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ABSTRACT: Large language models (LLMs) have shown remarkable potential in
various domains but often lack the ability to access and reason over domain-
specific knowledge and tools. In this article, we introduce Chemistry Agent
Connecting Tool-Usage to Science (CACTUS), an LLM-based agent that
integrates existing cheminformatics tools to enable accurate and advanced
reasoning and problem-solving in chemistry and molecular discovery. We evaluate
the performance of CACTUS using a diverse set of open-source LLMs, including
Gemma-7b, Falcon-7b, MPT-7b, Llama3-8b, and Mistral-7b, on a benchmark of
thousands of chemistry questions. Our results demonstrate that CACTUS
significantly outperforms baseline LLMs, with the Gemma-7b, Mistral-7b, and
Llama3-8b models achieving the highest accuracy regardless of the prompting
strategy used. Moreover, we explore the impact of domain-specific prompting and hardware configurations on model performance,
highlighting the importance of prompt engineering and the potential for deploying smaller models on consumer-grade hardware
without a significant loss in accuracy. By combining the cognitive capabilities of open-source LLMs with widely used domain-specific
tools provided by RDKit, CACTUS can assist researchers in tasks such as molecular property prediction, similarity searching, and
drug-likeness assessment.

■ INTRODUCTION
Large language models (LLMs) are foundation models that are
combined under a single paradigm to support various tasks or
services. Despite being trained on vast corpora of data, these
transformer-based LLMs have a limited understanding of the
curated or parsed text.1 Current research has revealed the
possibility of augmenting LLMs with tools that aid in
efficiently solving various problems and tasks.2−4 Previous
work has also shown that providing specific prompts, curated
toward a specific task, can enhance the time and quality of the
text generated by the models.5 Combining these two
approaches is the Tool Augmented Language Model
(TALM) framework, detailed in Parisi et al.,6 which outper-
forms existing models on the tasks it is configured for.
However, with any of these approaches, although the
generated answers may appear correct, LLMs fail to reason
or demonstrate subject knowledge as is typically demonstrated
by humans.7,8 The robustness failures derived from the
statistical associations learned by the model could manifest
in a correlated way across several different domains.9 If
foundation models become integrated with important systems
that leverage the foundation model’s ability to quickly adapt to
many different tasks and situations, failures could result in
significantly unwanted outcomes.
The resourceful LLMs like GPT4,10 LLaMA,11 Gemma,12

MPT,13 Falcon,14 and Mistral15 show improved performance
over a range of activities.16−18 Despite these strides, the
inherent limitations of such models become apparent when

faced with challenges that require access to dynamic, real-time,
or confidential data, which remain inaccessible within their
static training data sets. This gap underscores a critical need for
LLMs to evolve beyond their current capacities, leveraging
external APIs to fetch or interact with live data, thereby
extending their utility in real-world applications.6 In domain-
specific applications, particularly within the chemical, bio-
logical, and material sciences, the limitations of LLMs are even
more pronounced. The intricate nature of chemical data
coupled with the dynamic landscape of drug discovery and
development presents a complex challenge that pure computa-
tional models alone cannot address effectively. Recognizing
this, the integration of cheminformatics tools with the
cognitive and analytical abilities of LLMs offers a promising
pathway.
At the forefront of this transformation are Intelligent Agents,

autonomous entities capable of designing, planning, and
executing complex chemistry-related tasks with exceptional
efficiency and precision.19 These systems are not only capable
of utilizing a variety of LLMs for specific tasks but also adept at
employing APIs and Internet search tools to gather relevant
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material and data. For example, integrating an Agent into large,
tool-based platforms such as KNIME20 or Galaxy21 could form
a natural language interface between the user and their analysis.
By acting as intermediaries, these Agents could significantly
streamline the process of scientific discovery and autonomous
experimentation with or without a human in the loop. Toward
that end and taking inspiration from ChemCrow,22 an LLM-
assisted chemistry synthesis planner, we have developed an
Intelligent Cheminformatics Agent focused on assisting
scientists with de novo drug design and molecular discovery.
Cheminformatics focuses on storing, retrieving, analyzing, and
manipulating chemical data. It provides the framework and
methodologies to connect computational linguistics with
chemical science. This synergistic approach aims to leverage
the strengths of both domains by facilitating a more
comprehensive and effective exploration of therapeutic
compounds, streamlining the drug development process and
ultimately accelerating the discovery from conceptualization to
clinical application. In this work, we developed Chemistry
Agent Connecting Tool Usage to Science (CACTUS), an
LLM-powered agent that possesses the ability to intelligently
determine the most suitable tools for a given task and the
optimal sequence in which they should be applied, effectively
optimizing workflows for chemical research and development.
The implications of these intelligent agents are far-reaching.

