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Abstract

Motivation: Annotation of enzyme function has a broad range of applications, such as metagenom-

ics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the

time and resource required make it prohibitively expensive to experimentally determine the func-

tion of every enzyme. Therefore, computational enzyme function prediction has become increas-

ingly important. In this paper, we develop such an approach, determining the enzyme function by

predicting the Enzyme Commission number.

Results: We propose an end-to-end feature selection and classification model training approach, as

well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field

of enzyme function prediction. Instead of extracting manually crafted features from enzyme se-

quences, our model takes the raw sequence encoding as inputs, extracting convolutional and se-

quential features from the raw encoding based on the classification result to directly improve the

prediction performance. The thorough cross-fold validation experiments conducted on two large-

scale datasets show that DEEPre improves the prediction performance over the previous state-of-

the-art methods. In addition, our server outperforms five other servers in determining the main

class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre’s

ability to capture the functional difference of enzyme isoforms.

Availability and implementation: The server could be accessed freely at http://www.cbrc.kaust.

edu.sa/DEEPre.

Contact: xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Enzymes, an essential kind of proteins in the human body, catalyz-

ing reactions in vivo, play a vital role in regulating biological

processes. Annotation of enzyme function has a broad range of ap-

plications, such as metagenomics, industrial biotechnology, and

diagnosis of enzyme deficiency-caused diseases. The dysfunction

of certain enzymes would cause serious metabolic diseases. For

example, the deficiency of alpha-galactosidase, which hydrolyses the

terminal alpha-galactosyl moieties from glycolipids and glycopro-

teins, would cause the Fabry disease, resulting in full body pain, kid-

ney insufficiency, and cardiac complications (Hoffmann et al.,

2007). The deficiency of DNA repair enzymes, which recognize and

correct the physical damage in DNA, can cause the accumulation of

mutations, which may further lead to various cancers (Wood et al.,
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2001). To investigate the causation of such diseases, an indispens-

able step of finding a way to cure them, it is crucial to understand

the function of the related enzymes first. The most straightforward

and accurate way of doing such investigation is through experimen-

tal techniques, such as enzymatic assays (Goddard and Reymond,

2004). However, conducting experiments requires significant

amount of time and expert efforts, which may not cope with the

rapid increase in the number of new enzymes. In this context, com-

putational methods emerged to assist biologists in determining en-

zyme function and guiding the direction of setting up the validating

experiments.

According to SWISS-PROT (Bairoch and Apweiler, 2000)

(released on September 7, 2016), among the 539 566 manually

annotated proteins, 258 733 proteins are enzymes. Such a large

number of enzymes are usually classified using the Enzyme

Commission (EC) system (Cornish-Bowden, 2014), the most well-

known numerical enzyme classification scheme, which specifies the

function of an enzyme by four digits. This classification system has a

tree structure. After the root of the tree, there are two main nodes,

standing for enzyme and non-enzyme proteins, respectively. The en-

zyme main node extends out six successor nodes, corresponding to

the six main enzyme classes: (i) oxidoreductases, (ii) transferases,

(iii) hydrolases, (iv) lyases, (v) isomerases and (vi) ligases, repre-

sented by the first digit. Each main class node further extends out

several subclass nodes, specifying the enzyme’s subclasses, repre-

sented by the second digit. With the same logic, the third digit indi-

cates the enzyme’s sub-subclasses and the fourth digit denotes the

sub-sub-subclasses. Take Type II restriction enzyme, which is anno-

tated as EC 3.1.21.4, as an example, the ‘3’ denotes that it is an

hydrolase; the ‘1’ indicates that it acts on ester bonds; the ‘21’ shows

that it is an endodeoxyribonuclease producing 5-phosphomonoest-

ers; and the ‘4’ suggests that it is a Type II site-specific deoxyribo-

nuclease. By predicting the EC numbers precisely, computational

methods can annotate the function of enzymes. It should also be

noted that a substantial number of enzymes annotated with some re-

actions in databases such as UniProt or Brenda do not have EC num-

bers associated, which is out of the scope of this study.

A number of computational methods have already been pro-

posed to determine the enzyme function by predicting enzyme EC

numbers. There have been three main research directions of this

problem since (des Jardins et al., 1997), who used machine learning

methodologies and sequence information to investigate the problem

for the first time. Firstly, because it is commonly believed that struc-

tures determine function, some researches, such as (Dobson and

Doig, 2005; Nagao et al., 2014; Roy et al., 2012; Yang et al., 2015;

Zhang et al., 2017), focused on predicting the enzyme function by

predicting the structure of the enzyme first. After obtaining the

structure, they scanned the database or the library, whose entries’

EC numbers have already been determined and validated by experi-

ments, and assigned the EC number of the template with the most

similar structure to the query. However, structure prediction is still

relatively immature and time-consuming. Besides, since both the

structure prediction step and the EC number prediction step would

cause errors, the accumulated error would have a negative effect on

the final prediction result. Second, the common assumption that en-

zymes with high sequence similarity tend to have similar functional-

ity leads to a number of studies utilizing sequence similarity

(Arakaki et al., 2009; Kumar and Skolnick, 2012; Quester and

Schomburg, 2011; Tian et al., 2004; Yu et al., 2009). Although this

category of methods is widely used in practice, they are unable to

make a prediction when encountering a sequence without significant

homologies in the current databases. Thirdly, extracting features

from the sequence and classifying the enzyme using machine learn-

ing algorithms is the most extensively studied direction (Cai et al.,

2003, 2004, 2005; Cai and Chou, 2005; Chou, 2005; Chou and

Elrod, 2003; De Ferrari et al., 2012; Huang et al., 2007; Kumar and

Choudhary, 2012; Lee et al., 2008; Li et al., 2016; Lu et al., 2007;

Nasibov and Kandemir-Cavas, 2009; Qiu et al., 2009, 2010; Sharif

et al., 2015; Shen and Chou, 2007; Volpato et al., 2013; Wang

et al., 2010, 2011; Zhou et al., 2007; Zou and Xiao, 2016).

