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Abstract

The rapid development of high-throughput sequencing technologies means that hundreds of gigabytes of sequencing data
can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA
sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple
sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large
sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several
k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage.
We also considered additional parameters such as disk usage, accuracy, parallelism, the impact of compressed input,
performance in terms of counting large k values and the scalability of the application to larger datasets.We make specific
recommendations for the setup of a current state-of-the-art program and suggestions for further development.
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Introduction

k-mer counting is an important step in many bioinformatics ap-
plications that are used to analyze sequencing data. Recently,
several tools and techniques have been developed to count the
frequency of k-length substrings (k-mers) in reads generated
from high-throughput sequencing [1]. k-mer counting involves
counting the number of substrings that have length k in a string
S, or a set of strings, where k is a positive integer.

Let
∑ = {A, C, G, T, N} denote the alphabet of DNA nucleotide

sequences, where N denotes an undetermined character. A read
r is a sequence of nucleotides over the alphabet

∑
. In a sequence

dataset, different reads can contain the same sequence of nu-
cleotides. Let R denote a dataset having n reads, such that R =
{ri; 1 ≤ i ≤ n}. Consider an example dataset R containing three
reads each of length 6, R = {ACGTTA, ACGTTA, ACGTTT}, hav-
ing two sequences {ACGTTA, ACGTTT}. For k = 4, there are nine
4-mers (three in each read): {ACGT, CGTT, GTTA, ACGT, CGTT,
GTTA, ACGT, CGTT, GTTT}. On counting, four unique 4-mers are

obtained, which can be represented along with their counts in
a tab-delimited format, e.g., {ACGT 3, CGTT 3, GTTA 2, GTTT 1}
[2]. k-mer counting has applications in genome assembly, e.g.,
using the overlap layout consensus approach [3–5] or the de
Bruijn graph approach [6–9]. Errors in sequencing reads are cor-
rected to improve the quality of genome assemblies. Error cor-
rection based on the k-mer spectrum approach [10–13], or mul-
tiple sequence alignment approach [14], relies on counting and
keeping track of k-mers. k-mer counting is also used (for fast
distance estimation) to create multiple protein sequence align-
ments [15]. In de novo genome projects, genomic characteris-
tics such as genome size, repeat structure, and rate of heterozy-
gosity are estimated by analyzing the k-mer frequency distribu-
tion in a sequencing dataset [16]. Statistical analysis can reveal
the high-frequency k-mers in a given dataset, which are used
as “seeds” to build a set of repeat families [17]. ReAS [18] also
uses these high-frequency k-mers (obtained from k-mer repeat
libraries) in the reconstruction of transposable elements. Iden-
tifying repeated sequences is a main step in genome analysis
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and annotation. De novo repeat identification techniques such
as RAP [19], FORRepeats [20], and that described by Healy et al.
[21] use k-mer occurrences to find candidate regions (i.e., to iden-
tify repeated regions). Tallymer [22] also uses k-mer frequencies
to annotate repetitive plant genomes. Quantitative features of
complex repetitive DNA have been studied in several genomes
by determining the distribution of frequencies of long k-mers
(20 ≤ k ≤ 100) [23]. k-mer counts are also used to infer the geno-
types of known variants [24].

Although k-mer counting is simple and straightforward, it
becomes challenging when billions of reads generated by next-
generation sequencing (NGS) techniques must be processed us-
ing reasonable amounts of memory and in minimal time. A
naive approach for k-mer counting is to use a dictionary, with
k-mers as keys and their counts as values. However, when there
are billions of such input reads, computer memory is often over-
whelmed. Approaches to k-mer counting proposed so far have
mainly targeted memory-efficient and time-efficient solutions.
One way to achieve memory efficiency is to represent the string
data using unsigned integers. Disks are always cheaper than
memory. Therefore, many researchers have focused on using the
disk-based/external memory/out-of-core approach, as opposed
to the in-memory/internal memory approach, to reduce mem-
ory usage.

Here, we review and comparatively evaluate k-mer counting
approaches for high-throughput sequencing data. The main aim
is to provide a general set of benchmarks and assessment met-
rics of some popular k-mer counters, but we also cover experi-
mental analysis of k-mer counting tools to provide thorough in-
sight for beginners and consultants alike. Perez et al. [25] stud-
ied various k-mer counting tools for two values of k, i.e., 31 and
55, on a single dataset. Building on this, we evaluate the per-
formance of several of the latest and competitive tools on dif-
ferent datasets of varying sizes, primarily focusing on runtime
and memory usage. However, we also consider several other pa-
rameters including scalability to larger values of k; scalability to
larger datasets; the impact (on runtime, memory, disk, and cen-
tral processing unit [CPU] utilization) of compressed inputs, i.e.,
gzip and bzip2 (multiple compressed FASTA/FASTQ input files);
scaling properties (speedup) with respect to thread number; ac-
curacy; and maximum temporary disk usage. Scalability is mea-
sured in terms of runtime, memory, disk usage, and CPU utiliza-
tion.

Time, CPU, and memory are bounded (limited) resources,
whereas the disk can be considered a plentiful resource. Disk-
based approaches may additionally use hundreds of gigabytes of
disk space for large datasets such as the human genome. Hence,
we record the maximum disk utilization of all disk-based ap-
proaches. Disk-based approaches achieve very high efficiency
with marginal increase in input/output (I/O) costs.

Advancements in NGS technologies mean that long reads
are generated in bioinformatics. Among other advantages, such
long reads are excellent for resolving complex RNA-splicing pat-
terns from cDNA libraries [26], resolving repetition in genome
assemblies, and facilitating better resolution of structural vari-
ants present in DNA samples and genomic repeat content [26,
27]. However, longer Illumina reads suffer from lower accuracy
[27]. Large k values (up to 200) help improve the accuracy of
longer Illumina reads (particularly of repeat-overlapping reads)
and contig assemblies [28]. Empirically, the best assemblies (i.e.,
those without misassembly errors) and the highest N50 (only
when there is sufficiently high coverage) are obtained at an op-
timal choice of k, which seems to be larger values of k [29, 30].

Table 1: Ontology of k-mer counting approaches

Approach for
k-mer counting Disk-based In-memory

Hash table Gerbil [31],
MSPKmerCounter [32],
DSK [33]

Squeakr [34],
Jellyfish [35],
BFCounter [36]

Sorting KMC3 [37],
GenomeTester4 [38],
KMC2 [39], KAnalyze
[40], KMC1 [41]

Turtle [42]

Burst tries - KCMBT [43]
Enhanced suffix
array

- Tallymer [22]

Hence, we evaluate the performance of different k-mer counting
tools at large k values.