They enable the autonomous operation of complex tasks from
data analysis to experimental planning, hypothesis generation,
and testing and advance our understanding of what can be
achieved through computational chemistry. The synergistic
relationship among human intelligence, artificial intelligence,
and specialized software tools holds the potential to transform
the landscape of drug discovery, catalysis, material science, and
beyond. This relationship and combination of domains make
the molecular discovery process more efficient, accurate, and
innovative. As we stand on the precipice of this new era in
cheminformatics, the integration of LLMs and computational
tools through intelligent agents such as CACTUS promises to
unlock a future where the limits of scientific discovery are
bound only by the depths of our imagination.

■ METHODS
Tool-augmented language models consist of two major
components: external tools and language models. This section
will discuss the approaches used to implement the language
model agent and provide a focused look at the tools used. We
also go into great detail about the strategies used when
prompting our agent and how we performed benchmarking.
Each of these steps is a critical component of forming a
complete intelligent agent able to solve a wide range of
problems with the added ability of quick model swapping.
Agent. An important consideration when building a TALM

is the framework in which it will be implemented. We have
selected the commonly used open-source platform, Lang-
Chain,23 for this purpose. This framework simplifies the
integration of prompts with LLMs through a comprehensive
set of prebuilt Python modules known as “chains.” It also
provides convenient integration with popular LLM hosting/
inference platforms such as the OpenAI API and HuggingFace
Transformers.24 CACTUS utilizes LangChain’s implementa-
tion of a custom MRKL agent,25 which can be broken into 3
parts: tools, LLMChain, and agent class. The tools in this
instance are a collection of cheminformatics helper functions
that wrap well-known Python libraries into well-described tools
for agents to use. These tools are explained in much more
detail in Section 2.2. The LLMChain is a LangChain-specific
feature that combines the base LLM and a prompt template to
form one unit. It is used to instantiate the model and parse
user input when any inference. In CACTUS, we provide a
prompt that guides the agent to answer cheminformatics
questions by describing the typical steps involved in answering
such questions. The last requirement for CACTUS is the agent
class. These are also LangChain-implemented functions that
are used to interpret user input after the initial prompt and
make decisions on which actions to take to best solve the
question. CACTUS sticks with a general-purpose implementa-
tion of the zero-shot agent class that uses the ReAct26

framework to determine which tool to use from the tool’s
description. This combination of tools, LLMChain, and a zero-
shot agent makes CACTUS an extensible LLM tool that can
quickly integrate new tools to solve a range of cheminformatics
questions. The generalized workflow can be seen in Figure 1.

Figure 1. General workflow of the CACTUS agent that details how the LLM interprets input to arrive at the correct tool to use to obtain an
answer. Starting from the user input, CACTUS follows a standard “Chain-of-thought” reasoning method with a Planning, Action, Execution, and
Observation phase to obtain an informed output.
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Here, we introduce a mathematical formulation to describe
the key components and processes of the CACTUS frame-
work:
Let us consider t t t, , ..., n1 2= as the set of cheminfor-

matics tools available to CACTUS as discussed above, where
each tool tj is a function that takes a tool-specific input xi and
produces an output yi:

t x y:j i i (1)

The LLMChain is represented as a function L that takes a
user-specificed input u and a set of tools as input and
outputs a sequence of actions a a a, , ..., m1 2= :

L u( , ) = (2)

Note: In our framework, LLMChain represents the
combination of the LLM with a prompt, so we use L to
represent LLMChain, which is equivalent to the LLM in this
context.
Each action ai in the sequence corresponds to the

application of a specific tool tj on the tool input xi, resulting in
an output yi,

a t x y: ( , )i j i i (3)

The zero-shot agent class is modeled as a function Z that
takes the user input u, the set of tools , and the set of actions
as input to produce the final output o,

Z u o( , , ) = (4)

