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Abstract: Despite the recent development of antibacterials that are active against multidrug-resistant
pathogens, drug combinations are often necessary to optimize the killing of difficult-to-treat organ-
isms. Antimicrobial combinations typically are composed of multiple agents that are active against the
target organism; however, many studies have investigated the potential utility of combinations that
consist of one or more antibacterials that individually are incapable of killing the relevant pathogen.
The current review summarizes in vitro, in vivo, and clinical studies that evaluate combinations that
include at least one drug that is not active individually against Pseudomonas aeruginosa, Klebsiella
pneumoniae, Acinetobacter baumannii, or Staphylococcus aureus. Polymyxins were often included in
combinations against all three of the Gram-negative pathogens, and carbapenems were commonly
incorporated into combinations against K. pneumoniae and A. baumannii. Minocycline, sulbactam,
and rifampin were also frequently investigated in combinations against A. baumannii, whereas the
addition of ceftaroline or another β-lactam to vancomycin or daptomycin showed promise against
S. aureus with reduced susceptibility to vancomycin or daptomycin. Although additional clinical
studies are needed to define the optimal combination against specific drug-resistant pathogens, the
large amount of in vitro and in vivo studies available in the literature may provide some guidance
on the rational design of antibacterial combinations.

Keywords: Staphylococcus aureus; Pseudomonas aeruginosa; Klebsiella pneumoniae; carbapenem resis-
tance; Acinetobacter baumannii; antimicrobial combinations

1. Introduction

The use of antibacterial combinations may be advantageous for the treatment of
acute bacterial infection in multiple situations. During empiric therapy, the simultaneous
use of multiple antimicrobials may confer a wider spectrum of activity against suspected
organisms. Once the pathogenic organism is identified, directed therapies may use multiple
antibacterials to prevent the emergence of drug-resistance, enhance killing against difficult-
to-treat pathogens, and prevent toxin production. Most antibacterial combinations utilize
antimicrobials that individually possess activity against the target organism; however, there
may be clinical scenarios in which it is desirable to include an agent into a combination
regimen despite the presence of resistance mechanisms that confer non-susceptibility to
the antibacterial of interest.

The current review provides a summary of available literature that investigates the
use of antibacterial combinations utilizing at least one antimicrobial that is not individually
active against the target pathogen. The three Gram-negative organisms Pseudomonas aerugi-
nosa, Klebsiella pneumoniae, and Acinetobacter baumannii, and the Gram-positive pathogen
Staphylococcus aureus are each evaluated based on clinically relevant drug resistance profiles.
Lastly, the review concludes by commenting on which of the combination regimens offer
the most promise for the treatment of specific drug-resistant pathogens.
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2. Methodology

To focus the discussion of the review, clinically relevant pathogens that frequently
possess multidrug-resistant phenotypes were identified by the authors. P. aeruginosa, A.
baumannii, and Enterobacteriaceae are Gram-negative organisms that frequently are resistant
to carbapenems [1,2], have been identified as urgent or serious threats to public health by
the Centers for Disease Control and Prevention [3], and sometimes merit treatment with
polymyxins or other last line antibacterials due to extensive drug resistance [4]. Although
the family Enterobacteriaceae contains many organisms, K. pneumoniae carbapenemase-
producing K. pneumoniae (KPCKP) are one of the most commonly encountered carbapenem-
resistant Enterobacteriaceae in the world, and K. pneumoniae was therefore selected as a
representative of the Enterobacteriaceae family; however, it should be noted that Escherichia
coli, Salmonella species, and Shigella species are clinically relevant organisms that were
not included in the current review [5]. S. aureus was also included in the review due
to its ubiquitous presence in the clinic, status as a serious threat to public health, and
the availability of numerous studies that investigated relevant combinations against the
pathogen [3,6].

After identifying the organisms that were included in the study, multiple searches in
Pubmed were conducted that included permutations of the terms “combination,” “non-
susceptible,” “seesaw,” “resistant,” “drug-resistant,” “carbapenem-resistant,” “polymyxin-
resistant,” and the names of organisms included in the review. In vitro, in vivo, and clinical
studies were included in the review if a combination was investigated that utilized at least
one agent that was individually not active against the target organisms. Other studies
were also included at the discretion of the authors based on referenced works from the
original literature search. The antibacterial combinations studied in dynamic in vitro
models, in vivo models, and clinical investigations were summarized in a table for each
pathogen to highlight the most promising combination regimens.

3. Pseudomonas aeruginosa
3.1. Multidrug-Resistant P. aeruginosa

Multidrug-resistant (MDR) P. aeruginosa is defined as an isolate that is non-susceptible
to at least one agent in more than two of the following classes of antipseudomonal drugs:
penicillins with beta-lactamase inhibitors, cephalosporins, fluoroquinolones, aztreonam,
phosphonic acid, carbapenems, aminoglycosides, and polymyxins [7]. Several combination
antimicrobial therapies have been studied to examine the synergistic and additive effects
against MDR P. aeruginosa. Although rifampin monotherapy is not generally used in P.
aeruginosa infections, the combination of colistin and rifampin demonstrated synergistic
activity in vitro [8,9]. Timurkaynak et al. reported that rifampin and colistin combination
therapy demonstrated fully and partially synergistic activity against MDR P. aeruginosa
strains isolated from intensive care units. All the P. aeruginosa strains included in the
investigation were resistant to rifampin and several strains were resistant to colistin [8].
Another in vitro checkerboard analysis found that the addition of rifampin to colistin
conferred partial synergy in 5/7 strains or full synergy in 1/7 strains of MDR P. aeruginosa.
Furthermore, colistin and rifampin combination therapy resulted in successful treatment in
four patients with sepsis or pneumonia caused by MDR P. aeruginosa [9].

