (193)
analyzing two randomized controlled trials, two non-randomized
prospective trials, and 69 retrospective case reports and case
series, involving a total of 373 patients, provides evidence of
the efficacy of sirolimus in VAs. It shows oral sirolimus is
highly effective in treating vascular tumors associated with KMP,
with 95.5% of patients showing clinical improvement and 93%

showing normalization of coagulopathy. Reduced size of VM is
observed in 89.9% of patients, and clinical improvement of LM
in 94.9% of patients, but improvements have not been observed
in AVM (193).

Sirolimus is associated with potential side effects,
which can be broad and multi-system, most commonly
oral mucositis, dyslipidemia, leukopenia, gastrointestinal
symptoms, paronychia and eczema (193). Serious infection and
increased risk of lymphoproliferative disease have also been
reported (193, 194).

mTOR pathways regulate somatic cell reprogramming, with
short-course treatment using sirolimus showing enhanced
somatic cell reprogramming, whereas longer-course treatment
and mTOR-knockout decreases reprogramming (195). mTOR
activation in human somatic cells with ectopic expression
of OCT4, SOX2, KLF4, and c-MYC, significantly increases
production of iPSCs (185). mTOR inhibition induces a
paused pluripotent state in mouse blastocysts which have
globally suppressed transcription, but maintain their gene
expression signature and pluripotency. mTOR therefore regulates
developmental timing at the peri-implantation stage (196). Based
on the mechanism of action of sirolimus and its association with
improved clinical outcomes in VAs, it is interesting to speculate
whether mTOR also affects reprogramming and proliferation of
the cells that express stemness-associated markers within VAs.
This also raises the possibility that sirolimus may reduce or
inhibit stemness conferred by the presence of these transcription
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TABLE 1 | Expression and location of components of the renin-angiotensin system, and gene mutations in vascular anomalies.

Component of the

RAS expressed

Location of RAS components Gene mutations

Infantile hemangioma ACE, AT2R, PRR Endothelium of microvessels: PRR, ACE, AT2R

Non-endothelial cells: PRR

None identified

Pyogenic granuloma ACE, AT1R, AT2R, PRR Endothelium of microvessels: PRR, ACE, AT2R, AT1R

Perivascular cells: PRR, AT1R

BRAFδ, Rasδ

Venous malformation ACE, PRR, AT1R, AT2R Endothelium: PRR, ACE, AT1R, AT2R

Perivascular cells: AT2R

TIE2ζ, PIK3CAζ

Verrucous venous malformation Not investigated Not investigated MAP3K3δ

Lymphatic malformation Not investigated Not investigated PIK3CAζ

Arterio-venous malformation Not investigated Not investigated MAP2K1δ, RASA1δ

Port-wine stain Not investigated Not investigated GNAQδ, GNA11δ

Glomuvenous malformation Not investigated Not investigated Glomulin

Capillary malformation Not investigated Not investigated GNAQδ, GNA14δ

Anastomosing hemangioma Not investigated Not investigated GNAQδ, GNA11δ, GNA14δ

RICH, NICH, PICH Not investigated Not investigated GNAQδ, GNA11δ

CM-AVM Not investigated Not investigated RASA1δ

Megalencephaly-CM Not investigated Not investigated PIK3CAζ, AKT3ζ

ACE, angiotensin-converting enzyme; AT1R, angiotensin II receptor 1; AT2R, angiotensin II receptor 2; PRR, pro-renin receptor; RAS, renin-angiotensin system; CM-AVM, capillary

malformation—arteriovenous malformation; CM, capillary malformation; RICH, rapidly involuting congenital hemangioma; NICH, non-involuting congenital hemangioma; PICH, partially

involuting congenital hemangioma; ζPI3K/AKT/mTOR pathway affected; δRas/RAF/MEK/ERK pathway affected.

factors in VAs in a manner dependent on the dose and duration
of treatment.

TARGETED THERAPIES FOR VASCULAR
ANOMALIES

The discovery of germline and somatic mutations and associated
variants in VAs and overgrowth syndromes (Table 1),
underscores an exciting prospect of targeted therapy using
new and existing agents to target these mutations and related
pathways for these challenging conditions (197).

Gene mutations affecting the PI3K/AKT/mTOR and the
Ras/RAF/MEK/ERK pathways are the two main pathways
implicated in the pathogenesis of VAs. They control cellular
growth, differentiation and transcription and they interact at
multiple levels (154) (Figure 2).

A recent report on the treatment of patients with CLOVES
(part of the PIK3CA-related overgrowth syndromes) using
the PIK3CA inhibitor BYL719, shows promising results. This
targeted therapy improved symptoms in all patients, with a
decrease in the size of the intractable VAs, improvement of
congestive heart failure and cardiac hemihypertrophy, and
scoliosis (198). No significant side effects were reported
(138, 193). Several other PI3K inhibitors are being clinically
investigated for various cancer types (199). In a pre-clinical
model of AVM using BRAF-mutated zebrafish, treatment with
the orally active inhibitor of mutated BRAF, vemurafenib, used
clinically to treat BRAF-mutated metastatic melanoma, restores
normal blood flow (154).

Targeting mutations inMEK1/2 (MAP2K1) in VAs with MEK
inhibitors has been proposed. MEK inhibitors are currently used
to target the MAPK2K1/ERK pathway in multiple cancer types,
including advanced soft tissue sarcoma andmetastatic melanoma
(200, 201). Blockade of AKT and PI3K signaling may inhibit
metastatic gastric cancer (202). Repurposing cancer therapeutics
that target mutations affecting components of these key pathways
in VAs warrants further investigation.