The final output o is the result of executing the sequence of
actions determined by the LLMChain, given the user input
u and the available tools .
The ReAct framework used by the zero-shot agent class was

represented as a function R that takes the user input u, the set
of tools , and the tool descriptions d d d, , ..., n1 2= as
input and outputs the most appropriate tool tk to use,

R u t( , , ) k= (5)

This combination of cheminformatics tools, LLMChain, and
a zero-shot agent makes CACTUS an extensible LLM tool that
can quickly integrate new tools to solve a range of
cheminformatics questions.
Cheminformatics Tools. CACTUS is designed to

empower chemistry and cheminformatics researchers by
seamlessly integrating familiar tools from widely used libraries
like RDKit27 into an intuitive chat-based interface. We
prioritize open-source Python tools to make CACTUS
accessible and adaptable. Our focus is not on improving the
accuracy of these existing tools but rather on demonstrating
how an LLM agent can intelligently leverage them within a
more streamlined workflow. For detailed accuracy assessments
of the individual tools, please refer to the original publications
provided in Table 1 and RDKit documentation.
The tool set provided to the CACTUS agent consists of ten

different tools providing information on various descriptors for
any given chemical compound used as input. Table 1 contains
the list of currently available tools that can assist in obtaining
different physiochemical properties and molecular descriptors
of the input chemical compounds. This includes molecular
weight, log of the partition coefficient (LogP), topological
polar surface area (TPSA), quantitative estimate of drug-
likeness (QED), and synthetic accessibility (SA) of the input
chemical compounds. Moreover, using the BOILED-Egg

method, CACTUS can also estimate the pharmacokinetic
properties like blood−brain barrier permeability and gastro-
intestinal absorption of any given chemical compound.28 Our
model also implements drug-likeness, PAINS, and Brenk filters
to identify structural and toxicity alerts. All of these tools in our
model assist in identifying and screening both currently
available and new lead compounds. Currently restricted to
using a simple SMILES as input, future releases will allow for
varied user input (compound name, molecular formula, InChI
key, CAS number, SMILES, ChEMBL ID, or ZINC ID) where
the agent will first convert it to SMILES notation and then
used as input for the available tools. While these tools leverage
existing code snippets from RDKit, their accuracy is limited to
the underlying methods. However, CACTUS’s flexible design
allows for seamless integration of new tools as more accurate
methods become available.
Prompting Strategy. One important aspect investigated

was the significance of the prompt for the agent. Through the
LangChain implementation of LLM agents, there is a default
prompt that provides a generic instruction about what tools are
available and what the task of LLM is. However, this is not
necessarily required for understanding domain-specific in-
formation. To test the hypothesis, we ran 2 scenarios: one
where we left the default prompt unchanged and only included
tool descriptions (Minimal Prompt), and one where we
modified the prompt to align the agent more with the domain
of chemistry (Domain Prompt). The belief is that a domain-
aligned prompt will steer the LLM toward a better
interpretation of the questions being asked and therefore be
more effective in answering user queries. Since we were using a
wide range of LLMs for testing, the minimal prompt also
included model-specific tokens so that we were not unfairly
evaluating models against the domain prompt. The current
focus of the paper is a natural language interface to
cheminformatics tool sets, and the future iterations of
CACTUS for inverse design tasks have been discussed.
Benchmarking. Evaluating domain-specific TALMs can be

challenging, but we can follow the examples set by general
benchmarking suites.3,36−38 To achieve this, we created sets of
questions that mimic typical queries the agent would
encounter and measure how many it could answer correctly

Table 1. Cheminformatics Tools Currently Supported by
CACTUS. These Tools Provide a Comprehensive
Assessment of Molecular and Physicochemical Propertiesa

tool name description

MolWt27 float [0, ∞]�molecular weight
LogP29 float [−∞, ∞]�predicted partition coefficient
TPSA30 float [0, ∞]�topological polar surface area
QED29,31 float [0, 1]�quantitative estimate of drug-likeness
SA32 float [1, 10]�synthetic accessibility
BBB permeant28 string [yes, no]�is in “yolk” of BOILED-egg model
GI absorption28 string [low, high]�is in “white” of BOILED-egg model
drug-likeness33 boolean�passes Lipinski rule of 5
Brenk filter34 boolean�passes brenk filter
PAINS filter35 boolean�passes PAINS filter
aAll tools require input in the SMILES format. By leveraging these
tools, CACTUS enables researchers to make informed decisions in
the molecular discovery process and prioritize compounds with the
most promising characteristics. Accuracy of these methods is outlined
in the RDKit documentation as well as the citations provided in the
tool name column.
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without needing extra prompting from the user (i.e., having to
rephrase the typed question to get a correct answer).
For CACTUS, we generated three sets of cheminformatics