The addition of amikacin and fosfomycin to non-susceptible beta-lactams or aztreonam
was also evaluated as a potential treatment option, although the results are inconsistent. An
in vitro study by Oie et al. reported that aztreonam and amikacin effectively inhibited pro-
liferation in 5/7 strains of MDR P. aeruginosa that were resistant to ceftazidime, aztreonam,
and amikacin [10]. In the time-killing experiments, a triple therapy of ceftazidime, aztre-
onam, and amikacin achieved synergy at 24 h against 3/7 strains of MDR P. aeruginosa. A
recently published in vitro study by Mullane et al. evaluated double combinations of either
amikacin or fosfomycin together with cefepime, ceftolozane-tazobactam, or meropenem
against beta-lactam-resistant P. aeruginosa. Most of the combinations demonstrated additive
effects against MDR P. aeruginosa (53–71%), while meropenem with amikacin or fosfomycin
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resulted in the least percentage of additivity (30–37%) [11]. Similarly, the combination
of ceftolozane-tazobactam with amikacin, colistin, or fosfomycin showed additive and
synergistic effects against MDR P. aeruginosa strains in both an in vitro dynamic model and
time-kill analysis (Table 1) [12,13].

Table 1. Summary of studies that investigated antibacterial combinations against P. aeruginosa that included at least one
drug that was inactive individually. Studies are reported in the table if the combination was investigated using a dynamic
in vitro model, an in vivo model, or the investigation was completed in the clinic. Susceptibility studies, checkerboard
analyses, and static time-killing experiments are not reported in the table due to the preliminary nature of the experiments
and the extensive combinatorial permutations that are difficult to summarize succinctly.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not

Improve Bacterial Killing or
an In Vivo/Clinical Outcome

Inactive Drug Provided
Improvement in Bacterial Killing
or an In Vivo/Clinical Outcome

MDR P. aeruginosa

(ceftolozane-tazobactam) +
amikacin or colistin In vitro dynamic model [12]

(meropenem) + (ceftazidime) or
(aztreonam) In vivo larvae model [14]

(rifampin) + colistin In vivo murine pneumonia model ¥

[15] Retrospective clinical [16]

(beta-lactams *) + colistin Retrospective clinical [17]

(aztreonam) + colistin In vivo murine thigh model [18]

(tobramycin) + (imipenem) In vivo murine thigh model [19]

XDR
P. aeruginosa (meropenem) + polymyxin B Retrospective clinical ** [20]

PDR P. aeruginosa

(meropenem) + (amikacin) Retrospective clinical [21]

(colistin) +
(imipenem/cilastatin) or

(meropenem) or (ofloxacin)
Retrospective clinical *** [22]

(colistin) + (meropenem) +
(ofloxacin) + (gentamicin) Retrospective clinical *** [22]

ˆ Drugs were determined to be inactive if the pathogens’ MIC was above the CLSI breakpoint for susceptibility, if available. Polymyxin
MICs of 2 or higher were considered inactive. Rifampin was considered to be inactive against the Gram-negative organisms. ¥ Intranasal
colistin. * Antipseudomonal cephalosporins; piperacillin/tazobactam; carbapenems. ** Only a small percentage of patients (17.8%) had P.
aeruginosa infections. A majority of patients (69.9%) in the combination therapy group received meropenem. *** Case reports of individual
patients were included in the table due to a lack of clinical studies that investigated PDR P. aeruginosa.

Efficacy of polymyxin B with various antibiotics was evaluated in automated time-
lapse microscopy and static time-kill experiments. Olsson et al. reported that additive or
synergistic activity was observed at 24 h in the time-kill experiments with polymyxin B
and aztreonam, cefepime, or meropenem dual combinations [23]. All four strains were
MDR P. aeruginosa that were intermediate or resistant to polymyxin B. Similar to the previ-
ously described synergistic activity achieved with colistin and rifampin, the combination
of polymyxin B and rifampin demonstrated synergistic and bactericidal effects against
two strains.

Despite promising results from in vitro studies, evidence supporting the clinical ben-
efit of combination therapy with at least one inactive antimicrobial agent against MDR
P. aeruginosa is lacking. The majority of clinical studies that investigated antibacterial
combinations against MDR P. aeruginosa either evaluated combinations that utilized mul-
tiple agents that were individually active in vitro, or the susceptibility profiles of the P.
aeruginosa were not described in the studies [16,17,24,25]. Although a meta-analysis of
cohort studies comparing monotherapy and combination therapy for the treatment of P.
aeruginosa bacteremia reported no significant differences in mortality (Odds Ratio (OR)
0.81, 95% confidence interval (CI) 0.61–1.08), the analysis did not differentiate specific
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antibiotic therapies and their susceptibility profiles [26]. A systematic review and meta-
analysis by Schmid et al. reported lower mortality with combination therapy compared to
monotherapy (Relative Risk (RR) 0.83, CI 0.73 to 0.93, p = 0.002) in MDR Gram-negative
infections [27]. However, the investigators defined combination therapy as two or more
antibiotics regardless of in vitro susceptibility, and the subgroup analysis for MDR P. aerug-
inosa showed no mortality benefit with combination therapy (RR 0.95, 95% CI 0.64–1.41;
p = 0.78).