Although this direction has already been studied for over 15 years

with a number of softwares and servers available, few of them com-

bine the procedure of feature extraction and classification optimiza-

tion together. Instead, previous studies rely heavily on manually

crafted features, and consider feature extraction and classification as

two separate problems. In spite of the success of such methods, with

the rapid expansion of the known enzyme sequences, such manually

designed features are very likely to be a suboptimal feature represen-

tation which may be unsustainable in the omic era.

In addition to those difficulties, another issue in the protein

general function prediction field is the feature dimensionality non-

uniformity problem, which usually lies in the sequence-length-

dependent features, such as PSSM (position-specific scoring matrix).

For example, in this paper, the dimensionality of PSSM can range

from 50 by 20 to 5000 by 20, according to the corresponding se-

quence length. The feature uniformity requirement of mainstream

classifiers has pushed out three strategies to this problem. First,

avoiding using the sequence-length-dependent features is the most

straightforward solution to the problem. Although this approach

can work under some certain circumstances, it eliminates the possi-

bility of taking advantage of some powerful representation, such as

PSSM, which can provide evolutional information. The second solu-

tion is to manually derive sequence-length-independent features

from the sequence-length-dependent features (Chen et al., 2013,

2014, 2016). Pse-AAC (pseudo amino acid composition) and Pse-

PSSM are typical examples of this category, which have been proved

successful in a number of applications (Chou, 2009, 2011). The

third solution is to systematically generate sequence-length-

independent features, such as string kernels (Dai et al., 2017, Leslie

et al., 2002, 2004; Rätsch et al., 2005; Wang et al., 2014), which,

however, do not consider the classification problem when extracting

features. Despite the previous success of these three strategies, they

still heavily depend on either manually designed or pre-defined fea-

tures, which are most likely to be suboptimal. To take full advantage

of the bursting of data in recent years, a more robust, automatic

framework to extract problem-specific sequence-length-independent

features from the sequence-length-dependent ones for dealing with

the dimensionality problem is desired.

To conquer the aforementioned limitations, which are homology

requirement, feature design and feature dimensionality nonuniform-

ity, here we propose a novel level-by-level prediction approach

based on deep learning, by only utilizing the sequence information.

The enzyme sequence is represented by two kinds of raw encoding,

sequence-length-dependent encoding, such as raw sequence one-hot

encoding and PSSM, and sequence-length-independent encoding,

such as functional domain (FunD) encoding. Those two kinds of

raw representations are combined into a deep learning model with a

novel architecture to perform dimensionality uniformization, feature

selection and classification model training simultaneously. This

paper makes the following contributions: (i) We propose a frame-

work for hierarchical EC number prediction, the idea of which can

also be applied to hierarchical classification of protein general func-

tion. (ii) To solve the feature dimensionality nonuniformity prob-

lem, we propose a robust, automatic framework based on deep
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learning to extract problem-specific sequence-length-independent

features from the sequence-length-dependent ones. (iii) We propose

a sequence-based enzyme EC number predictor, DEEPre, which is

based on the above two frameworks. (iv) Two case studies demon-

strate our tool’s ability of performing functionality prediction of dif-

ferent enzyme isoforms caused by alternative splicing. (v) We

investigate the importance of local information in determining the

functionality of an enzyme.

2 Related work

In this section, we introduce four representative methods for enzyme

function prediction, followed by a brief overview of deep learning

and hierarchical classification.

2.1 EzyPred
EzyPred (Shen and Chou, 2007) is a three-level EC number pre-

dictor, which predicts whether an input protein sequence is an en-

zyme, and its main class and subclass if it is. It uses two features,

pseudo PSSM (Pse-PSSM) and FunD encoding. Pse-PSSM is de-

veloped from the pseudo amino acid, a highly innovative manually

designed feature which has already been proved successful in a

number of problems (Chou, 2009; Hayat and Khan, 2012). It en-

codes the PSSM of proteins with different lengths using a uniform

length matrix, which not only preserves the average score of the

amino acid residues in the whole sequence that were changed to a

certain type of amino acid during the evolution process but

also avoids the complete loss of the sequence order information.

FunD encoding captures the local FunD information, which

could be referred to Section 3.2.5. With these two features,

EzyPred uses optimized evidence-theoretic k-nearest neighbor

(OET-KNN) as the classifier, which is an improved version of

KNN. By considering not only the label of the KNN of the input

query data point but also the distance of the neighbors to the

query data as the supporting evidence, OET-KNN alleviates the

problem of the original version of KNN for being too sensitive to

noise. Although having been developed for 10 years, EzyPred

still remains as one of the state-of-the-art methods in predicting

enzyme function. Its server is easy-to-use with a user-friendly

interface as well.

2.2 SVM-prot
SVM-Prot was proposed in 2004 (Cai et al., 2003, 2004) and

updated in 2016 (Li et al., 2016). It can not only predict enzyme

functional families but also non-enzyme functional families. It repre-

sents the protein sequence using 13 properties, including AAC, po-

larity, hydrophobicity, surface tension, charge, normalized Van der

Waals volume, polarizability, secondary structure, solvent ac-

cessibility, molecular weight, solubility, number of hydrogen bond

donors in side chain and number of hydrogen bond acceptors in side

chain. Employing composition, translation and distribution to en-

code each of the above properties, SVM-Prot can make prediction ir-

respective of sequence similarity. Specifically, composition specifies

the fraction of amino acids with a particular property; translation

specifies the transition percentage of one amino acid with particular

property to another amino acid with different properties; distri-

bution specifies the distribution of amino acids with certain prop-

erty within the first 25, 50, 75, and 100% of the sequence. The

original version used support vector machines (SVM) as the

classifier, while the 2016 update made two more classifiers, KNN

and probabilistic neural networks, available.

2.3 COFACTOR
COFACTOR (Roy et al., 2012; Zhang et al., 2017) is a structure-

based protein function annotation web-server. In terms of EC num-

ber prediction, for an input structural model, which can be obtained

either by experiments or computational modeling, it threads the

structure against the template library, whose entries’ annotation has

already been validated by experiments, to identify the template en-

zyme with the most similar folds and functional sites. Obtaining the

template and assuming that structures determine function, the server

assigns the EC number of the template enzyme to the query, with

the confidence being evaluated by a function considering both the

global similarity and the local similarity. In addition to enzyme

function prediction, the server can predict the Gene Ontology (GO)

terms and protein-ligand binding interactions as well. COFACTOR

has been proved successful in protein–ligand binding interaction

prediction in the CASP9 competition (Moult et al., 2011).