questions that test the ability of the agent to answer domain-
specific queries. The first set contains qualitative questions that
require answers like Yes/No or True/False. The second set
includes quantitative questions that require the agent to
interpret numerical values. The third set is a concatenation of
both the qualitative and quantitative sets, which we call the
combined set.
We used the qualitative and quantitative sets separately to

evaluate how the model performs with tools specific to each
type of question. This means the agent will not have access to
quantitative tools when answering qualitative questions and
vice versa. In the combined data set, however, all tools are
available for all questions, providing a comprehensive assess-
ment.
Table 2 highlights examples of questions passed as user

input into the CACTUS agent. The qualitative and

quantitative data sets each contain 500 questions like the
ones shown, and the combined data set contains the combined
1000 from the previous two data sets. Most tests were done on
the combined data set as we want to test the LLM agent’s
ability to perform a diverse set of tasks.
To construct these data sets, we take a set of 1000

compounds from PubChem39 and randomly sample 100. We
then populate question templates with the SMILES string
representation of the compound. This allows us to generate
100 questions for each type of tool listed in Table 1, resulting
in 1000 questions for the combined data set. To obtain the
answers to these questions, we pass the same set of SMILES
data through a script that simply uses the Python-wrapped tool
directly to obtain the expected output. These answers are not
externally validated as this work is not focused on the detailed
benchmarking of the open-source tools used to calculate these
properties but on the ability of the agent to utilize the tool as
intended to come up with the expected answer. These
benchmarks are able to be programmatically generated, so
any list smiles can be used to create new data sets.
Tool-Specific Benchmarking. While comprehensive tool-

specific accuracy benchmarking is beyond the scope of this
work, we have chosen RDKit for its extensive use and
established reliability within the cheminformatics community.
Numerous studies have leveraged RDKit for tasks similar to
those addressed by our agent either directly or for training
newer models.40−44 For detailed performance evaluations of
RDKit’s methods, we direct readers to the official documenta-
tion and original publications.

■ RESULTS AND DISCUSSION
The implementation of CACTUS represents a significant step
forward in the field of cheminformatics, offering a powerful and
flexible tool for researchers and chemists engaged in molecular
discovery and drug design. The benchmarking studies
conducted on various 7 billion parameter models demonstrate
the robustness and efficiency of the CACTUS framework,
highlighting its potential to streamline and accelerate the drug
discovery process as an example.
Benchmarking and Performance Evaluation. The

performance of CACTUS was evaluated using a comprehen-
sive set of 1000 questions, covering 10 different tools (Table 1,
with and without a domain-specific prompt on each model,
shown in Figure 2). Correct answers were scored as correct,
while wrong answers, inability to converge on an answer, or
inability to use the provided tool correctly were marked as
incorrect. In this article, we did not differentiate between
incorrect tool usage and simply providing a wrong answer. Any
answers that did not coherently address the question were
considered incorrect. We accepted correct answers that
contained additional formatted text after the correct answer
although this is not the preferred format. This additional
information can be programmatically removed before return-
ing the response to the user, or further prompts can be
engineered to reduce additional text. Each type of question in
the full question set was asked 100 times, resulting in 10 types
of questions corresponding to the 10 tools provided in Table 1.
This approach allowed us to identify which tools posed a
greater challenge for the model and where improvements to
either the tool description or model prompt could be made.
The results shown in Figure 2 highlight the importance of

domain-specific prompting in improving the accuracy of the
model’s responses, particularly for qualitative questions. This
finding aligns with recent research emphasizing the role of
prompt engineering in enhancing the performance of language
models.45