Overview of k-mer Counting Approaches

k-mer counting tools can be categorized based on the approach
and data structures they use, as shown in Table 1. Comprehen-
sive information about each k-mer counting tool is given in Sup-
plementary Table S1.

k-mer counting using the sorting approach

The sorting approach works by sorting all k-mers extracted from
each read. Thus, k-mer frequencies can be easily counted be-
cause, after sorting, repeating k-mers lay at adjacent positions
in the sorted list.

GenomeTester4 (GListMaker) [38] uses the sorting approach
and works as follows: (i) in the reading phase, temporary arrays
are used to gather all k-mers from the input file and (ii) k-mers
stored in these arrays are first sorted and then counted during
the collation phase. Counting results in temporary arrays (ta-
bles), which are then merged to produce the final k-mer count
list. GenomeTester4 uses multiple threads to speed up k-mer
counting.

Turtle [42] uses a novel sorting and compaction (SAC)-based
algorithm, which is memory efficient. Turtle works as follows:
k-mers are added to a large array up to a certain point, each
with a count of 1. This array is then sorted, identical k-mers are
compacted, and their counts are added up in the compaction
step. The compaction process frees up space in the array, which
is used for a new set of k-mers. The SAC approach is then ap-
plied to existing and newly added k-mers and is performed iter-
atively until all k-mers are counted. The compaction process is
similar to run-length encoding [44]. Turtle has three implemen-
tations, scTurtle, cTurtle, and aTurtle, which vary in their out-
puts. scTurtle has false positives and outputs only k-mers with
frequency >1. cTurtle accepts small rates of false positives and
false negatives and gives only k-mers with frequency >1 with-
out any counts. cTurtle gives an approximate set of frequent k-
mers by using a counting Bloom filter. aTurtle provides k-mers of
all frequencies with their counts. Although multithreaded, cTur-
tle and scTurtle do not count perfectly, whereas single-threaded
aTurtle does. Hence, in this study, aTurtle is considered.

scTurtle [42] uses a pattern block Bloom filter to remove all
single-occurrence (spurious) k-mers. The remaining k-mers are
then counted using the SAC approach. Pattern block Bloom filter
[45] is a cache-friendly variant of the Bloom filter, which has a
very small cache miss ratio.
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k-mer counting using a hash table

A hash table [46] can be used to count k-mers, in which k-mers
are stored as keys and their counts are stored as values. Jelly-
fish [35] uses a lock-free hash table to allow parallel insertion
of k-mers and frequency updates by multiple threads using a
compare-and-swap (CAS) assembly instruction [47]. The CAS op-
eration detects simultaneous access to a shared memory loca-
tion in the multithreaded environment. The entire memory ca-
pacity is used to store the hash table. Once the hash table is full,
it is written to disk instead of doubling its size in the memory,
and intermediate k-mer counts are then merged [48, 49]. Jellyfish
works as follows: whenever a new k-mer appears, the program
obtains its key and searches for it in the hash table. If it exists,
the frequency count increases by 1. If not, this k-mer is inserted
(with frequency set to 1) into the hash table using the reprobe
strategy. If a collision occurs, it is resolved using a quadratic
probing (open addressing) technique [46].

Jellyfish 2 is a more efficient version of Jellyfish, which has
an additional Bloom filter-based mode to remove all singleton
k-mers (i.e., k-mers occurring only once in the dataset). KAT [50]
counts k-mers using a modified version of the Jellyfish 2 library.

k-mer counting using a Bloom filter and its variants,
and counting quotient filter

A majority of any genomic dataset is made up of single-
frequency k-mers, which are mainly attributed to sequencing er-
rors. A Bloom filter [51] is a probabilistic data structure used for
dynamic membership query lookup, which can implicitly store
all k-mers. It is used to filter out singleton k-mers. The frequency
of every non-singleton k-mer can then be counted using any of
the approaches in Table 1. The Bloom filter returns some false-
positive membership query results, which may lead to k-mer
miscounts. However, with a reasonable choice of hash functions,
the false-positive rate can be minimized to an acceptable degree
[52]. It also requires very little memory (i.e., enough to store a
bit-vector [52]), reducing the overall memory requirement.

Using a similar concept, BFCounter [36] filters out singleton
k-mers and uses a hash table to store and count non-singleton k-
mers. Some false-positive singleton k-mers are erroneously in-
cluded in the hash table, leading to miscounts, but BFCounter
generates correct results by reiterating over the sequence reads.

Squeakr [34] is an in-memory approach for counting k-mers
both approximately and exactly. It uses a counting filter data
structure (counting quotient filter [CQF] [53]) to store k-mer
counts. k-mers are hashed using a one-way hash function, and
these hashes are stored in a counting filter. The single-phase al-
gorithm is based on the following ideas: multiple threads read
input data from the disk in chunks and simultaneously insert
k-mers into a global shared thread safe CQF for k-mer count-
ing. Each thread maintains a local CQF to temporarily hold the
k-mer counts to reduce waiting time, while acquiring a lock in
the global CQF (it is hardest to acquire the lock when repetitive
k-mers are present in the dataset). Once the local CQF is full, it
dumps counted k-mers into the global CQF before processing a
new set of k-mers. For this benchmark study, we have not con-
sidered Squeakr (exact), which counts the frequency of each k-
mer exactly using an invertible hash function, because its code
is not yet available.

Enhanced suffix array-based counting

Tallymer [22] is an in-memory approach, which uses a longest
common prefix (lcp)-interval tree constructed from an enhanced
suffix array [54] to count k-mers. The lcp-interval tree implicitly
stores the number of occurrences of all substrings of s’ (reads
are concatenated into a string s’ with a unique termination sym-
bol ($i) appended to each read). The algorithm has two steps: (i)
the divide step splits sequence s’ into smaller distinct partitions,
and the k-mers in each partition are then counted using the lcp-
interval tree; and (ii) the merging step, in which a final count is
generated by merging the counts generated from all distinct par-
titions using the sequence s’. Suffix array construction of a string
is expensive in terms of computation and memory requirement.
Suffix array size increases linearly with the length of string s’.

Trie data structure-based k-mer counting

KCMBT [43] is an in-memory approach using burst trie, a variant
form of a trie [55]. Burst tries efficiently manage large string sets
in the memory and maintain strings in a sorted or nearly sorted
order. KCMBT uses extended k-mers, similar to KMC2. Extended
k-mers ((k + x)-mers for x > 0) are substrings of length greater
than k and were introduced by KMC2.