2.4 EFICAz
EFICAz (Arakaki et al., 2009; Kumar and Skolnick, 2012; Tian

et al., 2004) is an EC number prediction server using combined

approaches. In addition to using the sequence similarity, it also in-

corporates the PROSITE and PFAM database information. The ori-

ginal version consists of four components: (i) pairwise sequence

comparison-based enzyme function inference, (ii) conservation con-

trolled hidden Markov model (HMM) iterative procedure for en-

zyme family classification-based functionally discriminating residue

identification, (iii) multiple PFAM-based functionally discriminating

residue recognition and (iv) multiple PROSITE pattern recognition.

Those four components work independently, determining the final

prediction by voting. In the later updates in 2009 and 2012, two

more components, multiple PFAM family-based SVM evaluation

and conservation controlled HMM iterative procedure for enzyme

family classification-based SVM evaluation, and larger databases

were added. Although it is unable to make EC number annotation if

the query sequence has no homology, this server works pretty well

in practice with completely four digits assigned.

2.5 Deep learning and hierarchical classification
Since (Krizhevsky et al., 2012), deep learning has become an ex-

tremely popular machine learning method. Its two main architec-

tures, convolutional neural network (CNN) and recurrent neural

network (RNN), have made a profound contribution to many bio-

informatic problems, such as genetic analysis (Xiong et al., 2015),

sequence binding specificity prediction (Alipanahi et al., 2015), and

cryo-EM image processing (Wang et al., 2016a). Instead of being a

pure classifier that depends on the manually designed features such

as SVM, CNN is considered as an end-to-end wrapper classifier,

being able to perform feature extraction based on the classification

result and improve the performance in a virtuous circle. As a com-

plement to CNN’s capability of capturing significant features from a

2D or 3D matrix, RNN has the potential of encoding long term

interactions within the input sequence, which is usually a 1D vector,

such as the encoding of English words. In our article, we combined

the advantages of CNN and RNN, using CNN to conduct feature

extraction and dimensionality compression starting from the raw

2D encoding matrices, and using RNN to extract the sequential,

long-term interactions within the input sequence.

A classification problem with a tree structure in the label space,

such as the enzyme function prediction problem discussed in this art-

icle, is often regarded as a hierarchical classification problem.

Because this kind of problems can be regarded as multi-label
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classification and multi-class classification at the same time, the so-

lutions to the problem can be classified into three categories based

on different angles to the problem (Silla and Freitas, 2011), namely,

flat classification approach, local classifier approach, and global

classifier approach. According to the property of our problem, we

chose the local classifier approach, which constructs one classifier

for each internal node, to be the overall strategy.

3 Materials and methods

3.1 Datasets
We adopt three datasets in this paper. The first dataset is a widely

used one from (Shen and Chou, 2007), constructed from the

ENZYME database (released on May 1, 2007), with 40% sequence

similarity cutoff. More details of that dataset could be referred to

(Shen and Chou, 2007). This dataset is denoted as the KNN dataset

in the rest of the paper.

Following the same procedure of constructing the KNN dataset,

we constructed a larger dataset using up-to-date databases. The

steps of constructing the dataset are as follows:

i. The SWISS-PROT (released on September 7, 2016) database

was separated into enzymes and non-enzymes based on the

annotation.

ii. To guarantee the uniqueness and correctness, enzyme sequences

with more than one set of EC numbers or incomplete EC num-

ber annotation were excluded.

iii. To avoid fragment data, enzyme sequences annotated with

‘fragment’ or with <50 amino acids were excluded. Enzyme se-

quences with more than 5000 amino acids were also excluded.

iv. To remove redundancy bias, we used CD-HIT (Fu et al., 2012)

with 40% similarity threshold to sift upon the raw dataset, re-

sulting in 22 168 low-homology enzyme sequences.

v. To construct the non-enzyme part, 22 168 non-enzyme protein

sequences were randomly collected from the SWISS-PROT

(released on September 7, 2016) non-enzyme part, which were

also subject to the (ii–iv) steps.

This larger dataset would be referred to as the NEW dataset in the

rest of this article.

Other than KNN and NEW, which will be used as the bench-

mark to evaluate the proposed method based on cross-fold valid-

ation, it is also important to test the generalization power of the

proposed method. This can be done by training the model on one

dataset, and testing it on an independent and non-overlapping data-

set, to avoid being overfitted on a particular dataset. Thus, the third

dataset, the benchmark dataset from (Roy et al., 2012), is used for

cross-dataset validation. This non-homologous dataset was collected

from PDB, satisfying two requirements: (i) the pair-wise sequence

similarity within the dataset is below 30%, and (ii) there is no self-

BLAST hit within the dataset to ensure that there are no enzymes

that are homologous to each other in this set (Roy et al., 2012). All

enzymes in this dataset have experimentally determined 3D struc-

tures. To avoid overlaps between the training and testing datasets,

sequences contained in both our training dataset and this dataset

were removed, which reduced the size of the dataset from 318 to

284. This benchmark dataset would be referred to as the

COFACTOR dataset in the following. Table 1 summarizes the three

datasets.

3.2 Sequence representation
The deep learning framework explained in Section 3.3 eliminates

the necessity of performing manual dimensionality uniformization

and building complex, manually designed features, which are un-

likely to sustain the increasing amount and complexity of data, by

conducting feature reconstruction and classifier training simultan-

eously. Therefore, we use the following raw features, constructed

from the input sequence directly, to represent the sequences.

Based on their dimensionality, they can be classified into two cate-

gories, sequence-length-dependent features and sequence-length-

independent features. The first four features described below belong

to the former while the last one belongs to the latter.

3.2.1 Sequence one-hot encoding

To preserve the original sequence information, we use one-hot

encoding as the first raw representation of the input sequence. This

encoding uses one 1 and nineteen 0 s to represent each amino acid.