In the progression of AI and its applications in scientific
inquiry, it is crucial to analyze the comparative effectiveness of
various models in handling domain-specific tasks. The
benchmarking analysis presented in Figure 3 offers significant
insights into the performance of different language models
when prompted with both minimal and domain-specific
information. A comprehensive review of the performance
data across the full spectrum of question types reveals that the
Gemma-7b, Mistral-7b, and Llama3-8b models showcase
robustness and versatility, performing admirably regardless of
the nature of the prompt. Their consistent accuracy across
different types of questions ranging from physiochemical
properties like drug-likeness and blood−brain barrier perme-
ability to more complex metrics like a quantitative estimate of
drug-likeness (QED) highlight their reliability for a broad
range of inquiries within the domain of molecular science. In
contrast, models such as Falcon-7b exhibit a noticeable
disparity between performances with minimal and domain
prompts. This variability suggests that Falcon-7b, while
capable, may require more fine-tuned prompting to leverage
its full potential effectively. The substantial difference in
performance based on the prompt type points to an intrinsic
model sensitivity to input structure and content, which can be
pivotal in crafting effective inquiry strategies. Furthermore, the
successful deployment of smaller models, such as Phi2 and
OLMo-1b, on consumer-grade hardware (Figure 4) highlights

Table 2. Table Demonstrating Examples of the Questions
Asked of the CACTUS Agent in the Cheminformatics
Benchmark Used in This Paper

qualitative questions

question step answer

does CCON�O pass the blood−brain
barrier?

use BBB tool
w/SMILES

yes

what is the GI absorption of C#C? use GI tool w/SMILES low
quantitative questions

question step answer

what is the QED of CCCC�O? use QED tool w/SMILES 0.44
what is the TPSA of C(CS)O use TPSA tool w/SMILES 20.23
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the potential for democratizing access to powerful chem-
informatics tools, enabling researchers with limited computa-
tional resources to harness the capabilities of CACTUS.
Open Source Models in Varied Settings. This compre-

hensive model comparison and analysis have broader
implications for the employment of open-source models in

scientific environments. The ability of models to perform well
with domain-specific prompts is particularly encouraging, as it
implies that with proper configuration, open-source models
can be highly effective tools. The adaptability demonstrated by
the Gemma-7b, Mistral-7b, and Llama3-8b models indicates
their potential for widespread applicability across various

Figure 2. Comparison of the Gemma-7b model with different prompting strategies on the full question set benchmark shows significant
improvement in the qualitative question set when comparing the minimal prompt (a) to the domain prompt (b), while demonstrating a similar
performance in the quantitative question set.
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computational settings from high-performance clusters to more
modest research setups. Moreover, the ability to effectively
prompt open-source models opens the door to their use in a
variety of scientific contexts. It allows researchers to customize
models to their specific domain, potentially bridging the gap
between generalized AI capabilities and specialized knowledge
areas.

The flexibility and performance of these models have
significant implications for scientific research, particularly in
fields such as synthetic organic chemistry and drug discovery.
For researchers in these domains, the ability to use open-
source models effectively can accelerate the discovery process,
enhance predictive accuracy, and optimize computational
resources. The insights from this benchmarking study provide
a roadmap for selecting and tailoring models to specific

Figure 3. Comparison of model performance among 7b parameter models using minimal and domain-specific prompts. The Gemma-7b, Mistral-
7b, and Llama3-8b models demonstrate strong performance and adaptability across prompting strategies, highlighting their potential for widespread
applicability in various computational settings, from high-performance clusters to more modest research setups.

Figure 4. Comparison of the model performance using the accuracy and execution time as key metrics. The study evaluates various open-source
models available on the HuggingFace including Gemma-7b, Falcon-7b, MPT-7b, Llama3-8b, and Mistral-7b, phi2, and olmo1b. Different
combinations of conditions, such as model type (Vicuna, LLaMa, MPT), prompting strategy (minimal or domain-specific), GPU hardware (A100
80GB or RTX 2080 Ti), and benchmark size (small or large), were used to assess the model’s capabilities.
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research needs, thereby maximizing their utility in advancing
scientific goals. The benchmarking study of the selected 7b
parameter models serves as a testament to the progress in AI-
driven research tools. It highlights the necessity of prompt
optimization and the promise of open-source models in diverse
scientific inquiries. The analysis underscores the potential of
these models to become integral components in the computa-
tional chemist’s toolkit, paving the way for innovative
breakthroughs in molecular design and drug discovery.
Hardware Performance and Model Efficacy. The