The KCMBT algorithm has three phases. First, (k + x)-mers
are generated from the input reads and inserted into the corre-
sponding trees. To do this, a fixed-length container is initially
maintained for each tree. When a container is full, it bursts and
is replaced by a new trie node and a set of child containers.
These child containers partition (k + x)-mers of the original con-
tainer among themselves by taking a one-symbol prefix (match-
ing A/C/G/T) of the (k + x)-mers (x is chosen empirically to be 0
≤ x ≤ 3 for better performance). Second, each (k + x)-mer tree
((k + 1)-mer, (k + 2)-mer, and (k + 3)-mer trees) is traversed to
count all unique (k + x)-mers [42], which are then broken into
k-mers to obtain a count of constituent k-mers. k-mers are then
inserted into k-mer trees. Finally, k-mer trees are traversed to
produce counts of all unique k-mers, and these, along with their
counts, are written to disk. Because of (k + x)-mers, the inserted
number of k-mers and the time required for traversal in the last
phase are much reduced, leading to faster computation. Thou-
sands of trees with smaller heights are generated to reduce the
overall insertion and traversal time required to count huge num-
bers of k-mers. Burst trie has a very rapid search time, but its size
becomes large for large volumes of sequencing data.

Disk-based k-mer counting

The disk-based approach to k-mer counting has a much lower
memory requirement than in-memory approaches and was de-
signed to make it possible to count k-mers in large genomic
datasets, such as a human genome dataset, on commodity hard-
ware. Memory usage can be greatly reduced using a disk because
k-mers are processed in chunks and stored on disk.

DSK [33] is a disk-based approach to counting k-mers using
very little memory and disk space. To achieve this, DSK calcu-
lates the number of partitions needed to bring data in parts
from disk to memory, depending on (i) the total bits required
to store the k-mers and (ii) the disk size available. DSK calcu-
lates the number of iterations needed to read the entire set of
input in parts, depending on (i) the total number of bits required
to represent the entire set of k-mers, (ii) the memory size re-
quired to hold the hash table, (iii) the number of partitions, and
(iv) the load factor for which hash table gives the best perfor-
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Table 2: Datasets used in our study

Sr. no.
Dataset
ID Organism

Genome size
(Mb)

Input FASTQ/FASTA
file size (GB)

(1 GB = 109 bytes)
Average read
length (bases)

Total no. of
bases (Gb) Total no. of reads

1 FV F. vesca 214 10.9 353 4.5 12,803,137
2 DM D.

melanogaster
122 10.5 76 3.7 48,432,878

3 MB M. balbisiana 472 197.1 100 56.3 562,968,372
4 HS1 H. sapiens 1 2,991 292.1 151 123.7 819,148,264
5 HS2 H. sapiens 2 2,991 339.5 100 135.3 1,339,740,542
6 NC N. crassa 41 23.3 7,778.3 22.9 2,942,564
7 AT A. thaliana 120 72.7 4,804.6 36.1 7,515,360

Table 3: Test machine configuration

Processor
Intel(R) Xeon(R) CPU

E5–2698 v3 @ 2.30GHz

Main memory 64 GB
Hard disk drive 1 TB
CPU(s) 16
Online CPU(s) list 0–15
Thread(s) per core 2
Core(s) per socket 16
No. of sockets 1

mance. Each k-mer is distributed to one of multiple disk-stored
partitions, depending on its hash value and an iteration num-
ber. k-mers are counted by loading a partition into the memory
one at a time, using hash tables in multiple iterations. The parti-
tion strategy means that DSK efficiently addresses memory con-
straints, but it may result in a high I/O cost.

KAnalyze [40] uses a sorting-based approach to count k-mers.
The algorithm has two phases. First, k-mers are filled into a tem-
porary array of predefined size. Once the array is full, k-mers are
sorted, counted, and written to disk so that space becomes avail-
able to count the next incoming chunk of k-mers. The process is
repeated until all the k-mers are processed. In the second phase,
count files are loaded from disk to memory and are merged in
multiple steps to generate final k-mer counts.

Approaches using the concept of super k-mer:
minimizers and signatures

The disk-based compression technique minimum substring par-
titioning (MSP) [56] is used to further reduce memory require-
ments and I/O operations. In this technique, input reads are bro-
ken into multiple disjoint partitions.

The adjacency relationship between each pair of k-mers
means that k-mers carry highly redundant data. With MSP, if
consecutive k-mers share the same lexicographical minimum
substring s, then they are stored as one substring of length
greater than k. This substring is called a “super k-mer” and is
stored in a disk partition corresponding to the lexicographical
minimum substring s, where s is termed a “minimizer.” Larger
numbers of consecutive k-mers sharing the same minimum
substring s give a better compression ratio, which ultimately re-
duces I/O overhead and storage space.

MSPKmerCounter [32] is the first tool to implement MSP for k-
mer counting. It works as follows: (i) reads are decomposed into
super k-mers and distributed to disk partitions (bins) identified

by canonical minimizers. The storage of super k-mers with the
same canonical minimizer in the same partition ensures that
all the occurrences of the same k-mer belong to the same parti-
tion, thus eliminating the need to merge the counts of each par-
tition. These smaller partitions are easily accommodated into
the memory and are processed independently. (ii) Once the par-
titions are ready, all super k-mers are broken into k-mers using
simple bit shift operations. (iii) Finally, k-mers are counted using
hash tables, and counts are stored on disk.

KMC2 [39] is another disk-based approach that is similar to
the MSP employed in MSPKmerCounter. Here, the minimizer
is refined to signatures, which significantly reduce the over-
all memory requirements and temporary disk space. Canoni-
cal minimizers are used as signatures with the following three
prerequisites: canonical minimizers (1) do not begin with pre-
fix AAA, (2) do not begin with prefix ACA, and (3) do not con-
tain AA anywhere apart from at the beginning. The KMC2 algo-
rithm has two major phases: distribution and sorting. The dis-
tribution phase is similar to that of MSPKmerCounter, the only
difference being that super k-mers are distributed to different
temporary files (bins) based on signatures instead of minimiz-
ers. In the sorting phase, bins are processed by fetching them
into the memory. For every such bin, extended k-mers, i.e., (k +
x)-mers, are extracted from super k-mers, and a radix sort is ap-
plied. k-mer statistics are then collected from these sorted (k +
x)-mers and stored on disk.

KMC3 is an extension of the KMC2 approach, with the follow-
ing improvements: efficient input file reading to achieve a better
I/O subsystem, a memory-efficient way of assigning signatures
to bins, and an efficient sorting approach [57], rather than using
a radix sort, for larger values of k.