For example, A is encoded as 1 01 . . . 019ð Þ, while C is encoded as

01 1 02 . . . 019ð Þ. For each input protein sequence, the one-hot

encoding would produce an L by 20 matrix, where L represents the

sequence length, with each row representing a specific spot and each

column representing the appearance of a certain amino acid. For

those sequences with undetermined amino acid at a particular spot,

a vector with 20 0s is used to represent that special position.

3.2.2 Position specific scoring matrix

To provide the evolutional information to the training model, we de-

ploy PSSM as the second sequence representation, which was ob-

tained through PSI-BLAST (Altschul et al., 1997) from BLASTþ
(Camacho et al., 2009) with three iterations, E-value being 0.002,

against SWISS-PROT (released on May 11, 2016).

3.2.3 Solvent accessibility

Solvent accessibility describes the openness of a local region.

Because such information is unavailable directly from the database,

we use DeepCNF (Wang et al., 2016b) to predict it. Taking the pro-

tein sequence as the input, DeepCNF outputs the possibilities of

each amino acid of the sequence being in the state of buried, medium

or exposed, respectively. The three states are defined by two solvent

accessibility thresholds. Buried is defined as less than 10%; exposed

is defined as >40%; and medium is defined within the range of 10

and 40%. This encoding produces an L by 3 matrix. More details

could be referred to (Wang et al., 2016b).

3.2.4 Secondary structure one-hot encoding

An amino acid could be in one of the three main secondary structure

states, alpha-helix, beta-sheet and random coil, which indicate the

protein’s local folding information. Similar to solvent accessibility,

we take advantage of DeepCNF (Wang et al., 2016b) to predict the

secondary structure of a given sequence, whose result is an L by 3

matrix, each row of which shows the possibility of the amino acid

folding into alpha-helix, beta-sheet or random coil, respectively. The

details could be referred to (Wang et al., 2016 b).

Table 1. Dataset summary

Dataset KNN dataset NEW dataset COFACTOR dataset

Source Shen and

Chou (2007)

Self-constructed Roy et al. (2012)

Enzymes 9832 22 168 284

Non-enzymes 9850 22 168 —

Note: The KNN dataset and NEW dataset are used for cross-fold valid-

ation. The COFACTOR dataset is used for cross-dataset validation.
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3.2.5 Functional domain

Usually, a protein sequence contains one or several FunDs, which

provide distinct functional and evolutional information. Pfam (Finn

et al., 2016) is a collection of such FunDs, each represented by an

HMM. Searching against the database and encoding in the follow-

ing way generates the FunD encoding used in our model.

i. Pfam has its default searching engine as HMMER (Eddy, 2011).

For each protein sequence, we use HMMER, with the inclusion

E-value threshold as 0.01, to search against Pfam (Pfam 30.0

Released on July 1, 2016), which contains 16 306 entries.

ii. We employ a 16 306D vector to encode the searching result. If

the ith entry in the database is reported as hit, 1 appears on the

corresponding position of the vector, otherwise it is 0.

As a result, the FunD encoding of a protein sequence would be:

FFuncD ¼ I1 I2 . . . Ii . . . I16 306½ � (1)

where

Ii ¼
1; the ith entry in Pfam reported as hit;

0; otherwise:

(
(2)

3.3 Classification model
The enzyme function prediction problem has a tree-structured label

space, which makes it a typical hierarchical classification problem.

To solve this kind of problems, we propose a level-by-level predic-

tion framework, building a model for each internal label node. The

model contains two main components, namely, the problem-specific

feature extractor, which is able to perform dimensionality uniform-

ity and feature extraction, and the classifier. Such a novel, end-to-

end model can perform feature selection and classifier training sim-

ultaneously in a virtuous circle, making it more likely to achieve

high performance.

3.3.1 Level-by-level strategy

As have been discussed in the hierarchical classification part, be-

cause of the relative small size (22 168 data points are assigned to

58 classes until the second digit) and, even worse, the extreme im-

balance property (e.g. the NEW dataset contains 22 168 sequences

belonging to non-enzyme while only 10 sequences belonging to sub-

class 1.20) of the data, we choose the local classifier approach for

this problem. Particularly, the level-by-level prediction strategy is

used. That is, given a sequence, the trained model would firstly pre-

dict whether it is an enzyme or not. If it is an enzyme, the model will

further predict the first digit, which indicates its main class.

Knowing the main class, our algorithm will choose the trained

model for that specific main class and further predict the second

digit, that is, the subclass. Corresponding to the label hierarchy, we

build one model for determining whether the input is an enzyme,

one model to determine the first digit, six models to determine the

second digit. This prediction strategy could be referred to Figure 1A.

3.3.2 Deep neural network model

For each level of prediction, we build the end-to-end model based

on several deep neural network components. In terms of the

sequence-length-dependent features, such as PSSM, we build a fea-

ture extractor exploiting the CNN component to extract convolu-

tional features from the input map and, after that, a RNN

component, comprised of long short-term memory (LSTM) cells, to

extract sequential features from the output of the previous compo-

nent. As for the sequence-length-independent feature, i.e. the FunD

encoding, which is a vector, we use a fully connected component to

perform dimensionality reduction and feature extraction. We em-

ploy a fully connected component to combine those different pieces

of information together, followed by a softmax layer for classifica-

tion. The structure of the model could be referred to Figure 1B.

More details of the model structure could be referred to

Supplementary Section S1. It should be noted that the model we

evaluate throughout the paper except for Section 4.4 uses only three

input features, sequence one-hot encoding, PSSM and FunD encod-

ing. We encode local features, i.e. secondary structure and solvent

accessibility, only in Section 4.4 to evaluate the importance of local

information. During training, the training error is back-propagated

to each component. The error would guide the CNN component

and RNN component to perform an end-to-end feature selection,

weighing more on the features which would improve the final per-

formance while weighing less on unimportant features automatic-

ally. At the same time, the weights of other components would be

adjusted simultaneously to adopt the change. Such coupling effect of

feature extraction and classifier training optimizes the performance

dramatically.