3.2. Extensively Drug-Resistant P. aeruginosa

A strain of P. aeruginosa is considered extensively-drug resistant (XDR) if non-susceptibility
is detected in all but two or fewer antipseudomonal drug classes [7]. The current Infectious
Diseases Society of America (IDSA) guidance similarly defines extensive drug resistance
XDR as “difficult-to-treat” resistance and recommends against routine combination therapy
if the isolate demonstrates a confirmed susceptibility to a first-line antibiotic, such as
ceftolozane-tazobactam, ceftazidime-avibactam, or imipenem-cilasatin-relebactam [28].
As such, antimicrobial combinations have demonstrated underwhelming in vitro activity
against XDR P. aeruginosa. Lee et al. evaluated 43 XDR P. aeruginosa isolates, which were
resistant to all tested antibacterials, except colistin. Combinations including imipenem
and colistin, ceftazidime and colistin, and rifampin and colistin exerted only additive or
indifferent activity against most XDR P. aeruginosa isolates [29]. Another in vitro time-kill
study evaluated meropenem and polymyxin B, amikacin and meropenem, amikacin and
rifampin, and amikacin and polymyxin B combinations in 22 clinical XDR P. aeruginosa
isolates [30]. All dual combinations showed minimal bactericidal activity, while triple
combinations of amikacin, rifampin, and polymyxin B and amikacin, meropenem, and
polymyxin B exhibited bactericidal activity against 7/10 and 6/10 isolates, respectively.

Clinical studies evaluating the combination treatment of XDR P. aeruginosa infections
remain limited. In a retrospective cohort study by Rigatto et al., polymyxin B in combination
with an antimicrobial lacking in vitro activity was compared to polymyxin B monotherapy
in 101 critically ill patients [20]. All isolates were considered XDR and the respiratory
tract was the primary infection site. Most patients in the combination therapy group
received carbapenems despite most of the isolate minimum inhibitory concentrations
(MICs) exceeding 32 mg/L. The investigators reported that combination therapy was
independently associated with lower 30-day mortality (Hazard Ratio (HR) 0.33, 95% CI
0.17–0.64; p = 0.001) and all patients (3 out of 18) with P. aeruginosa infections who received
combination therapy survived. However, this finding should be interpreted carefully as
only a small percentage of patients (17.8%) had P. aeruginosa infections.

3.3. Pandrug-Resistant P. aeruginosa

Among the reported pandrug-resistant (PDR) Gram-negative bacteria, P. aeruginosa is
one of the most common species, along with A. baumannii [31]. Unfortunately, the available
data regarding therapeutic options is scarce. A combination treatment of amikacin and
meropenem resulted in both clinical and microbiological cure in patients with PDR P.
aeruginosa ventilator-associated pneumonia (VAP), and the combination was later found to
be synergistic in vitro [21]. In a case series of patients with PDR Gram-negative bacteria
with most patients having PDR P. aeruginosa, combination therapy with colistin and various
antimicrobials (carbapenems, third generation cephalosporins, and quinolones) achieved
clinical and microbiological cure [22]. The authors suggested that the combinations were
potentially synergistic, but synergy was not confirmed by in vitro testing.

4. Klebsiella pneumoniae
4.1. K. pneumoniae Carbapenemase-Producing K. pneumoniae

Several investigations have attempted to leverage a polymyxin antibacterial paired
with another agent against KPCKP. Despite the ability of the KPC enzymes to hydrolyze car-
bapenems, several in vitro investigations have suggested that the addition of meropenem
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to a polymyxin will achieve more killing of KPCKP than a polymyxin alone [32,33]. A
retrospective clinical study by Giannella et al. evaluated the treatment of KPCKP bac-
teremia and observed that incorporation of high-dose carbapenems into a combination
regimen resulted in a lower 14-day mortality (p = 0.03); however, antibacterials other
than polymyxins (including aminoglycosides and tigecycline) were sometimes used in the
antimicrobial combinations (Table 2) [34]. Double combinations that utilize a polymyxin
and fosfomycin have also been investigated in vitro against polymyxin-resistant KPCKP,
and the combination was able to achieve synergy in time-killing experiments (albeit at high
drug concentrations) and a hollow-fiber infection model [35,36].

Table 2. Summary of studies that investigated antibacterial combinations against K. pneumoniae that included at least one
drug that was inactive individually. Studies are reported in the table if the combination was investigated using a dynamic
in vitro model, an in vivo model, or the investigation was completed in the clinic. Susceptibility studies, checkerboard
analyses, and static time-killing experiments are not reported in the table due to the preliminary nature of the experiments
and the extensive combinatorial permutations that are difficult to summarize succinctly.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not Improve

Bacterial Killing or an In
Vivo/Clinical Outcome

Inactive Drug Provided Improvement
in Bacterial Killing or an In

Vivo/Clinical Outcome

KPCKP

(meropenem) + colistin In vitro dynamic model [33] In vivo
rabbit osteomyelitis model [32]

(meropenem) + colistin
+ gentamicin In vivo rabbit osteomyelitis model [32]

(meropenem) + polymyxin B
+ fosfomycin In vitro dynamic model [37]

(meropenem) + colistin
+ tigecycline In vitro dynamic model [33]