Gerbil [31] uses a hashing approach to k-mer counting that is
similar to DSK. The algorithm has two major phases. The first
is slightly advanced but similar to the KMC2 distribution phase
in which the hash values (obtained using a partHash [31] func-
tion) of k-mers (extracted from super k-mers) are used to en-
sure that multiple occurrences of the same k-mer are assigned
to the same thread. In the second phase, super k-mers stored
in the temporary files are sequentially re-read from the work-
ing disk. All k-mers are extracted from the super k-mers, and
then counted using a hash table. Collisions are resolved using
quadratic hashing. Each thread counts the assigned k-mers us-
ing its hash table, and these are then written into an output file.
The algorithm makes optimal use of the hardware by concur-
rently running multiple threads. To achieve memory efficiency,
hash table size is estimated using a simple linear model. In
its graphics processing unit (GPU) implementation, the second
phase is performed on the GPU side with proper load balancing
between GPU and CPU.
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Table 4: Experimental results for the FV dataset

SN
Tools (version;
compression type) k = 28 k = 55

Time (s)
RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment) Time (s)

RAM
(GB)

Disk
(GB)

CPU Utilization (%)
(comment)

1 Jellyfish (2.2.6) 138.33 7.9 0 1093.55 (consistent) 226 36.19 0 1,050.93∗ (consistent)
2 DSK (2.2.0) 56.33 6.35 6 866.50 (consistent) 78.33 7.04 5 633.49 (declined from

∼1174 to ∼129.7)
3 DSK (2.2.0; gzip) 197 4 6 402.71 (first 80% of time

consistent with ∼300; last
20% inconsistent to
∼1,200 with sudden
increase)

222 6 5 441.21 (first 75% of time
consistent with ∼390; last
25% inconsistent to
∼1,200 with sudden
increase)

4 KAnalyze (2.0.0) 2,042 10 22.2 509.20 (initially in the
range 1,000–2,000 then
declined to ∼200)

4095 11 42 337.46 (initially in the
range 1,000–2,000 then
declined to ∼150)

5 KAnalyze (2.0.0;
gzip)

1,999 9 22.9 507.84 (first 30% of time
inconsistent in the range
2,250–750; last 70%
consistent with sudden
drop to ∼200)

3,395 11 12.8 360.456 (first 25% of time
inconsistent to ∼900; last
75% consistent to ∼200
with a sudden drop)

6 KMC3 38.66 7.66 4∗ 998.10 (consistent) 35∗ 11.2 4 987.891 (consistent)
7 KMC3 (gzip) 35 7 2.2 1,004.61 (consistent) 37 11 0 1,056.25 (consistent)
8 Gerbil (1.0) 33.66∗ 0.83∗ 4∗ 1,110.38∗ (consistent) 60.33 1.29∗ 3∗ 1,030.50 (consistent)
9 Gerbil (1.0; gzip) 49 0.82 1.5 858.46 (first 50% of time

consistent with ∼600; last
50% suddenly increased
to ∼1,200)

55 1 1 880.77 (first 50% of time
consistent with ∼600; last
50% suddenly increased
to ∼1,300)

10 KCMBT (1.0) 137.5 30.98 0 628.87 (inconsistent) Not supported
11 MSPKmerCounter

(0.1)
59.33 4.45 1 811.70 (phase 1:

consistent (∼200); phase
2: consistent (∼1,500))

67.33 4.61 1 770.87 (phase 1:
consistent (∼200); phase
2: consistent (∼1,500)

12 aTurtle (0.3) 671 14 0 99.14 (consistent) 1,185 26 0 94.12 (consistent)
13 GenomeTester4 214 26 0 202.33 (consistent) Not supported
14 BFCounter (1.0) 1731 3 0 274.10 (first 80% of time

almost 100, then gradual
increase to ∼1,000)

1,790 9 0 271.80 (consistent to
∼100, but bars hiking to
∼1,000 in the middle and
end)

15 BFCounter (1.0; gzip) 1,847 3 0 259.70 (inconsistent) 1,889 9 0 251.49 (inconsistent)

Tools Assessed, Benchmark Datasets Used,
and Evaluation Methodology

We evaluated the most recently available versions of KMC3, Ger-
bil (version 1.0), KCMBT (version 1.0), MSPKmerCounter (version
0.1), GenomeTester4 (version 4.0), aTurtle (version 0.3), KAna-
lyze (version 2.0.0), DSK (version 2.2.0), Jellyfish (version 2.2.6),
and BFCounter (version 1.0). Tools from 2010 or earlier were ex-
cluded. All tools used are freely available to download (refer to
Supplementary Table S2).

To make a reasonable assessment of these tools, we applied
them to seven datasets of varying sizes, mostly those used by
Kokot et al. [37]. Table 2 summarizes details of the datasets used.
FV and DM are small datasets; HS2 is the largest. NC and AT (the
same used by Gerbil [31]) were chosen because their longer read
lengths would allow performance with larger values of k to be
tested. All seven datasets are available to freely download (see
Supplementary Table S2).

Sequencing reads in each file (for each dataset) were first de-
compressed and then concatenated into a single FASTA/FASTQ
file to facilitate the smooth running of each tool. However, not
all tools support direct decompression. All datasets used in this

study had multiple compressed files. Some k-mer counting tools
directly support compressed (raw) input and can thus effectively
perform parallelization in their first phase by reading from indi-
vidual input files using separate threads. This means that re-
stricting the input to a single file effectively limits them to one
or two threads (e.g., one to parse and one to bin/partition). Most
tools would likely perform even better on multifile inputs with-
out being concatenated (normalized) into a single file. We tested
the effect of compressed input (gzip and bzip2) on the perfor-
mance of various programs by running them directly on com-
pressed input files.

Tables 4–8 present comparisons of the different tools that
were tested on the FV, DM, MB, HS1, and HS2 datasets for two
values of k (28 and 55). Tests lasting >15 hours were interrupted.

Tools that approximate the frequency histogram of k-mer oc-
currences (and/or estimate the number of unique k-mers and
singleton k-mers) by streaming data analysis are not consid-
ered in this article. These include KmerStreame [58], ntCard [59],
KmerGenie [30], and Khmer [60]. To make a fair comparison, we
have only tested tools that generate exact k-mer counts.