Clinical trials are underway investigating miransertib
(ARQ092), a pan-AKT inhibitor, in cancer (41). Low-dose
miransertib reduces levels of phospho-AKT by about half in
83% of tissue samples from patients with Proteus syndrome
(203) which is caused by a gain of function mutations in the
AKT pathway (40). This inhibitor also demonstrates an anti-
proliferative effect in fibroblasts isolated from PIK3CA-related
overgrowth syndromes (204). Based on these findings, a phase
I/II clinical trial is investigating the use of miransertib in
PIK3CA-related overgrowth syndromes and other VAs.

There may be pitfalls in targeting specific mutations
within the PI3K/AKT/mTOR or RAF/MEK/ERK pathways,
as they interact via Ras (205) (Figure 2). Kras mutations
which are common in non-small cell lung cancer (NSCLC),
cause activation of the RAF/MEK/ERK pathway (206). This
has led to the development of small molecule inhibitors
that target MEK (207). However, these therapies are
ineffective in NSCLC due to subsequent activation of the
PI3K/AKT/mTOR pathway (208). Further, activating mutations
in PIK3CA increase resistance to MEK inhibitors, and a
mutation in PTEN, an inhibitor of PIK3CA, causes complete
resistance (209). Therefore, a cautionary approach in targeting
specific mutations in these pathways should be taken, as
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TABLE 2 | Expression and location of stemness-associated markers in vascular anomalies.

Vascular anomaly Stemness-associated markers Location of stemness-associated markers

Proliferating infantile hemangioma (50, 211) OCT4, SSEA-4, pSTAT3, NANOG, SALL4, CD133 Endothelium of microvessels: all markers except NANOG. Cells

within the interstitium: NANOG, SALL4, and CD133

Pyogenic granuloma (51) OCT4, SOX2, pSTAT3, NANOG Endothelium of microvessels: all markers. Cells within the

interstitium: all markers except OCT4

Venous malformation (46) NANOG, CD44, OCT4, SOX2, SALL4, CD44, pSTAT3 Endothelium of lesional vessels: all markers. Perivascular cells:

all markers except OCT4 and SALL4

Verrucous venous malformation (47) OCT4, brachyury Endothelium of lesional vessels

Microcystic lymphatic malformation (45) OCT4, NANOG, SOX2, KLF4, c-MYC Endothelium of lesional vessels: all markers. Cells within the

stroma: OCT4, c-MYC, and SOX2

Arterio-venous malformation (48) OCT4, SOX2, KLF4, c-MYC Endothelium and media of lesional vessels and cells within

the stroma

Hypertrophic port-wine stain (49) OCT4, SOX2, KLF4, c-MYC Endothelium and media of lesional vessels and cells within

the stroma

resistance may develop because alternative pathways are
activated. It is important that research efforts continue to
look broadly for an effective, safer and affordable treatment
for VAs.

Even if existing targeted cancer therapies can be effectively
repurposed for the treatment of VAs including overgrowth
syndromes, the cost of such agents may be prohibitive. For
example, the cost for a full-course of trastuzumab is USD50,000
(210). Another consideration is the potential long-term side
effects of potentially life-long treatment for young patients
with congenital anomalies. This underscores the need to better
understand the etiology of this group of challenging conditions.
The identification of the expression of the RAS by primitive
populations in many types of VAs (Table 1) opens up an
exciting prospect of novel therapeutic targeting of these primitive
populations by manipulation of the RAS using low-cost, off-
patent and commonly available oral medications.

CONCLUSION

This review presents accumulating evidence demonstrating the
presence of populations of cells that express stemness-associated
markers in a growing number of vascular tumors and vascular
malformations. As sirolimus targets cellular proliferation,
survival and stemness via mTOR inhibition, its observed
effect on some vascular tumors and vascular malformations,
including overgrowth syndromes, may be attributed to its
action on these primitive populations within these VAs.
Gene mutations identified in VAs predominantly affect either
the PI3K/AKT/mTOR or the Ras/RAF/MEK/ERK pathways.
Existing cancer therapies that target these pathways open the
possibility of repurposing these agents for the management of
some of these challenging VAs. However, there are potential
drawbacks, including the cost, potential long-term side effects in
young patients, and the emergence of treatment resistance.

The discovery of cells that express stemness-associated
markers in IH and the potential regulatory role of the RAS
in its pathogenesis, underscore its spontaneous and accelerated

involution induced by β-blockers and ACE inhibitors. Recent
work demonstrating the effectiveness of targeting IH stem cells
through inhibiting SOX18 using R-propranolol, may lead to
more effective treatment of IH without the side effects of β-
adrenergic blockade.

The observation of the expression of components of the RAS
by populations of cells that also express stemness-associated
markers in many types of VAs, opens up an exciting area of
research. The stemness-associated markers expressed by cell
populations and their cellular location within VAs are shown
in Table 2. The expression of some or all transcription factors
involved in generation of iPSCs by the cell populations in
various types of VAs warrants further investigation including
functional work to determine if they possess ESC properties.
Studies are needed to determine whether mutations affecting
the PI3K/AKT/mTOR or the Ras/RAF/MEK/ERK pathways,
through their interaction with components of the RAS expressed
on the primitive cells in VAs, could induce and/or maintain
these cells in the primitive state. Further investigation into
the precise interaction between the RAS and these pathways
affected by the aforementioned mutations, and its effect on
the stem cells may lead to improved understanding of the
pathogenesis of these hitherto enigmatic conditions. This may
provide immense opportunities for repurposing existing low-cost
commonly available oral medications for the treatment of these
challenging conditions.
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