deployment of CACTUS models through vLLM offers a
significant advantage by optimizing the performance across a
variety of GPUs used for LLM inference. In our benchmarking
studies, we utilized two types of NVIDIA GPUs: the data
center-grade A100 80GB and the consumer-grade RTX 2080
Ti. Our objective was to evaluate the performance of models
under different combinations of model size, GPU type, and
prompting strategy (minimal or domain-specific). The
performance metric was determined by the inference speed
in relation to the model’s accuracy. Figure 4 shows the
summary of LLMs deployed under different conditions (GPU
hardware used, prompt, and benchmark set used) and how
well they performed. The efficiency of these models across
diverse hardware platforms highlights their potential for
widespread implementation in a range of research settings.
The models evaluated include Gemma-7b, Falcon-7b, MPT-

7b, Llama2-7b, Llama3-8b, and Mistral-7b, as well as three
smaller models, Phi2, Phi3, and OLMo-1b. The inclusion of
these smaller models highlights the potential for successfully
deploying models on local resources with limited computa-
tional power (e.g., consumer-grade GPUs such as the RTX
2080 Ti) while still achieving accurate results. We also include
a comparison to the API-based Gemini-Pro model for a small
comparison of a proprietary model to the selected open-source
models. Overall, the model performance was found to be
relatively quick on both the 500-question sets (Qualitative/
Quantitative) and the 1000-question combined set (Full), with
the occasional model taking a comparatively longer amount of
time to finish. A full list of the data used to plot these summary
figures can be found in Supporting Information.
The most interesting outcome is that smaller models

deployed on consumer-grade hardware (RTX 2080 Ti) do
not perform drastically worse than their larger parameter
model counterparts deployed on the a100 80GB hardware.
Looking at the performance of the Phi2 (2.7B parameters) and
Phi3 (3.8B parameters) models, it quickly and accurately
tackles the 500 question quantitative benchmark with similar
performance regardless of the GPU used with the a100 80GB
version, unsurprisingly as the fastest. Another interesting
outcome is the performance of the OLMo-1b parameter model
on the combined question set and the RTX 2080 Ti GPU.
While unable to obtain any correct answers for the minimal
prompt, it jumps up to a surprising 52.2% accuracy when a
domain-specific prompt is used. These results indicate that
these smaller models can be deployed locally by users and still
be able to interpret questions, possibly by providing more
specialized prompts. The Gemini-Pro API model was very
accurate for both the minimal and domain prompt but was
impacted by quota restrictions, causing a dramatic increase in
time for the quantitative benchmark. This time of inference
limitation could be seen as a strength of hosting open-source
models locally, where the user is only restricted by hardware.

In general, inference time increased as the question set size
increased (e.g., from quantitative/qualitative to full), while
accuracy tended to decrease with longer inference times.
Domain prompts achieved faster inference and accuracy than
minimal prompts for models such as Falcon-7b, MPT-7b, and
Mistral-7b. However, there was an exception in the case of the
Phi2 model on the full question set, where the minimal prompt
resulted in a faster inference but lower accuracy.
The hardware performance analysis highlights the impor-

tance of considering the interplay between model size, GPU
capabilities, and prompting strategies when deploying
CACTUS models for molecular property prediction and drug
discovery. The ability to achieve accurate results with smaller
models on consumer-grade hardware opens up the possibility
of wider adoption and accessibility of CACTUS for researchers
with limited computational resources. Furthermore, the impact
of domain-specific prompting on both inference speed and
accuracy emphasizes the need for carefully designed prompts
tailored to the specific application domain. As CACTUS
continues to evolve and integrate with other computational
tools and autonomous discovery platforms, optimizing
hardware performance will remain a critical consideration.
Future research should explore the development of more
efficient algorithms and architectures (energy efficiency) for
deploying CACTUS models on a variety of hardware
configurations, ensuring that the benefits of this powerful
tool can be realized across a wide range of research settings and
computational resources.
Issues Encountered and Resolutions. During the

development and benchmarking of the CACTUS agent using
open-source models and the LangChain framework, several key
challenges were identified. These issues, along with the
solutions implemented, provide valuable insights for research-
ers and developers working on similar workflows.
One of the primary issues encountered was the slow