The wall clock time was measured using the C++ function,
“gettimeofday()” averaged over three runs. A shell script by Shin
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Table 5: Experimental results for the DM dataset

SN
Tools (version;
compression type) k = 28 k = 55

Time (s)
RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment) Time (s)

RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment)

1 Jellyfish (2.2.6) 77 4 0 1,055.25 (consistent) 71 9 0 917.79 (consistent)
2 DSK (2.2.0) 52 2 4.2 736.09 (initially ∼600,

increasing to ∼1,173)
49 2 2.7 622.36 (initially ∼500,

increasing to ∼1,150)
3 DSK (2.2.0; gzip) 183 4.68 3.6 331.88 (first 90% of time

consistent with ∼270, last
10% suddenly increasing to
∼1,200)

173 4.45 2.4 300.70 (first 90% of time
consistent with ∼250 then
suddenly increasing to
∼1,200)

4 KAnalyze (2.0.0) 794 10 14.3 695.64 (gradually declined) 393 11 12.8 829.45 (gradually declined
from ∼2,000 to ∼100)

5 KAnalyze (2.0.0;
gzip)

822 9 14.4 691.15 (first 40% of time
consistent with ∼1,250; last
60% inconsistent with
sudden drop to ∼200)

411 11 12.9 843.79 (first 60% of time
inconsistent in the range
2,250–900, rest of time
inconsistent with sudden
drop to ∼200)

6 KMC3 18∗ 5 2.23 942.26 (consistent) 13∗ 8 0.6∗ 1,023.54∗ (consistent)
7 KMC3 (gzip) 35 5 1.64 739.01 (last 20% of time

consistent with ∼1,250, rest
consistent with ∼700)

31 8 0 637.29 (last 20% of time
consistent with ∼1,250, rest
consistent with ∼600)

8 Gerbil (1.0) 20 0.81∗ 2.11∗ 1,184.23∗ (consistent) 16.5 0.81∗ 4 1,010.89 (consistent)
9 Gerbil (1.0; gzip) 33 0.82 1.31 821.69 (first 55% of time

consistent with ∼700, last
45% suddenly increased to
∼1,200)

29 0.81 0 685.74 (first 55% of time
consistent with ∼600, last
45% inconsistent with
sudden increase to ∼1,200)

10 KCMBT (1.0) 61 2 0 595.37 (initially ∼300 then
increased towards end to
∼900)

Not supported

11 MSPKmerCounter
(0.1)

234 5 14.2 912.92 (both phases:
consistent)

219 5 11.2 914.62 (phase 1: initially
∼1,000 then declined to
∼300; phase 2: consistent)

12 aTurtle (0.3) 423 7 0 97.20 (consistent) 330 12 0 95.39 (consistent)
13 GenomeTester4 144 23 0 183.92 (consistent) Not supported
14 BFCounter (1.0) 914 1 0 307.53 (consistent) 477 2 0 331.48 (first 95% of time in

the range 250–400, then
increasing to ∼800)

15 BFCounter (1.0; gzip) 1,002 2 0 321.78 (last 20% of time
∼500, rest is ∼300)

559 2 0 306.30 (last 20% of time
∼500, rest ∼300)

[61] was used to measure the maximum memory usage. This
script uses the Linux ps utility to determine the peak memory
use of a process and its threads by monitoring resident set size
values, where resident set size reports the amount of memory
actually allocated to a process and is in memory (random ac-
cess memory [RAM]). We reported the maximum disk usage by
the program using our own shell script, which logs the disk us-
age at regular time intervals between consecutive checks using
the Linux command du. This script also captures average CPU
utilization as a percentage with the help of the Linux command
top. These scripts were executed with a sampling rate of 3 for
HS1 and HS2 datasets and a sampling rate of 1 for FV, DM, MB,
NC, and AT datasets. Invocations of all executables were moni-
tored by these two scripts. Run time, memory usage, disk usage,
and CPU utilization were measured simultaneously.

All experiments were performed on a test machine config-
ured as shown in Table 3. Commands used to run all programs
were adapted from their documentation and/or publications
(see Supplementary Material). Commands used to list k-mers
and their counts in human-readable format and k-mer coverage

distribution (histogram for k-mer abundance) are also given in
the Supplementary Material.

We evaluated the accuracy of each counting program by com-
paring their k-mer frequency histograms on two small datasets
with two values of k. This histogram is a table of fi values, where
fi denotes the number of distinct k-mers that appear i times in
the set of reads [58]. Some tools, such as Jellyfish, DSK, Gerbil,
and MSPKmerCounter, can directly create histograms. For the
other tools, k-mer frequency histograms were obtained as fol-
lows. First, the dump subroutine of the tool was run to write k-
mer occurrences into a tab-separated text file. Second, we used
our program, written in C++ using OpenMP for multithreaded
computing and Linux commands (grep and wc), to generate the
k-mer frequency histogram from this text file.

For each tool, exact numbers of f1–f10 are given in the Ap-
pendix. Space limitation means that results are only reported up
to f10, but all frequency counts were considered and compared.
Results for Jellyfish 2.2.6, DSK 2.2.0, KAnalyze 2.0.0, KMC3, Ger-
bil 1.0, KCMBT 1.0, GenomeTester4, and BFCounter 1.0 were the
same for both datasets and values of k. In contrast, the results
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Table 6: Experimental results for the MB dataset

SN
Tools (version;
compression type) k = 28 k = 55

Time (s)
RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment) Time (s)

RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment)

1 Jellyfish (2.2.6) 1,467∗ 15 0 800.13∗ (consistent) 1,440∗ 24 0 691.65∗ (consistent)
3 DSK (2.2.0) 3,358 12 59 185.09 (consistent) 3039 11 45 208.54 (consistent)
4 KAnalyze (2.0.0) 51,422 10 189 279.40 (initially ∼2,000, then

declining to ∼150)
45,367 11 245 248.04 (declined from ∼2,000

to ∼100)
5 KMC3 2,019 9 36 216.93 (initially in the range

12–400; increasing towards
end to ∼600)

1,804 10 14 211.12 (initially in the range
12–400, increasing towards
end to ∼600)

6 KMC3 (bz2) 3,341 11 36.3 289.46 (first 90% of time
consistent in the range
200–400; last 10% up to
∼1,300)

3,250 11 13 282.77 (first 90% consistent
in range 200–400; last 10% up
to ∼1,300)

7 Gerbil (1.0) 2,238 2∗ 32∗ 269.52 (initially within 150,
increasing towards end to
∼800)

1,941 3∗ 11∗ 250.32 (initially within 150,
increasing towards end to
∼800)

8 Gerbil (1.0; bz2) 3,487 2 30.7 306.37 (first 90% of time
consistent with ∼270; last
10% suddenly increasing to
∼1,300)

3,137 3 11 304.02 (first 90% of time
consistent with ∼270; last
10% suddenly increasing to
∼1,300)

9 KCMBT (1.0) 1,644 34 0 135.87 (consistent) Not supported
10 MSPKmerCounter

(0.1)
11,094 8 173 316.90 (consistent) 8,759 9 118 1,284.05 (consistent)

11 aTurtle 0.3 8,764 61 0 75.07 (consistent) >15 hours
12 GenomeTester4 3,520 60 0 153.67 (consistent) Not supported
13 BFCounter (1.0) 18,950 10 0 300.37 (consistent) 15,264 19 0 295.40 (first 50% up to ∼254

then increasing to ∼434)

for MSPKmerCounter 0.1, aTurtle 0.3, and Gerbil 1.0 (only for k =
55) were different. Error rates of these three tools are provided
in the Supplementary Tables S3–S6). MSPKmerCounter had the
highest error rates, as depicted in Supplementary Tables S3–S6.