(meropenem) + colistin and/or
tigecycline and/or gentamicin Retrospective clinical [34]

(meropenem) + (amikacin) In vivo murine thigh model [38]

(meropenem) + (rifampin) +
polymyxin B In vitro dynamic model [39,40]

(meropenem) + (rifampin) +
(polymyxin B) In vitro dynamic model [39]

(meropenem) + tigecycline In vivo murine thigh model [41]

(polymyxin B) + fosfomycin In vitro dynamic model [36]

(ertapenem) + (meropenem
or doripenem)

In vivo murine thigh model [42]
Retrospective clinical [43,44]

NDMKP

(meropenem) + tigecycline In vitro dynamic model [45]

(meropenem) + fosfomycin +
polymyxin B In vitro dynamic model [37]

(fosfomycin) + colistin In vitro dynamic model [46]

(polymyxin B) + amikacin
+ aztreonam In vitro dynamic model [47]

ˆ Drugs were determined to be inactive if the pathogens’ MIC was above the CLSI breakpoint for susceptibility, if available. Polymyxin
MICs of 2 or higher were considered inactive. Rifampin was considered to be inactive against the Gram-negative organisms.

Unlike the potential shown with the carbapenem and polymyxin combinations, car-
bapenem and tigecycline combination studies have yielded fewer promising results against
KPCKP. Numerous in vitro studies failed to observe synergistic killing against KPCKP
when a carbapenem was paired with tigecycline [41,48,49], whereas other investigations
reported that the use of a carbapenem antagonized the killing of tigecycline [50]. Michail
et al. tested tigecycline drug combinations in vivo using a murine thigh infection model
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and concluded that the addition of meropenem antagonized the activity of tigecycline
against three of the eight KPCKP strains that were investigated, whereas the addition of
rifampin or gentamicin increased the killing of KPCKP by tigecycline [41].

Other dual combinations that utilize at least one carbapenem have also been evaluated
against KPCKP. The use of a carbapenem paired with either another carbapenem or a
cephalosporin has been shown to potentially synergize against KPCKP in vitro [42,51–53],
and the utility of a double carbapenem regimen has been validated in vivo as well [42].
Moreover, several clinical investigations evaluated the use of ertapenem paired with an-
other carbapenem and found that the combination of two carbapenems may be an effective
clinical treatment for infections caused by KPCKP [43,44]; however, there currently are not
any randomized clinical trials that compare the use of a double carbapenem regimen with
another standard of care for KPCKP infections (such as ceftazidime-avibactam, meropenem-
vaborbactam, or imipenem-cilastatin-relebactam) [54]. Carbapenem dual combinations
have also shown promise in vitro or in vivo when a carbapenem was paired with either
fosfomycin [55] or an aminoglycoside [38].

In addition to dual combinations that are composed of a carbapenem and another
agent, several triple combinations that utilize two antibacterials and a carbapenem have
been evaluated against KPCKP. Triple combinations of a carbapenem, a polymyxin, and
either tigecycline or an aminoglycoside were capable of killing more KPCKP than double
combinations in multiple in vitro studies [32,33,49]. Dynamic in vitro models have also
suggested that synergy against KPCKP may be achieved with the triple combination of
a carbapenem, a polymyxin, and rifampin [39,40]. In contrast to the encouraging results
observed in other studies, Del Bono et al. evaluated the activity of meropenem, tigecycline,
and either colistin or gentamicin against 19 KPCKP isolates, and meropenem failed to
achieve synergistic killing against any of the studied isolates [56].

4.2. Oxacillinase-48-Producing K. pneumoniae

Although carbapenem combinations have been investigated extensively against KPCKP,
there are less data concerning the use of carbapenem combinations against oxacillinase-48-
producing K. pneumoniae (OXA-48-KP). Several in vitro studies observed that double combi-
nations of carbapenems were able to achieve synergistic killing against OXA-48-KP [51,57],
whereas a separate investigation found that the addition of colistin was necessary for
synergistic killing against polymyxin-resistant OXA-48-KP [58]. The combination of a
carbapenem and fosfomycin was also shown to achieve additional killing over either agent
alone in multiple in vitro studies [59,60]; however, Bakthavatchalam et al. investigated
34 OXA-48-KP isolates in time-killing experiments and determined that meropenem and
fosfomycin achieved synergy in only 24% of the isolates [61].

4.3. New Delhi Metallo-β-Lactamase-Producing K. pneumoniae

In addition to KPCKP and OXA-48-KP, combinations of carbapenems with other
antibacterials have also been investigated against New Delhi metallo-β-lactamase pro-
ducing K. pneumoniae (NDMKP). Similar to OXA-48-KP, several in vitro studies observed
that a carbapenem and fosfomycin were capable of achieving synergistic killing against
NDMKP [46,59,60], whereas the previously described time-killing investigation by Baktha-
vatchalam et al. only detected synergy against 1/11 NDMKP isolates [61]. The addition of a
carbapenem to a polymyxin has also shown promise in vitro [46,58], but one investigation
reported that the combination was more likely to achieve synergy against K. pneumoniae that
expressed NDM only, whereas isolates that co-expressed OXA-48 and NDM enzymes were
less susceptible to the combination [46]. Contrary to the encouraging performance of dual
carbapenem combinations against KPCKP and OXA-48-KP, the use of two carbapenems
failed to consistently achieve synergistic killing against NDMKP in vitro [51,58].
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5. Acinetobacter baumannii
5.1. Carbapenem-Resistant A. baumannii