inference speed when hosting open-source language models
locally on machines utilizing CPUs. Most APIs quickly provide
inference results when making calls, and this is not something
locally hosted models typically replicate well, especially when
running on CPUs over GPUs. For this work, we initially used
models from HuggingFace and deployed them through the
HuggingFace Pipelines Python package. This allowed us to
serve models, but the inference time was quite slow when the
samples were wrapped in the LangChain agent. To address
this, we began utilizing vLLM to host HuggingFace models
instead. This substantially decreased our inference time and
allowed for API-like response times from models, even those
hosted on less powerful consumer-grade GPU hardware.
The second major challenge was related to prompt

engineering. Our results shown previously highlight that for
some models the prompt has a great effect on not only the
model accuracy but also the inference time. We spent a good
amount of time trying to hone our prompting strategy to yield
consistently accurate and efficient results with mixed effects.
We ended up needing specialized prompts for each open-
source LLM we used, as some were fine-tuned much differently
than others and required a very specific prompt style to return
usable results.
These challenges highlight the need for continued research

and development in the areas of model deployment and
prompt engineering. Future work will be focused on
optimizing the deployment of open-source models on various
hardware configurations, including CPUs and GPUs, to ensure
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that CACTUS can be efficiently utilized across a wide range of
computational resources. This may involve the development of
novel algorithms and architectures that can better leverage the
capabilities of different hardware setups as well as the creation
of more user-friendly tools and frameworks for model
deployment and management. In terms of prompt engineering,
the development of standardized prompt templates and best
practices for prompt engineering in the context of molecular
property prediction and drug discovery could help streamline
the development process and improve the consistency of
results across different models and data sets.
Future Outlook�Molecular Design. CACTUS has

already demonstrated its potential in estimating basic metrics
for input chemical compounds, but its future lies in its
evolution into a comprehensive, open-source tool specifically
designed for chemists and researchers working on therapeutic
drug design and discovery. This will be achieved by the
integration of physics-based molecular AI/ML models, such as
three-dimensional 3D-scaffold,46 reinforcement learning,47 and
graph neural networks (GNNs)48 accompanied by molecular
dynamics simulations, quantum chemistry calculations, and
high-throughput virtual screening.48−52 Such capabilities are
essential for accurately modeling molecular interactions and
predicting the efficacy and safety of potential therapeutic
agents.53

The development plan also includes implementing advanced
functionalities for identifying compounds that exhibit struc-
tural and chemical similarities as well as pinpointing key
fragments crucial for biological activity. This feature will allow
researchers to explore a vast chemical space more efficiently,
identifying lead compounds with higher precision. These
additions are expected to significantly accelerate and deepen
the agent’s ability to understand compound behaviors in 3D
spaces and allow researchers to develop more comprehensive
and effective workflows for drug discovery and materials
design. Additionally, we plan to include tools that identify key
fragments and compounds with similar structural and chemical
features from the vast available chemical databases. Tools that
can calculate physiochemical and pharmacokinetic properties
and about 60 other descriptors will be added to the agent to
identify quantitative structure−activity relationship (QSAR)
and quantitative structure−property relationship (QSPR) to
help us with screening the compounds and identifying toxic
groups.
Beyond these technical enhancements, there is a focus on

making CACTUS more explainable and capable of symbolic
reasoning. The aim is to address common criticisms of LLMs,
particularly their struggle with reasoning and providing
explainable outputs. By integrating more advanced symbolic
reasoning capabilities, CACTUS will not only become more
powerful in its predictive and analytical functions but also
provide users with understandable and logical explanations for
its recommendations and predictions. This feature would
automate the process of predicting how small molecules, such
as drug candidates, and interact with targets such as proteins,
thereby providing invaluable insights into the potential efficacy
of new compounds.
The applications of CACTUS extend beyond drug discovery

and can be leveraged in other domains, such as chemistry,
catalysis, and materials science. In the field of catalysis,
CACTUS could aid in the discovery and optimization of novel
catalysts by predicting their properties and performance based
on their structural and chemical features.54 Similarly, in

materials science, CACTUS could assist in the design of new
materials with desired properties by exploring the vast
chemical space and identifying promising candidates for
further experimental validation.55

The future development of CACTUS is geared toward
creating an intelligent, comprehensive cheminformatics tool for
molecular discovery that not only aids in the identification and
design of therapeutic drugs but also ensures a high degree of
safety and efficacy. Through the integration of advanced
computational techniques and models, alongside improve-
ments in usability and explainability, CACTUS is set to
become an indispensable resource in the quest for novel,
effective, and safe therapeutic agents as well as in the discovery
and optimization of catalysts and materials.