The high complexity and flexibility of the proposed model bring

high risks of overfitting. We adopt several methods to alleviate the

problem. The first method is weight decay, which is a well-known

method to handle the overfitting issue. The deep neural network

model is likely to reproduce the detail of noise, which is usually non-

smooth, by the usage of extreme weights. Modifying the objective

function by adding an L-2 norm term of weights, we can reduce the

probability of ending up with extreme weights and thus mitigate the

overfitting issue. The second method is dropout (Srivastava et al.,

2014). The key idea of this technique is to randomly drop nodes dur-

ing training so as to prevent them from co-adapting too much and

reduce the model complexity while preserving its power. The third

method is batch normalization (Ioffe and Szegedy, 2015). This ap-

proach extends the idea of normalization, which is usually done

Fig. 1. (A) Strategy for predicting detailed function. Following the structure of

the EC number system, we use this level-by-level classification approach. (B)

Overview of the model. We use the CNN component to extract convolutional

features and the RNN component to extract sequential features from each se-

quence-length-dependent raw feature encoding, followed by a fully con-

nected component, which concatenates all extracted features together,

serving as the classifier. Here we show the procedure of predicting the main

class digit of three enzymes with different sequence lengths
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during data pre-processing. In fact, because of the weight and par-

ameter adjustment, the input of the internal layers of the model is

possible to be too large or too small, known as ‘internal covariate

shift’, which makes the preprocessing normalization meaningless.

To conquer the issue, in addition to normalizing the data before

inputting them in the model, we also normalize the input of each in-

ternal layer. In addition to the advantage of mitigating the overfit-

ting problem, this manipulation would also reduce the strong

dependency of knowledge-intensive initialization when training the

model and allow a larger learning rate when tuning the model.

We choose adaptive moment estimation (Adam) as the optimizer

(Kingma and Ba, 2014), which is an improved version of stochastic

gradient descent, to minimize the weighted cross entropy loss. In

this way, our method could handle the class imbalance issue by re-

scaling predictions of each class by its weight. Instead of setting the

learning rate as a hyper-parameter manually as in stochastic gradi-

ent descent and momentum, this method computes the adaptive

learning rate of each individual parameter by estimating the first

and second movement of the gradients at the cost of computational

time and memory. Essentially, this optimizer combines the advan-

tage of RMSprop (Tieleman and Hinton, 2012), which computes

the adaptive learning rate during each step, and momentum, which

reduces the oscillation problem of stochastic gradient descent by

making the weight update considering both the gradient and the up-

date of the previous step.

When training the second-digit prediction models, we adopt an

idea that is similar to transfer learning. Since the limited number of

data is further divided into six parts corresponding to the six main

classes, the amount of data belonging to each main class is insuffi-

cient to produce a model with the ability to extract features and

being generalized well. To solve this problem, we pre-train the CNN

component and the RNN component by using all the training data.

Then for training each second-digit prediction model, we fix the par-

ameters of those components and only fine tune those fully con-

nected components using the specific subset of the training data.

In practice, we use TensorFlow (Abadi, 2016) as the framework

to construct the deep neural network. With two Pascal Titan X

cards, it takes around 4 h to obtain a well-trained model. In

Supplementary Section S2, we provide details on setting the model

parameters.

4 Results and discussion

4.1 Evaluation criteria
For the enzyme or non-enzyme prediction, since it is a binary classi-

fication problem, we use accuracy, Cohne’s Kappa Score (Viera and

Garrett, 2005), precision, recall and F1 score to evaluate the classi-

fiers’ performance. For other predictions, since they are multi-class

classification problems, we use accuracy, Cohen’s Kappa Score,

Macro-precision, Macro-recall and Macro-F1 score to evaluate the

classifiers’ performance, whose definitions are in Supplementary

Section S3.

4.2 Compared methods
For the cross-fold validation, in which training and testing are based

on different parts within the same dataset, we compare our method

with five other methods, including two state-of-the-art methods,

EzyPred (Shen and Chou, 2007) and SVM-Prot (Li et al., 2016), and

three baseline methods. One of the baseline methods uses SVM with

the raw features used in our model; another baseline method uses

SVM with Pse-PSSM; and the last baseline method uses the

traditional neural network with our raw features. Due to the un-

changeable database of EFICAz (Kumar and Skolnick, 2012) and

COFACTOR (Zhang et al., 2017), we do not include them in the

cross-fold validation comparison. However, we perform cross-

dataset validation, where the training and testing are performed on

different datasets, to compare our method with EzyPred, SVM-Prot,

COFACTOR and EFICAz.

4.3 Cross-fold validation
Here we report the 5-fold cross validation results, which are shown

in Figure 2. Our method almost always outperforms the other meth-

ods in both the KNN dataset and the NEW dataset across the five

criteria and across the three hierarchical levels of prediction. As for

the NEW dataset, DEEPre outperforms the other five methods con-

sistently in Levels 0 and 1 prediction across the five criteria. As for

the Level 2 prediction, the only criterion that DEEPre does not im-

prove over the existing methods is the Macro-Precision, which is an

unweighted average of precision of each label. The appearance of

very small classes (e.g. subclass 1.20 only has 10 enzymes) in the se-

cond level prediction might be the reason for this result. In terms of

the KNN dataset, although the smaller dataset makes the improve-

ment of DEEPre over the other methods in Level 0 prediction less

significant, it still significantly outperforms the other methods in

Levels 1 and 2 classification.

4.4 Feature importance analysis
It is believed that both global features and local features determine

the function of a protein. For detailed function, local information

would weigh even more in determining it. The features extracted by

the convolutional component and the recurrent component from

PSSM and sequence raw encoding could be considered as global fea-

tures while the FunD encoding would be considered as a local fea-

ture. We remove the three input raw encoding one by one and show

the comparison of their performance on the NEW dataset. The com-

parison is shown in Figure 3A. It is clear that as the level goes

deeper, the importance of FunD is evidently increasing, which

Fig. 2. Cross-fold validation results. (A) Performance comparison of Level 0

prediction (predicting whether the input is an enzyme or not) on the KNN

dataset. (B) Performance comparison of Level 1 prediction (predicting the in-

put enzyme’s main class) on the KNN dataset. (C) Performance comparison

of Level 2 prediction (predicting the input enzyme’s subclass given the main

class) on the KNN dataset. (D) Performance comparison of Level 0 prediction

on the NEW dataset. (E) Performance comparison of Level 1 prediction on the

NEW dataset. (F) Performance comparison of Level 2 prediction on the NEW

dataset
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demonstrates the well-recognized hypothesis. To further prove it,

we design another experiment, in which we input more local feature

encodings, including secondary structure and solvent accessibility,

into our model. Details of this experiment could be referred to

Supplementary Section S4. Figure 3B shows the performance com-

parison of this model and the previous model in Level 2 prediction.