Lists of k-mers and their counts generated by Turtle, MSP-
KmerCounter, and Gerbil (only for k = 55) did not always match
with outputs from other tools for the same datasets. For more
rigorous analysis, we used our shell script, written using a set of
Linux utilities, i.e., sort (to sort in lexicographical order) and diff
(which analyzes two files and prints the lines that are different)
to validate all lexicographically sorted k-mers and their counts.

DSK output is used as a reference to validate the output of
aTurtle because these two tools use the same alphabetical or-
der (A < C < T < G) while obtaining canonical k-mers. Variations
were found in the lexicographically sorted k-mers in the out-
puts of aTurtle and DSK (although the frequency counts of aTur-
tle matched with those of DSK for the DM dataset for k = 55). The
aTurtle output included unmatched frequency k-mers and some
additional k-mers that were not present in the DSK output, and
some k-mers present in the DSK output were missing from aTur-
tle. Similar variations were observed between MSPKmerCounter
and KMC3 and between Gerbil and KMC3 (but only for k = 55).

We thus infer that the recent versions of MSPKmerCounter,
aTurtle, and Gerbil may contain bugs in their implementations.

Result and Discussion

Entries in bold with ∗ indicate best results; entries in bold italic
(including the second lowest for CPU utilization) show aver-
age results. Since MSPKmerCounter has the highest error rates,
these results, and those for compressed input, were not consid-

ered in the best and average results. In the “Disk” column, only
disk-based tools were considered in the best and average results.
Abbreviations are s = seconds, GB = gigabytes. Failure messages
are indicated above if a program failed to complete the computa-
tion because of insufficient memory/disk space or within a stip-
ulated time (15 hours).

For the FV and DM datasets, all programs completed the
k-mer count within 15 hours. However, for the HS1 and HS2
datasets, KCMBT and GenomeTester4 did not complete within
15 hours and neither did Jellyfish for the HS1 dataset, even in
Bloom-filter-based mode. These jobs also had to be killed be-
cause high memory usage froze the system. For the HS1 and HS2
datasets, aTurtle failed, returning the “std::bad alloc Aborted
(core dumped)” error message because of high memory usage
and KAnalyze with the “java.io.IOException: No space left on de-
vice” error.

For the HS1 and HS2 datasets, BFCounter was unable to com-
plete within 15 hours and the system froze, therefore the job
was killed. For the HS1 dataset, MSPKmerCounter failed during
phase 2, returning the “OutOfMemoryError” error.

Runtime, memory, and disk usage

Table 9 provides an easily readable comparison of all 10 tools
(excluding compressed input results), including the best and av-
erage programs in terms of time, memory, disk, and CPU utiliza-
tion.

Of all the tested programs, only DSK and KMC3 generated
accurate results for both k values within the stipulated time
and without system freeze issues for all seven datasets (see Ap-
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Table 7: Experimental results for the HS1 dataset

SN
Tools (version;
compression type) k = 28 k = 55

Time (s)
RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment) Time (s) RAM(GB)

Disk
(GB)

CPU utilization (%)
(comment)

1 Jellyfish (2.2.6) >15 hours (system hang) >15 hours (system hang)
2 DSK (2.2.0) 7,722 12 133 210.2 (inconsistent) 9,389 14 48 255.862 (inconsistent)
3 DSK (2.2.0; gzip) 9,240 11 134 218.77 (inconsistent) 8,480 12 104 284.68 (inconsistent)
4 KAnalyze (2.0.0) Failed: “IO error writing segment file: no space left on de-

vice”
Failed: “IO error writing segment file: No space left on de-
vice”

5 KAnalyze (2.0.0;
gzip)

Failed: “IO error writing segment file: no space left on de-
vice”

Failed: “IO error writing segment file: No space left on de-
vice”

6 KMC3 3,725∗ 10 78 276.64 (gradually
declined)

3,466∗ 11∗ 28 270.55 (inconsistent)

7 KMC3 (gzip) 1,964 11 79 620.84 (inconsistent) 1,626 11 29 663.31 (inconsistent)
8 Gerbil (1.0) 4,078 6∗ 66∗ 370.77∗ (initially within

∼200, increasing towards
end to ∼1,200)

3,818 11∗ 21∗ 320.21∗ (inconsistent)

9 Gerbil (1.0; gzip) 2,849 6 66 569.83 (first 70% of time
consistent to ∼420, then
increasing to ∼1,000 for
last 30%)

2,614 11 22 541.63 (first 70% of time
consistent to ∼400, then
increasing to ∼1,000 for
last 30%)

10 KCMBT (1.0) >23 hours Not supported
11 MSPKmerCounter

(0.1)
>15 hours (phase 2 failed: “OutOfMemoryError”) >15 hours (phase 2 failed: “OutOfMemoryError”)

12 aTurtle (0.3) Aborted (core dumped) Aborted (core dumped)
13 GenomeTester4 >15 hours Not supported
14 BFCounter 1.0 >15 hours >15 hours
15 BFCounter (1.0;

gzip)
>15 hours >15 hours

pendix Tables A1 and A2 ; accuracy checked against FV and DM
datasets only).

Because it is single-threaded, aTurtle will always be lowest
in terms of CPU utilization. Therefore, the second lowest entries
are also mentioned in the “CPU Utilization (%)” column.

DSK consistently used a moderate amount of memory, had
reasonable speeds, and, in passing all the tests, demonstrated
robustness. KMC3 was often superior in terms of running time
but used more memory than its top competitor, Gerbil. However,
it was often close to being the best in terms of disk utilization.

Interestingly, Gerbil was consistently the most memory- and
disk-efficient approach. For most of the datasets, Gerbil had the
lowest disk utilization but was slower than KMC3 (the GPU im-
plementation of Gerbil was not considered). Gerbil attempts to
reduce disk and memory utilization, making it economical in
terms of both of these parameters. As seen in Table 9, hash
table-based counting approaches seem to be more efficient than
sorting-based approaches in terms of hardware use. Newer tools,
specifically KMC3 and Gerbil, which use MSP and bin size (sig-
nature) balancing, performed best in terms of memory require-
ments.

For most of the datasets, and for both k values, KAnalyze
had much higher runtime and disk usage compared to the other
disk-based approaches. KAnalyze needs more time for the merg-
ing step because its partitioning step is relatively straightfor-
ward.

In-memory approaches need no extra disk space because
these are completely memory based. Among the in-memory al-
gorithms, BFCounter utilized the smallest amount of memory
because of the underlying memory-efficient Bloom filter. For the
MB dataset, Jellyfish was the fastest in-memory algorithm and

had the highest CPU utilization, but for the HS1 dataset, it was
not able to complete within 15 hours. For the datasets that Jelly-
fish was able to complete within the stipulated time, both time
and memory requirements were comparable. Gerbil and Jellyfish
often had the highest CPU utilization. Perez et al. [25] reported
similar behaviors of various k-mer counting tools in terms of
runtime and memory usage.