The optimal approach to treating an infection caused by A. baumannii depends on the
susceptibility profile of the offending organism. For relatively drug-susceptible strains, the
IDSA recommends the use of a carbapenem or ampicillin-sulbactam [62]. Unfortunately,
carbapenem-resistant A. baumannii (CRAB) has spread across the globe, and the likeliness
of encountering A. baumannii that produce oxacillinases that confer carbapenem resistance
varies based on the region and patient population [63]. Polymyxins now represent one of
the few remaining drug classes that reliably retain activity against CRAB. According to
the International Consensus Guidelines for the Optimal Use of Polymyxins, a polymyxin
should be combined with an agent that is active against a specific CRAB strain to increase
the likeliness of eradicating the pathogen; however, if another agent that is active against
the CRAB strain is not available, the panel voted 8 to 7 to weakly recommend that a
polymyxin should be used as monotherapy for the management of CRAB [4]. Although
newer agents such a cefiderocol may offer another therapeutic option for combatting drug-
resistant A. baumannii, the potential utility of a polymyxin in combination with a non-active
agent has been an area of ongoing research as well [64].

Perhaps one of the most extensively studied antibacterial combinations to counter
CRAB is the use of a polymyxin and a carbapenem. When evaluated in vitro, the addition of
a carbapenem to a polymyxin demonstrated enhanced killing in susceptibility studies, static
time-killing experiments, and dynamic models (Table 3) [65–75]. The combination also
demonstrated some promise when evaluated in retrospective clinical studies [76]. The use
of a carbapenem with a polymyxin was eventually evaluated in a randomized controlled
superiority trial that compared colistin monotherapy to the use of colistin with meropenem
for the treatment of serious infections caused by carbapenem-resistant Gram-negative
bacteria [77]. Over 300 patients with A. baumannii infections were included in the study,
and a significant difference in the likeness of clinical failure at 14 days was not observed for
patients that received colistin monotherapy in comparison to combination therapy (79%
versus 73%, RR 0.93, 95% CI 0.83–1.03). A secondary analysis of the study determined
that patients infected with colistin-resistant A. baumannii had a higher mortality rate if
they were treated with colistin and meropenem in comparison to colistin monotherapy
(OR 3.065, 95% CI 1.021–9.202) [78]. The strong majority of the A. baumannii strains in
the aforementioned trial contained a high meropenem MIC of over 8 mg/L, and some
clinicians suspect that the combination of a polymyxin and a carbapenem may have utility
for treating A. baumannii with lower meropenem MICs of 4 or 8 mg/L [79].

Table 3. Summary of studies that investigated antibacterial combinations against A. baumannii that included at least one
drug that was inactive individually. Studies are reported in the table if the combination was investigated using a dynamic
in vitro model, an in vivo model, or the investigation was completed in the clinic. Susceptibility studies, checkerboard
analyses, and static time-killing experiments are not reported in the table due to the preliminary nature of the experiments
and the extensive combinatorial permutations that are difficult to summarize succinctly.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not Improve

Bacterial Killing or an In
Vivo/Clinical Outcome

Inactive Drug Provided Improvement
in Bacterial Killing or an In

Vivo/Clinical Outcome

CRAB

(carbapenem) + a polymyxin Retrospective clinical [80]
Randomized controlled trial [77]

In vitro dynamic model [70,72,73,75]
In vivo murine thigh model ¥ [81]
In vivo murine sepsis model [82]

Retrospective clinical [76]

(doripenem) + tigeycline
or amikacin In vivo murine sepsis model [82]

(carbapenem) + (rifampin) In vivo murine sepsis model [83]
In vivo murine pneumonia model [84]

(imipenem) + tobramycin In vivo murine pneumonia model [85]



Antibiotics 2021, 10, 646 8 of 20

Table 3. Cont.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not Improve

Bacterial Killing or an In
Vivo/Clinical Outcome

Inactive Drug Provided Improvement
in Bacterial Killing or an In

Vivo/Clinical Outcome

(imipenem) + (sulbactam) In vivo murine
pneumonia model [85]

In vivo murine sepsis model [86]
In vivo murine pneumonia model [84]

(doripenem) + (sulbactam) In vivo murine sepsis model [82]

(sulbactam) + a polymyxin
In vivo murine thigh model [81]
In vivo murine sepsis model [86]

Retrospective clinical [80,87]

In vitro dynamic model [88]
Retrospective clinical [76]

(sulbactam) + tobramycin In vivo murine pneumonia model [85]

(minocycline) + a polymyxin In vivo murine pneumonia
model [89] In vivo murine pneumonia model [90]

(rifampin) or (fusidic acid)
+ colistin In vivo murine thigh model [81]

(rifampin) + colistin In vivo murine pneumonia model
[84] Randomized clinical trial * [91] In vivo rabbit meningitis model [84]

(rifampin) + (sulbactam) In vivo rabbit meningitis model [84] In vivo murine pneumonia model [84]

(glycopeptide) + colistin Retrospective clinical [92] In vivo wax worm model [93–95]

PRAB

(colistin) + (rifampin) In vitro dynamic model

(colistin) + (vancomycin) In vivo murine pneumonia model **
[96] In vivo wax worm model [97] In vivo wax worm model [93]

(colistin) + (vancomycin)
+ (doripenem) In vivo wax worm model [97]