■ CONCLUSIONS
In this article, we have introduced CACTUS, an innovative
open-source agent that leverages the power of large language
models and cheminformatics tools to revolutionize the field of
drug discovery and molecular property prediction. By
integrating a wide range of computational tools and models,
CACTUS provides a comprehensive and user-friendly platform
for researchers and chemists to explore the vast chemical space
for molecular discovery and identify promising compounds for
therapeutic applications.
We assessed CACTUS performance using various open-

source LLMs, including Gemma-7b, Falcon-7b, MPT-7b,
Llama2-7b, and Mistral-7b, across a set of 1000 chemistry
questions. Our findings indicate that CACTUS outperforms
baseline LLMs significantly, with the Gemma-7b and Mistral-
7b models achieving the highest accuracy regardless of the
prompting strategy employed. Additionally, we investigated the
impact of domain-specific prompting and hardware config-
urations on model performance, highlighting the importance of
prompt engineering and the potential for deploying smaller
models on consumer-grade hardware without a significant loss
in accuracy. The ability to achieve accurate results with smaller
models such as Phi on consumer-grade hardware opens up the
possibility of wider adoption and accessibility of CACTUS,
even for researchers with limited computational resources.
One of the key takeaways from the development and

benchmarking of CACTUS is the importance of addressing the
challenges associated with model deployment and prompt
engineering. The solutions implemented in this work, such as
the use of vLLM for hosting models and the development of
tailored prompts for each open-source LLM, serve as a valuable
foundation for future efforts in this field. As the field of AI
continues to evolve rapidly, it is essential to keep abreast of
new developments in language modeling and related
technologies to further enhance the capabilities and perform-
ance of CACTUS. The development and benchmarking of
CACTUS also highlight key challenges in integrating open-
source LLMs with domain-specific tools, such as optimizing
inference speed and developing effective prompting strategies.
We discussed the solutions implemented to address these
challenges, including the use of vLLM for model hosting and
the creation of tailored prompts for each LLM.
Looking ahead, the future of CACTUS is incredibly

promising, with the potential to transform not only drug
discovery but also various other domains, such as chemistry,
catalysis, and materials science. The integration of advanced
physics-based AI/ML models, such as 3D-scaffold, reinforce-
ment learning, and graph neural networks, will enable a deeper
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understanding of compound behaviors in 3D spaces, leading to
more accurate predictions of molecular interactions and the
efficacy and safety of potential therapeutic agents. Moreover,
the addition of tools for identifying key fragments, calculating
molecular properties, and screening compounds for toxic
groups will significantly enhance the efficiency and precision of
the drug discovery process. The focus on improving the
explainability and symbolic reasoning capabilities of CACTUS
will address common criticisms of large language models and
provide users with understandable, logical explanations for the
tool’s recommendations and predictions.
As CACTUS continues to evolve and integrate with other

computational tools and autonomous discovery platforms, it
has the potential to revolutionize the way we approach drug
discovery, catalyst design, and materials science. By leveraging
the power of AI and machine learning, CACTUS can help
researchers navigate the vast parameter spaces associated with
complex chemical systems, identifying promising candidates
for experimental validation and optimization. The future
development of CACTUS is geared toward creating an
intelligent, comprehensive cheminformatics tool that ensures
a high degree of safety and efficacy in the identification and
design of therapeutic drugs, catalysts, and materials for various
applications. Through the integration of advanced computa-
tional techniques and models, alongside improvements in
usability and explainability, CACTUS is set to become an
indispensable resource for researchers across various scientific
disciplines.
In summary, CACTUS represents a significant milestone in

the field of cheminformatics, offering a powerful and adaptable
tool for researchers engaged in drug discovery, molecular
property prediction, and beyond. As we continue to advance
AI-driven scientific discovery, agents like CACTUS will play a
pivotal role in shaping the future of research, innovation, and
human health. By embracing the potential of open-source
language models and cheminformatics tools, we can accelerate
the pace of scientific advancement and unlock new frontiers in
the quest for novel, effective, and safe therapeutic agents,
catalysts, and materials.
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