Performance for larger values of k

GenomeTester4, KCMBT, and aTurtle do not support large val-
ues of k (see Supplementary Table S1). For the NC and AT
datasets, BFCounter failed, returning a “segmentation fault (core
dumped)” error, whereas Jellyfish and KAnalyze did not com-
plete within 15 hours. Only KMC3, DSK, and Gerbil succeeded in
generating results for the different k values (28, 40, 55, 65, 100,
125, 150, 175, and 200) for these datasets within the stipulated
time (see Fig. 1). MSPKmerCounter was unable to generate out-
put for the NC dataset, but for the AT dataset, succeeded for all
values of k (28, 40, 55, 65, 100, 125, 150, 175, and 200). However,
because of its high error rate, MSPKmerCounter is not included
in our comparisons.

Gerbil was consistently the most memory-efficient approach,
but when the value of k increased, it utilized almost the same
amount of memory as DSK and KMC3. For the NC dataset, KMC3
was faster than Gerbil, but at higher k values (150, 175 and
200), they had similar runtime. For the AT dataset, KMC3 was
faster than DSK and Gerbil. DSK used almost the same amount
of memory as KMC3 but was slower than KMC3 and Gerbil. In
taking minimal time and using moderate amounts of memory,
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Table 8: Experimental results for the HS2 dataset

SN
Tools (version;
compression type) k = 28 k = 55

Time (s)
RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment) Time (s)

RAM
(GB)

Disk
(GB)

CPU utilization (%)
(comment)

1 Jellyfish (2.2.6) 3,310∗ 58 0 1,000.29∗ (consistent) 11,126 48 0 376.578∗ (declined from
∼1,000 to ∼100)

2 DSK (2.2.0) 8,879 13 145 186.66 (consistent) 7,982 13 109 211.54 (consistent)
3 DSK (2.2.0; gzip) 10,360 10 146 242.01 (inconsistent) 10,199 12 109 240.21 (first 60% of time

consistent with ∼300, last
40% suddenly increasing
to ∼650)

4 KAnalyze (2.0.0) Failed: “IO error writing segment file: no space left on de-
vice”

Failed: “IO error writing segment file: no space left on de-
vice”

5 KAnalyze (2.0.0;
gzip)

Failed: “IO error writing segment file: no space left on de-
vice”

Failed: “IO error writing segment file: no space left on de-
vice”

6 KMC3 4,252 10 85 218.02 (increased towards
end to ∼600, otherwise up
to ∼12)

3,846∗ 11 29 214.99 (increased towards
end to ∼600, otherwise up
to ∼12)

7 KMC3 (gzip) 2,362 10 86 580.72 (inconsistent) 1,995 11 29 556.31 (inconsistent)
8 Gerbil (1.0) 4,553 5∗ 74∗ 371.26 (increased towards

end to ∼1,000, otherwise
up to ∼250)

4,260 9∗ 23∗ 317.65 (initially ∼250,
increasing towards end to
∼1,000)

9 Gerbil (1.0; gzip) 3,358 5 74 553.59 (first 70% of time
consistent to ∼400, then
increasing to ∼1,000 for
last 30%)

3,121 9 23 507.19 (first 70% of time
consistent to ∼450, then
increasing to ∼1,000 for
last 30%)

10 KCMBT (1.0) >15 hours Not supported
11 MSPKmerCounter

(0.1)
3,128 6 22.2 120.17 (consistent) 3,124 9 5.7 340.49 (consistent)

12 aTurtle (0.3) Aborted (core dumped) Aborted (core dumped)
13 GenomeTester4 >15 hours Not supported
14 BFCounter (1.0) >15 hours >15 hours
15 BFCounter (1.0;

gzip)
>15 hours >15 hours

Table 9: Summary of Tables 4–8

Dataset ID k length Time RAM Disk CPU utilization (%)
Highest Lowest Highest Lowest Highest Lowest Highest Lowest

FV 28 KAnalyze Gerbil KCMBT Gerbil KAnalyze Gerbil, KMC3 Gerbil GenomeTester4,
aTurtle

55 KAnalyze KMC3 Jellyfish Gerbil KAnalyze Gerbil Jellyfish BFCounter,
aTurtle

DM 28 BFCounter KMC3 GenomeTester4 Gerbil KAnalyze Gerbil Gerbil GenomeTester4,
aTurtle

55 BFCounter KMC3 aTurtle Gerbil KAnalyze KMC3 KMC3 BFCounter,
aTurtle

MB 28 KAnalyze Jellyfish aTurtle Gerbil KAnalyze Gerbil Jellyfish KCMBT, aTurtle
55 KAnalyze Jellyfish Jellyfish Gerbil KAnalyze Gerbil Jellyfish DSK

HS1 28 DSK KMC3 DSK Gerbil DSK Gerbil Gerbil DSK
55 DSK KMC3 DSK Gerbil, KMC3 DSK Gerbil Gerbil DSK

HS2 28 DSK Jellyfish Jellyfish Gerbil DSK Gerbil Jellyfish DSK
55 Jellyfish KMC3 Jellyfish Gerbil DSK Gerbil Jellyfish DSK

KMC3 and Gerbil efficiently support both small and large values
of k.

Scalability to varying sizes of datasets

For datasets with shorter reads, such as DM, the runtime of each
tool decreases with increasing values of k (Table 5). Only three
programs, Gerbil, KMC3, and DSK, succeeded in generating re-
sults for large datasets (HS1 and HS2) within a reasonable time-
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Figure 1: Analysis of time and memory utilization of k-mer counting algorithms for the NC and AT datasets for different values of k (28, 40, 55, 65, 100, 125, 150, 175,
and 200).

frame and without freezing (Tables 7 and 8). These tools use a
disk-based approach, are more efficient in terms of time and
memory utilization, and are scalable for large datasets (size >200
GB) compared to tools based on an in-memory approach. Jelly-
fish is memory efficient and, for the HS2 dataset, was the only
in-memory algorithm that completed a k-mer count within a
reasonable time, consuming 58 GB and 48 GB memory for k =
28 and 55, respectively (Table 8).

The impact of compressed input

Because of their large size, sequencing data are generally stored
in a compressed format, usually gzip. One advantage of pro-
grams that support compressed input is that the I/O through-
put improves with the use of hard drives because the algorithm
consumes the data faster. Data throughput is increased because
compressed data are read directly from the disk, thereby over-
coming the cost of file decompression in memory.