It is clear that the additional local features further improve the per-

formance of our model, with accuracy improved by 1.8% while

Macro-precision, Macro-recall and Macro-F1 score improved by at

least 11%.

4.5 Cross-dataset validation
In this experiment, we directly compare the performance of different

servers in predicting the first digit and the second digit of an enzyme.

We use the COFACTOR benchmark dataset, which is proved to be

a difficult dataset in the enzyme function prediction field (Roy et al.,

2012), as the test dataset. First, we eliminate the sequences in the

COFACTOR benchmark data which overlap with the DEEPre’s

training database (NEW) by 40% sequence similarity filtering,

reducing the data size from 318 to 284, to ensure that there is no

bias in the DEEPre’s results. Then we input the remaining sequences

to each server manually and collect the prediction results. For

COFACTOR, since it is quite time-consuming to run the server,

about 4 h to obtain the result for one query, we report the results

from the original paper. As shown in Figure 4, for the first-digit pre-

diction, DEEPre outperforms the other servers consistently across

the five criteria, improving the accuracy by at least 6% over the

other servers, including COFACTOR. This is significant because

COFACTOR requires 3D structures of enzymes whereas DEEPre

only requires the sequence information. On the other hand, we

should admit that we have changed the original COFACTOR data-

set to some extent by reducing the overlap between the training and

testing sets, which might explain some of the performance difference

between COFACTOR and DEEPre. We should also notice that all

of those five servers have different training datasets, but those train-

ing datasets highly overlap with each other and each method was

optimized on its corresponding dataset. In addition, although we

removed overlapping enzymes from our training set and the

COFACTOR test set, there may still be homologs of the enzymes in

COFACTOR in our training set. However, DEEPre is a sequence-

based statistical method, which explores the statistical properties of

training data and does not benefit from knowing enzyme structures.

Therefore, although the performance of DEEPre on COFACTOR

may still be biased, the influence is not as much as that by nearest

neighbor-based methods. We also perform comparison of different

servers’ performance on the second-digit prediction (Supplementary

Section S5). The results show that DEEPre and EFICAz both per-

form well on the second-digit prediction on the COFACTOR data-

set. It is worth noting that EC numbers have regular corrections,

such as deletions and transfers. We check all the corrections that are

related to the test enzymes in the COFACTOR dataset and find that

none of them influences the comparison reported here.

4.6 Third-digit and fourth-digit prediction
Using the same framework described above, we are also able to pre-

dict the enzyme’s third digit, which represents its sub-subclass, on

the NEW dataset. The accuracy across all the sub-subclasses is

0.9415; the Kappa score is 0.8918; the macro-precision is 0.8942;

the macro-recall is 0.8578; and the macro-F1 score is 0.8665.

Regarding the fourth-digit prediction, more data are needed to per-

form normal machine learning training-and-testing procedure. For

example, within the sub-subclass 1.1.1 in the NEW dataset, there

are 188 classes. Each of those classes has <40 enzyme sequences,

with 175 classes having <10 enzyme sequences. Using the current

dataset with such distribution would lead to unreliable results.

4.7 Case study
Glutaminase is a phosphate-activated enzyme, which catalyzes the

first step of glutaminolysis, hydrolysing glutamine into glutamate

(Curthoys and Watford, 1995). The alternative splicing of its mess-

ager RNA results in its three isoforms, with Isoforms 1 and 3 being

capable of catalyzing while Isoform 2 lacking the catalytic activity

(Li et al., 2017). To validate our model’s ability to distinguish the

different functionality of different isoforms, we obtained the se-

quences of the three Glutaminase isoforms from the UniProt and put

them into our model. Our model predicted that Isoforms 1 and 3 of

Glutaminase were hydrolases acting on carbon-nitrogen bonds,

being consistent with the experimental results. Our model also rec-

ognized Isoform 2 as non-enzyme, which is consistent with the ex-

perimental result as well.

Aurora kinases B is a key enzyme regulating chromosomal segre-

gation during mitosis, ensuring correct chromosome alignment and

segregation as well as chromatin-induced microtubule stabilization

and spindle assembly (Carmena et al., 2009). Over-expression of it

is possible to cause unequal distribution of genetic information, re-

sulting in aneuploid cells, which may become cancerous (Sorrentino

et al., 2005). Aurora kinases B has five isoforms resulted from alter-

native splicing. Four of them have roughly equal length with high

similarity, while Isoform 3, having high expression in the metastatic

Fig. 3. (A) Feature contribution investigation considering sequence one-hot

encoding (sequence), PSSM and FunD. (B) The performance change of the

model before and after we input more local feature encoding. Macro-preci-

sion, Macro-recall and Macro-F1 score are improved by at least 11% by input-

ting solvent accessibility and secondary structure information

Fig. 4. The performance comparison of different servers on predicting the

main class of the COFACTOR dataset. DEEPre improves the prediction accur-

acy over the other servers by at least 6%
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liver with no expression in the normal liver, is only half of the length

of the” canonical” isoform (142 amino acids versus 344 amino

acids). Despite its much shorter length, the isoform does not lose its

functionality. To further validate our model’s ability of handling iso-

forms’ functionality prediction, we collected the sequence of the five

isoforms from the database and put them into our model. Our mod-

el’s result is consistent with the experimental results. Particularly,

our model predicted the functionality of the Isoform 3 successfully,

despite its sequence’s large difference from the ‘canonical’ sequence.

The detailed performance comparison of different servers on

these two case studies could be referred to Supplementary Section

S6. Among the five compared methods, only our method and

EzyPred produced correct predictions for both cases.