(vancomycin) + (doripenem) In vivo wax worm model [97]

(colistin) + (daptomycin) In vivo murine intraperitoneal
infection model [98]

(ampicillin-sulbactam) +
(polymyxin B) + (meropenem)

In vitro dynamic model
[99,100]Retrospective clinical [101]

ˆ Drugs were determined to be inactive if the pathogens’ MIC was above the CLSI breakpoint for susceptibility, if available. Polymyxin
MICs of 2 or higher were considered inactive. Rifampin was considered to be inactive against the Gram-negative organisms. ¥ The addition
of meropenem led to synergistic killing if the meropenem MIC was 16 or 32 mg/L, but the addition of meropenem did not improve
killing if the meropenem MIC was > 32 mg/L. * The combination of colistin and rifampin did not improve 30-day mortality over colistin
alone regardless of the rifampin MIC; however, the addition of rifampin did increase the rate of microbiologic eradication (p = 0.034).
** Teicoplanin achieved a statistically non-significant increase in survival in comparison to colistin alone.

Another combination that has been evaluated for the treatment of CRAB is the use of
a polymyxin and minocycline. Against A. baumannii isolates that were susceptible to both
drugs, synergy studies have yielded generally positive results. One susceptibility study
observed that synergy between colistin and minocycline in 8.6% of the tested strains [102],
whereas a separate investigation found that colistin and minocycline were synergistic
against all 14 A. baumannii isolates in time-killing experiments [103]. The combination
of colistin and minocycline also significantly reduced the bacterial load of A. baumannii
investigated in a mouse model to a greater extent than either agent alone (p < 0.05) [104].
Against A. baumannii with some level of minocycline-resistance, the combination of a
polymyxin and minocycline has shown mixed results. In a time-killing study that evaluated
minocycline in combination with colistin, although minocycline alone resulted in regrowth
of the bacteria after 24 h, the combination of minocycline and colistin was synergistic
against 12/13 A. baumannii isolates that were evaluated [105]. Another study also observed
that colistin and minocycline achieved synergy against four minocycline-resistant isolates
in time-killing studies, and the combination also improved the survival of mice over
colistin alone when one of the isolates was evaluated in vivo (p = 0.05) [90]. In contrast,
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the combination of minocycline and polymyxin B was unable to achieve killing against
a minocycline-resistant A. baumannii strain during in vitro time-killing experiments and
an in vivo neutropenic murine pneumonia model [89]. Another study utilized a dynamic
in vitro model to assess the killing of antibacterial combinations against CRAB, and the
authors concluded that the triple combination of minocycline, polymyxin B, and sulbactam
was the most effective regimen [106].

Lastly, the combination of a polymyxin and sulbactam has been investigated as
a therapeutic option against CRAB. Multiple in vitro studies have suggested that the
addition of sulbactam to a polymyxin may enhance the killing of A. baumannii despite
the presence of sulbactam resistance [65,88,102,107–110], though antagonism has been
reported as well [111]. A retrospective study of over 200 patients evaluated various
colistin combinations in comparison to colistin alone for the treatment of bacteremia due
to CRAB [76]. Of the 214 patients that received combination therapy, 69 patients received
colistin and sulbactam, and not only was in-hospital mortality significantly lower for
patients that received combination therapy versus colistin alone (52.3% versus 72.2%,
p = 0.03), but the colistin and sulbactam group had a similar rate of crude mortality among
the different combination arms of the study. Unfortunately, two other retrospective studies
failed to observe a significant benefit of adding sulbactam to colistin for the treatment of
CRAB infections [80,87].

5.2. Polymyxin-Resistant A. baumannii

Despite the presence of resistance to polymyxins, several investigations have evalu-
ated whether a polymyxin may be combined with rifampin to counter polymyxin-resistant
A. baumannii (PRAB). Not only has the combination of a polymyxin and rifampin demon-
strated synergy against CRAB during in vitro or in vivo experiments [83,112–114], but the
combination has achieved synergy or sustained killing against PRAB (or A. baumannii with
polymyxin-resistant subpopulations) as well [115–117]. Despite the promising preliminary
investigations, a randomized, open-label clinical trial evaluated 210 patients that either
received colistin alone or colistin and rifampin for the treatment of XDR A. baumannii,
and no difference in 30-day mortality was observed between the two treatment groups
(p = 0.95) [91]. In addition, a retrospective analysis of patients that received colistin at the
Detroit Medical Center determined that concomitant rifampin increased the likeliness of
nephrotoxicity (OR 3.81, 95% CI 1.42–10.2) [118].

The combination of a polymyxin and either minocycline or sulbactam has also been
evaluated as a treatment option for PRAB. Against a polymyxin-resistant but minocycline-
susceptible A. baumannii isolate, the combination of polymyxin B and minocycline achieved
synergy in time-killing experiments [119]. The combination of polymyxin B and minocy-
cline also demonstrated in vitro synergy against a collection of 25 PDR A. baumannii
isolates [120]. Similarly, colistin with sulbactam was able to achieve synergy or additivity
against PRAB isolates in multiple in vitro studies [121,122]. Clinical studies are needed to
fully characterize the utility of a polymyxin with either minocycline or sulbactam for the
treatment of PRAB infections.