Currently, only the following five tools support compressed
input: KMC3, Gerbil, DSK, KAnalyze, and BFCounter. As shown
in Tables 4–8, reading the input in a compressed form reduces
the running time, having a noticeable, positive impact on count-
ing k-mers in large datasets, i.e., HS1 and HS2. KMC3 was the
fastest of the tested programs that support compressed input.
For the HS1 and HS2 datasets, KMC3 and Gerbil’s gzipped input

time was much less than the normalized input time, whereas
the opposite trend was seen with DSK. As shown in Tables 7 and
8, using gzipped input compared to normalized input, KMC3 was
approximately 47% and 53% faster (k = 28 and k = 55, respec-
tively) for the HS1 dataset and 44% and 48% faster (k = 28 and k
= 55, respectively) for the HS2 dataset. Gerbil was approximately
30% and 32% faster (k = 28 and k = 55, respectively) for the HS1
dataset and approximately 26% and 27% faster (k = 28 and k = 55,
respectively) for the HS2 dataset. DSK was approximately 19%
slower (k = 28 for HS1) and 17% and 28% slower (k = 28 and k =
55, respectively) for HS2.

Regardless of input format (compressed or normalized),
KMC3 was the fastest, whereas Gerbil was the most consistent
in terms of using the lease memory and disk space. bzip2 has a
high compression ratio but very slow decompression. Thus, pro-
cessing a bzip2 file is costlier than gzipped input (Tables 4–8).
Only KMC3 and Gerbil support input data that are compressed
with the bzip2 data compressor; these took long to process bzip2
files than normalized input for the MB dataset (Table 6).

Scalability by the number of threads

All programs (except for aTurtle, as it is single-threaded) run
with different numbers of threads (1, 2, 4, 6, 8, and 12) to as-
sess CPU-related performance. FV and MB datasets were chosen
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Figure 2: Scalability comparison of different k-mer counting tools based on the number of threads.

with a k value of 28 so that all tools could complete their execu-
tion within the stipulated time. Figure 2 shows the scalability of
these tools according to the number of threads. No tool was able
to achieve linear speedup.

Jellyfish, an in-memory approach using a multithreaded
lock-free hash table, has the highest speedup, i.e., 8.3 and 6.7
for FV and MB datasets, respectively, for 12 threads. DSK and
KMC3 have good speedup for the FV dataset, i.e., 7.2 and 7.1,
respectively, for 12 threads. For the MB dataset, each program
achieves only low speedup in the range of 1–2 (except for Jelly-
fish). This is caused by increased threading overhead; resource
demand is increased by each thread because of large input size
but limited underlying resources. KCMBT is the fastest for a sin-
gle thread on the MB dataset (Supplementary Table S8). However,
for the four threads, KCMBT was not able to complete a k-mer
count within 15 hours for the same dataset owing to threading
overheads, while memory requirements are almost constant for
increasing numbers of threads with the other tools. The over-
all speedup achieved by each program is not very high because
k-mer counting is fundamentally an I/O-intensive task.

Conclusions and Future Directions

k-mer counting is used to solve many problems in bioinformat-
ics. While high-throughput sequencing technologies can gener-
ate billions of reads per instrument run, there is a need to con-

tinue developing a memory- and time-efficient k-mer counting
system for large reads.

Many disk-based and in-memory k-mer counting approaches
are available that aim to generate results from large genomic
datasets in a minimum amount of time, using personal com-
puters with limited resources (memory, disk, etc.).

Of all the tools considered herein, KMC3, DSK, and Gerbil
are the most flexible and efficient, as they have higher speeds,
minimum memory requirements, and better scalability to larger
datasets. They also have automatic parameter selection, are
more robust, support larger values of k (large k being an im-
portant use case for longer reads), and allow compressed input.
Reading the input in a compressed form improves the overall
processing time. These tools are optimized to gain significant
speedup by parallelizing the available cores in the machine.

As sequencing technologies evolve, research endeavors must
continue to improve to develop better k-mer counting systems
for increasingly large sequencing datasets.

Additional files

Appendix revised 4.doc
Supplementary revised 4.doc



12 k-mer counting methods

Abbreviations

CAS: compare-and-swap; CPU: central processing unit; CQF:
counting quotient filter; GPU: graphics processing unit; I/O: in-
put/output; lcp: longest common prefix; MSP: minimum sub-
string partitioning; NGS: next-generation sequencing; RAM: ran-
dom access memory; SAC: sorting and compaction.

Competing interests

The authors declare no conflict of interest, financial or other-
wise.

Author Contributions

Swati C. manekar and Shailesh R. Sathe conceived of the pre-
sented review. Swati C. Manekar developed the theory and per-
formed the computations under the supervision of Shailesh R.
Sathe. Both authors discussed the results and contributed to the
final manuscript.

References

1. Reuter JA, Spacek DV, Snyder MP. High-throughput sequenc-
ing technologies. Mol Cell 2015;58(4):586–97.

2. Molnar M, Ilie L. Correcting Illumina data. Brief Bioinform
2015;16(4):588–99.

3. Miller JR, Delcher AL, Koren S, et al. Aggressive assem-
bly of pyrosequencing reads with mates. Bioinformatics
2008;24(24):2818–24.

4. Myers EW, Sutton GG, Delcher AL, et al. A whole-genome as-
sembly of Drosophila. Science 2000;287(5461):2196–204.

5. Jaffe DB, Butler J, Gnerre S, et al. Whole-genome sequence
assembly for mammalian genomes : Arachne 2. Genome Res
2003;13(1):91–6.

6. Miller JR, Koren S, Sutton G. Assembly algorithm for next-
generation sequencing data. Genomics 2010;95(6):315–27.

7. Pevzner PA, Tang H, Waterman MS. An Eulerian path ap-
proach to DNA fragment assembly. Proc Natl Acad Sci U S
A 2001;98(17):9748–53.

8. Zerbino DR, Birney E. Velvet: algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res
2008;18(5):821–9.

9. Simpson JT, Wong K, Jackman SD, et al. ABySS : a paral-
lel assembler for short read sequence data. Genome Res
2009;19(6):1117–23.

10. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware de-
tection and correction of sequencing errors. Genome Biol
2010;11(11):R116.

11. Shi H, Schmidt B, Liu W, et al. A parallel algorithm for er-
ror correction in high-throughput short-read data on CUDA-
enabled graphics hardware. J Comput Biol 2010;17(4):603–15.

12. Liu Y, Schroder J, Schmidt B. Musket: a multistage k-mer
spectrum-based error corrector for Illumina sequence data.
Bioinformatics 2013;29(3):308–15.

13. Medvedev P, Scott E, Kakaradov B, et al. Error correction
of high-throughput sequencing datasets with non-uniform
coverage. Bioinformatics 2011;27(13):i137–41.
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