5 Conclusion

In this article, we proposed a novel end-to-end feature extraction

and classifier training method for enzyme function prediction. The

method proposed in this paper would force the model to learn to ex-

tract features by itself and adapt the parameters of the classifier sim-

ultaneously so that it can improve the performance in a virtuous

circle. The thorough experiments conducted on two datasets demon-

strate the high performance of our method in both a smaller dataset

from 10 years ago and a larger dataset constructed half a year ago.

The cross-dataset validation experiment proves the performance of

our model in handling sequences with no close homologs. Although

it is just a starting point, the user-friendly server, DEEPre, will pro-

vide users a good guess of enzyme function and help them set up

downstream experiments. Since DEEPre predicts a score for each

candidate value of a certain EC digit, it can be potentially used to

detect the enzyme promiscuity (Carbonell and Faulon, 2010; Mellor

et al., 2016), which means that some enzymes show multiple activ-

ities by either accepting multiple substrates or catalyzing multiple

reactions. Our webserver provides the predicted scores for all candi-

date EC values. In addition to providing the server in the enzyme

function prediction field, we believe the idea proposed in this paper

can be quite helpful in handling the feature length nonuniformity

problem and the dataset evolvement in a wide spectrum of computa-

tional biology problems.

Among the global features, the most important one is the FunD

(Fig. 3A). This sequence-length-independent feature cannot be

replaced by sequence-length-dependent features. Nevertheless, the

global and local features explored in this paper provide complemen-

tary information and together provide improved performance (Fig.

3B), in spite of leading to the higher dimensionality of the predictor.

A large number of protein function prediction problems are hier-

archical classification problems, such as GO term (Camon et al.,

2004), transporter classification (Saier et al., 2016) and G-protein-

coupled receptors (GPCR) hierarchy (Davies et al., 2007). The high

extensibility and flexibility of our level-by-level prediction frame-

work make it possible to adopt our framework in those problems.

Furthermore, the robust, automatic framework based on deep learn-

ing to extract problem-specific sequence-length-independent features

from the sequence-length-dependent features can also be extended to

other features in addition to the features mentioned in this article.

There are two directions of the future work. First, more robust

methods for the fourth-digit prediction are needed. The increasing

number of enzymes that have experimentally validated functions, as

well as the advance in method development for learning from

imbalanced-data and small samples (Maadooliat et al., 2016), pro-

vide potential solutions to the problem. Second, instead of predict-

ing the EC numbers for enzymes, it is practically useful to predict

enzymatic reactions of the enzymes. The use of reaction fingerprints,

for instance, could be one viable solution for this (Segler and Waller,

2017). Another possible solution is through the use of descriptors of

the reaction centers as in (Rahman et al., 2014).

Acknowledgements

We would like to thank Prof. Kuo-Chen Chou for kindly providing the KNN

dataset.

Funding

This work was supported by the King Abdullah University of Science and

Technology (KAUST) Office of Sponsored Research (OSR) under Award No

URF/1/1976-04 and URF/1/3007-01, National Natural Science Foundation of

China (61401131 and 61731008).

Conflict of Interest: none declared.

References

Abadi, M. (2016) Tensorflow: Learning functions at scale. Acm Sigplan.

Notices, 51, 1–1.

Alipanahi, B. et al. (2015) Predicting the sequence specificities of dna- and

rna-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Altschul, S.F. et al. (1997) Gapped blast and psi-blast: a new generation of pro-

tein database search programs. Nucleic Acids Res., 25, 3389–3402.

Arakaki, A.K. et al. (2009) Eficaz2: enzyme function inference by a combined

approach enhanced by machine learning. BMC Bioinformatics, 10, 107.

Bairoch, A. and Apweiler, R. (2000) The swiss-prot protein sequence database

and its supplement trembl in 2000. Nucleic Acids Res., 28, 45–48.

Cai, C.Z. et al. (2003) Svm-prot: Web-based support vector machine software

for functional classification of a protein from its primary sequence. Nucleic

Acids Res., 31, 3692–3697.

Cai, C.Z. et al. (2004) Enzyme family classification by support vector ma-

chines. Proteins, 55, 66–76.

Cai, Y.D. and Chou, K.C. (2005) Predicting enzyme subclass by functional do-

main composition and pseudo amino acid composition. J. Proteome Res., 4,

967–971.

Cai, Y.D. et al. (2005) Predicting enzyme family classes by hybridizing gene

product composition and pseudo-amino acid composition. J. Theor. Biol.,

234, 145–149.

Camacho, C. et al. (2009) Blastþ: architecture and applications. BMC

Bioinformatics, 10, (1), 421.

Camon, E. et al. (2004) The gene ontology annotation (goa) database: sharing

knowledge in uniprot with gene ontology. Nucleic Acids Res., 32,

262D–2626. D262. –

Carbonell, P. and Faulon, J.-L. (2010) Molecular signatures-based prediction

of enzyme promiscuity. Bioinformatics (Oxford, England), 26, 2012–2019.

Carmena, M. et al. (2009) Making the auroras glow: regulation of aurora a

and b kinase function by interacting proteins. Curr. Opin. Cell Biol., 21,

796–805.

Chen, P. et al. (2013) Accurate prediction of hot spot residues through physi-

cochemical characteristics of amino acid sequences. Proteins, 81,

1351–1362.

Chen, P. et al. (2014) Ligandrfs: random forest ensemble to identify

ligand-binding residues from sequence information alone. BMC

Bioinformatics, 15, S4.

Chen, P. et al. (2016) A sequence-based dynamic ensemble learning system for

protein ligand-binding site prediction. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 13, 901–912.

Chou, K.C. (2005) Using amphiphilic pseudo amino acid composition to pre-

dict enzyme subfamily classes. Bioinformatics, 21, 10–19.

Chou, K.C. (2009) Pseudo amino acid composition and its applications in bio-

informatics, proteomics and system biology. Curr. Proteomics, 6, 262–274.

Chou, K.C. (2011) Some remarks on protein attribute prediction and pseudo

amino acid composition. J. Theor. Biol., 273, 236–247.

DEEPre: enzyme EC number prediction by deep learning 767

Deleted Text: .
Deleted Text: s
Deleted Text: .
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx680#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx680#supplementary-data
Deleted Text: paper
Deleted Text: &hx2009;
Deleted Text: functional domain
Deleted Text: )
Deleted Text: )
Deleted Text: ,
Deleted Text: paper


Chou, K.C. and Elrod, D.W. (2003) Prediction of enzyme family classes.