In addition to combining a polymyxin with an agent that is traditionally used for A.
baumannii infections, investigators have also evaluated the use of a polymyxin in com-
bination with a glycopeptide or lipopeptide to combat PRAB. Many in vitro or in vivo
studies have suggested that the addition of vancomycin (or teicoplanin) to a polymyxin
may achieve synergy against polymyxin-susceptible A. baumannii [93,96,123–126]; how-
ever, a retrospective study of 57 patients determined that the simultaneous use of colistin
and vancomycin increased the risk of acute kidney injury (55.2% versus 28%, p = 0.04)
without improving clinical outcomes in patients with CRAB infections [92]. Against PRAB
isolates, the combination of colistin and vancomycin achieved in vitro synergy in multiple
studies [97,127]. The combination of colistin and daptomycin was also evaluated against
A. baumannii, and although the combination was synergistic against CRAB in time-killing
experiments, the combination was only capable of achieving stasis against PRAB [128].
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Finally, triple combinations of various antimicrobials have been examined as a mea-
sure of last resort against PRAB. Among several in vitro and in vivo studies, proposed
combinations have included: colistin, vancomycin, and a carbapenem [97], colistin, van-
comycin, and rifampin [125], and polymyxin B, sulbactam, and minocycline (against CRAB
with a suboptimal response to polymyxins) [106]. In a case series of ten intensive care unit
patients with VAP caused by PDR A. baumannii, the use of ampicillin-sulbactam, tigecycline,
and colistin resulted in a favorable clinical outcome in 9/10 patients and microbiological
eradication in 7/10 patients [129]. The combination of ampicillin-sulbactam, a polymyxin,
and a carbapenem was capable of killing PRAB in dynamic in vitro models [99,100], and
the combination resulted in superior 30-day mortality for seven patients that were treated
for PRAB infections in comparison to 10 patients that received an alternative combination
(p = 0.03) [101]. The use of such triple combinations may eventually become unnecessary if
novel antibacterials with activity against PRAB (such as cefiderocol) are developed [64].

6. Staphylococcus aureus
6.1. Vancomycin-non-Susceptible S. aureus

The simultaneous use of vancomycin and ceftaroline has been investigated as a po-
tential combination to combat S. aureus with attenuated susceptibility to vancomycin.
Time-killing experiments conducted by Hutton et al. demonstrated that vancomycin
and ceftaroline achieved synergistic killing against multiple S. aureus isolates with a van-
comycin MIC of 2 mcg/mL [130]. A clinical case series by Gritsenko et al. concluded
that 4/5 cases of vancomycin-refractory methicillin-resistant S. aureus (MRSA) bacteremia
were successfully treated with the combination of vancomycin and ceftaroline [131]. In
addition, a retrospective study by Hornak et al. found that the use of vancomycin plus
ceftaroline provided a total microbiologic cure rate of 100% for diverse cases of refractory
MRSA bacteremia (Table 4) [132]. In contrast to the promising results observed in other
investigations, a retrospective clinical study by Ahmad et al. evaluated 30 patients that
received combination therapy with vancomycin (or daptomycin) and ceftaroline to clear a
persistent MRSA bacteremia [133]. Patients then completed their total duration of therapy
by receiving monotherapy with vancomycin (or daptomycin), or the patients completed
their course of antibacterials by continuing the initial combination regimen. Despite re-
ceiving two antimicrobials, patients in the combination arm of the study had similar rates
of bacteremia recurrence (p = 0.27), 30-day mortality (p = 0.14), and acute kidney injury
(p = 0.24).

Table 4. Summary of studies that investigated antibacterial combinations against S. aureus that included at least one drug
that was inactive individually. Studies are reported in the table if the combination was investigated using a dynamic in vitro
model, an in vivo model, or the investigation was completed in the clinic. Susceptibility studies, checkerboard analyses,
and static time-killing experiments are not reported in the table due to the preliminary nature of the experiments and the
extensive combinatorial permutations that are difficult to summarize succinctly.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not

Improve Bacterial Killing or
an In Vivo/Clinical Outcome

Inactive Drug Provided
Improvement in Bacterial Killing
or an In Vivo/Clinical Outcome

Vancomycin-non-
susceptible

S. aureus

(vancomycin) + ceftaroline Retrospective clinical [133] Retrospective clinical [131]
Retrospective clinical [132]

(vancomycin) + (nafcillin) In vitro dynamic model [134]

(vancomycin) + (cefazolin) In vitro dynamic model [135]

(vancomycin) + (beta-lactams) ¥ Retrospective clinical [136]
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Table 4. Cont.

Organism Combination (Inactive Drug) ˆ
Inactive Drug Did Not

Improve Bacterial Killing or
an In Vivo/Clinical Outcome

Inactive Drug Provided
Improvement in Bacterial Killing
or an In Vivo/Clinical Outcome

Daptomycin-non-
susceptible

S. aureus

(daptomycin) + ceftaroline Retrospective clinical [133]

Retrospective clinical [132] In vitro
dynamic model [137] In vitro

dynamic model and case report of
infective endocarditis [138]
Retrospective clinical * [139]

(daptomycin) + (oxacillin
or nafcillin)

In vitro dynamic model [140]
In vivo rabbit infective endocarditis

model [141] Retrospective
clinical [142]

(daptomycin) + (beta-lactams) Retrospective clinical ** [143]
ˆ Drugs were determined to be inactive if the pathogens’ MIC was above the CLSI breakpoint for susceptibility, if available, or if the drug
was unable to clear persistent infections. ¥ Most patients received piperacillin-tazobactam (68%). * Only a small percentage of patients
(15%) had daptomycin-non-susceptible isolates. ** Most patients (97.7%) had isolates with daptomycin MIC ≤ 1 mg/L. Most commonly
used beta-lactams in the combination group included cefepime and cefazolin.