J. Proteome Res., 2, 183–190.

Cornish-Bowden, A. (2014) Current iubmb recommendations on enzyme no-

menclature and kinetics. Perspect. Sci., 1, 74–87.

Curthoys, N.P. and Watford, M. (1995) Regulation of glutaminase activity

and glutamine metabolism. Annu. Rev. Nutr., 15, (1), 133–159.

Dai, H. et al. (2017) Sequence2vec: a novel embedding approach for modeling

transcription factor binding affinity landscape. Bioinformatics, doi:

10.1093/bioinformatics/btx480.

Davies, M.N. et al. (2007) On the hierarchical classification of g protein-coupled

receptors. Bioinformatics, 23, 3113–3118.

De Ferrari, L. et al. (2012) Enzml: multi-label prediction of enzyme classes

using interpro signatures. BMC Bioinformatics, 13, 61.

Des Jardins, M. et al. (1997) Prediction of enzyme classification from protein

sequence without the use of sequence similarity. Proc. Int. Conf. Intell. Syst.

Mol. Biol., 5, 92–99.

Dobson, P.D. and Doig, A.J. (2005) Predicting enzyme class from protein

structure without alignments. J. Mol. Biol., 345, 187–199.

Eddy, S.R. (2011) Accelerated profile hmm searches. PLoS Comput. Biol., 7,

e1002195.

Finn, R.D. et al. (2016) The pfam protein families database: towards a more

sustainable future. Nucleic Acids Res., 44, D279–D285.

Fu, L. et al. (2012) Cd-hit: accelerated for clustering the next-generation

sequencing data. Bioinformatics, 28, 3150–3152.

Goddard, J.P. and Reymond, J.L. (2004) Enzyme assays for high-throughput

screening. Curr. Opin. Biotechnol., 15, 314–322.

Hayat, M. and Khan, A. (2012) Discriminating outer membrane proteins with

fuzzy k-nearest neighbor algorithms based on the general form of chou’s

pseaac. Protein Pept. Lett., 19, 411–421.

Hoffmann, B. et al. (2007) Nature and prevalence of pain in fabry disease and

its response to enzyme replacement therapy-a retrospective analysis from

the fabry outcome survey. Clin. J. Pain, 23, 535.

Huang, W.L. et al. (2007) Accurate prediction of enzyme subfamily class using

an adaptive fuzzy k-nearest neighbor method. Biosystems, 90, 405–413.

Ioffe, S. and Szegedy, C. (2015) Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In Proceedings of the

32nd International Conference on Machine Learning, 37, 448–456.

Kingma, D. and Ba, J. (2014) Adam: A method for stochastic optimization.

arXiv Preprint arXiv, 1412.6980.

Krizhevsky, A. et al. (2012) Imagenet classification with deep convolutional

neural networks. Advances in Neural Information Processing Systems 25,

pp. 1097–1105.

Kumar, C. and Choudhary, A. (2012) A top-down approach to classify en-

zyme functional classes and sub-classes using random forest. EURASIP J.

Bioinform. Syst. Biol.gy, 2012, 1–14.

Kumar, N. and Skolnick, J. (2012) Eficaz2.5: application of a high-precision

enzyme function predictor to 396 proteomes. Bioinformatics, 28,

2687–2688.

Lee, B.J. et al. (2008) Design of a novel protein feature and enzyme function

classification. In: 8th IEEE International Conference on Computer and

Information Technology Workshops: Cit Workshops 2008, Design of a

Novel Protein Feature and Enzyme Function Classification, pp. 450–455.

Leslie, C. et al. (2002) The spectrum kernel: a string kernel for SVM protein

classification. In: Proceedings of the Pacific Symposium on Biocomputing,

pp. 564–575, Singapore. World Scientific Publishing.

Leslie, C.S. et al. (2004) Mismatch string kernels for discriminative protein

classification. Bioinformatics, 20, 467–476.

Li, Y. et al. (2017) Serial deletion reveals structural basis and stability for the

core enzyme activity of human glutaminase 1 isoforms: relevance to excito-

toxic neurodegeneration. Transl. Neurodegener., 6, 10.

Li, Y.H. et al. (2016) Svm-prot 2016: a web-server for machine learning pre-

diction of protein functional families from sequence irrespective of similar-

ity. PLoS One, 11, e0155290.

Lu, L. et al. (2007) Ecs: an automatic enzyme classifier based on functional do-

main composition. Comput. Biol. Chem., 31, 226–232.

Maadooliat, M. et al. (2016) Collective estimation of multiple bivariate dens-

ity functions with application to angular-sampling-based protein loop mod-

eling. J. Am. Stat. Assoc., 111, 43–56.

Mellor, J. et al. (2016) Semisupervised gaussian process for automated enzyme

search. ACS Synth. Biol., 5, 518–528.

Moult, J. et al. (2011) Critical assessment of methods of protein structure pre-

diction (casp)-round ix. Proteins, 79, 1–5.

Nagao, C. et al. (2014) Prediction of detailed enzyme functions and identifica-

tion of specificity determining residues by random forests. PLoS One, 9,

e84623.

Nasibov, E. and Kandemir-Cavas, C. (2009) Efficiency analysis of knn and

minimum distance-based classifiers in enzyme family prediction. Comput.

Biol. Chem., 33, 461–464.

Qiu, J.D. et al. (2009) Using support vector machines to distinguish enzymes:

Approached by incorporating wavelet transform. J. Theor. Biol., 256,

625–631.

Qiu, J.D. et al. (2010) Using the concept of chou’s pseudo amino acid compos-

ition to predict enzyme family classes: An approach with support vector ma-

chine based on discrete wavelet transform. Protein Pept. Lett., 17, 715–722.

Quester, S. and Schomburg, D. (2011) Enzymedetector: an integrated enzyme

function prediction tool and database. BMC Bioinformatics, 12, 376.

Rahman, S.A. et al. (2014) Ec-blast: a tool to automatically search and com-

pare enzyme reactions. Nat. Methods, 11, 171–174.
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