Other investigations have evaluated the combination of vancomycin and a β-lactam
other than ceftaroline, but many of the studies have focused on MRSA and not necessarily
S. aureus with reduced vancomycin susceptibility. In dynamic time-killing experiments,
nafcillin or cefazolin in combination with vancomycin provided additional killing against
heteroresistant VISA and VISA strains over vancomycin alone [134,135]. A retrospective co-
hort study of 80 patients with MRSA bacteremia (median vancomycin MIC of 1–2 mcg/mL)
found that patients who received combination therapy of a β-lactam and vancomycin were
more likely to achieve microbiological eradication in comparison to patients who received
vancomycin alone (p = 0.021) [136]. Another open-label clinical trial investigated 60 adults
with MRSA bacteremia and found that patients who received combination treatment of
vancomycin and flucloxacillin experienced a non-significantly shorter duration of MRSA
bacteremia (p = 0.06) [144]. A separate open-label randomized clinical trial evaluated
352 patients with MRSA bacteremia and found that the use of vancomycin or daptomycin
in combination with a β-lactam resulted in comparable patient outcomes (absolute dif-
ference in composite outcomes for combination versus monotherapy was −4.2%; 95%
CI–14.3% to 6.0%) [145]. Furthermore, the trial was stopped early because more patients
experienced acute kidney injury in the combination arm (13/174) versus the monotherapy
group (1/178).

6.2. Daptomycin-Non-Susceptible S. aureus

Similar to the combination of vancomycin and ceftaroline, the simultaneous use
of daptomycin and ceftaroline has been investigated as a therapeutic option to combat
daptomycin-non-susceptible S. aureus. An in vitro study by Werth et al. observed that
exposing daptomycin-non-susceptible S. aureus to the combination of daptomycin and
ceftaroline resulted in enhanced bacterial cell depolarization (p = 0.03) and killing by
human cathelicidin LL37 (p < 0.01) in comparison to daptomycin alone [137]. Rose et al.
reported that the simultaneous use of daptomycin and ceftaroline was able to clear a MRSA
bacteremia that was caused by a daptomycin-non-susceptible S. aureus strain [138]. A
subsequent in vitro analysis by the same group demonstrated that exposure of the S. aureus
isolate to daptomycin alone resulted in regrowth and the amplification of daptomycin
resistance, whereas the addition of ceftaroline to daptomycin resulted in sustained killing
without regrowth or the emergence of resistance. Although there have been several
retrospective studies that support the use of daptomycin and ceftaroline for the treatment
of refractory or complicated MRSA bacteremia [139,146,147], there are a dearth of clinical
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investigations that specifically address the utility of the combination for treating infections
due to daptomycin-non-susceptible S. aureus.

Multiple studies have also investigated the utility of β-lactams other than ceftaro-
line in combination with daptomycin against S. aureus. Several in vitro investigations
have suggested that the addition of oxacillin to daptomycin may enhance the killing of
daptomycin-non-susceptible MRSA [141,142]. Another in vitro study found that the combi-
nation of nafcillin and daptomycin resulted in significantly improved antibacterial activity
against S. aureus in comparison to daptomycin alone (p = 0.002) [140]. Ceftobiprole has
also been investigated as a potential partner agent with daptomycin, and the combination
resulted in potent synergistic activity against MRSA isolates with varying antimicrobial
susceptibilities in vitro [148]. Similar to the combination of daptomycin and ceftaroline,
the clinical investigations that evaluated the addition of other β-lactams to daptomycin
therapy focused on MRSA bacteremia. Although a retrospective cohort study indicated
that combination therapy of daptomycin and a β-lactam may benefit patients with MRSA
bacteremia [143], a randomized clinical trial found that the addition of a β-lactam to
daptomycin or vancomycin therapy did not improve patient outcomes [145].

7. Conclusions

In summary, many in vitro and in vivo studies have investigated combinations of
antibacterials that utilize at least one agent that is not active against the target pathogen in-
dividually. Such combinations have also been investigated sporadically in clinical studies,
but definitive recommendations powered by large clinical trials are lacking. In addi-
tion, newer single agent options such as ceftolozane-tazobactam, ceftazidime-avibactam,
meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol are likely pre-
ferred for certain drug-resistant pathogens. In cases of emerging drug resistance against
newer antibacterials, or in situations in which newer agents are not appropriate, spe-
cific combination therapies may have utility despite resistance against one or more of
the selection antimicrobials. Polymyxins in combination with agents such as rifampin
have shown some promise in vitro against P. aeruginosa, but clinical studies are lacking.
Combinations that utilize carbapenems and polymyxins may have a role in the treatment
of difficult-to-treat K. pneumoniae, whereas dual and triple combinations of polymyxins,
carbapenems, minocycline, sulbactam, and rifampin are potential options for drug-resistant
A. baumannii. In situations of vancomycin or daptomycin-resistant MRSA without single
agent alternatives, pairing one of the aforementioned drugs with ceftaroline or another
synergistic beta-lactam may be an option for salvage therapy. Additional clinical studies
are needed to fully define the preferred therapy for difficult-to-treat pathogens that cannot
be optimally treated with a single agent.
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