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Recent scientific findings suggest that dopamine exerts a central role on

impulsivity, as well as that aversive life experiences may promote the

high levels of impulsivity that often underlie violent behavior. To deepen

our understanding of the complex gene by environment interplay on

impulsive behavior, we genotyped six dopaminergic allelic variants (ANKK1-

rs1800497, TH-rs6356, DRD4-rs1800955, DRD4-exonIII-VNTR, SLC6A3-

VNTR and COMT-rs4680) in 655 US White male inmates convicted for violent

crimes, whose impulsivity was assessed by BIS-11 (Barratt Impulsiveness

Scale). Furthermore, in a subsample of 216 inmates from the whole group, we

also explored the potential interplay between the genotyped dopaminergic

variants and parental maltreatment measured by MOPS (Measure of Parental

Style) in promoting impulsivity. We found a significant interaction among

paternal MOPS scores, ANKK1-rs1800497-T allele and TH-rs6356-A allele,

which increased the variance of BIS-11 cognitive/attentive scores explained

by paternal maltreatment from 1.8 up to 20.5%. No direct association between

any of the individual genetic variants and impulsivity was observed. Our data

suggest that paternal maltreatment increases the risk of attentive/cognitive

impulsivity and that this risk is higher in carriers of specific dopaminergic

alleles that potentiate the dopaminergic neurotransmission. These findings

add further evidence to the mutual role that genetics and early environmental

factors exert in modulating human behavior and highlight the importance of

childhood care interventions.
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Introduction

Impulsivity is the tendency to engage in fast and unplanned
actions in response to either internal or external stimuli, with
scarce or null consideration of consequences for themselves or
other people (1).

Although impulsivity has developed as a spontaneous
behavior with adaptive purposes that allow quick decisions
when a fast response is required, high levels of impulsivity are
usually maladaptive as they may produce bad conducts (2). High
impulsivity, for example, underlies sensation/novelty seeking
personalities (3), rule-breaking behaviors (e.g., risky driving,
abnormal drug and alcohol consumption, excessive food intake,
risky sexual behavior, gambling) (4–7), and mental disorders
characterized by poor behavioral control, including attention
deficit hyperactivity disorder, conduct disorder, substance abuse,
bipolar disorder, borderline personality disorder and antisocial
personality disorder (1, 8–10). Abnormal impulsivity may also
promote antisocial behaviors, like vandalism, theft, aggression
(11–15), and violence (16). Therefore, impulsivity is generally
assessed in criminals [see, for instance, (17–20)] in order to
provide them with an adequate forensic evaluation as well
as suitable treatment planning and management (17). Violent
offenders usually obtain higher impulsivity scores as compared
to subjects convicted for non-violent crimes (21); additionally,
greater impulsivity is often associated with higher rates of
recidivism (22–26).

The dopaminergic system is thought to play a central
role in impulsivity through the regulation of neural activity
within the ventral and dorsal striatum (27–35). A reduced
availability of dopamine receptor 2/3 (DRD2/3) in ventral
striatum, for example, is associated with a greater impulsive
behavior, both in rats (27–29) and in humans (30, 31). Moreover,
genetic polymorphisms associated with an increased release
of striatal dopamine or with a diminished availability of
DRD2 and DRD4, predicted reward-related ventral striatum
reactivity (32, 33). As known, ventral striatum is activated
by novel and salient stimuli, thus playing a major role in
processing appetitive/reward responses [see (36) for a review].
The dorsal striatum, instead, is involved in motor inhibitory
control through the integration of sensorimotor, cognitive
and motivational/emotional information (37, 38); a lower
availability of DRD2/3 in dorsal striatum has been reported to
predict impaired motor response inhibition in humans (34, 35).

Because of the role of dopaminergic system in impulsivity,
we questioned whether distinct alleles of genes that modulate
dopaminergic neurotransmission may affect impulsivity and
criminal behavior. To this aim, we genotyped six allelic variants
of the dopaminergic pathway (ANKK1-rs1800497, TH-rs6356,
DRD4-rs1800955, DRD4-exonIII-VNTR, SLC6A3-VNTR and
COMT-rs4680), in a large sample of adult violent male
offenders, assessed for impulsivity by the Barratt Impulsiveness
Scale, BIS-11 (39). Furthermore, as impulsivity traits appear

to mediate the link between child maltreatment and adult
criminal behavior (40) and specific dopaminergic genetic
profiles have been reported to modulate the effect of child
maltreatment on impulsive behavior (41), in a subsample
of the same group of criminals, we also investigated the
interaction between dopaminergic alleles and the effect of
parental behavior on impulsivity.

Materials and methods

The sample enrolled for this study included 655 US White
male inmates convicted for violent crimes (age range: 18–
65 years; mean age: 34.5 ± 10.6 years), belonging to two
ethnicities: Latin/Hispanic (n = 375) and not-Latin/Hispanic
(n = 298). The intelligence quotient (IQ) of these subjects was
estimated by using the Wechsler Adult Intelligence Scale (42)
(mean IQ: 97.44± 13.45).

Research was carried out in compliance with ethical
standards and in accordance with the International Ethical
Guidelines of the Declaration of Helsinki. Data were collected
over more than a decade. The governing Institutional Review
Board (IRB) is the Ethical and Independent Review Services
(E&I); earlier versions included approval from the University
of New Mexico Health Science Center IRB. Each participant
provided a written informed consent to participate to the study.
Subjects could withdraw from the study at any time.

Participants completed the self-report Barratt Impulsiveness
Scale Version 11 (BIS-11) questionnaire (39, 43). Responses to
each of the 30 BIS-11 items are rated on a 4-point Likert scale
according to which statement better describes the individual
behavior (1 = rarely/never; 2 = occasionally; 3 = often; 4 = almost
always/always); thus, the total score ranges from a minimum
of 30 to a maximum of 120 (BIS-11 Total score). Moreover,
the scores for the three following domains were separately
computed: (1) Cognitive/Attentional (BIS-11 Factor 1 score),
which measures the difficulty to focus and pay attention on
a task; (2) Motor (BIS-11 Factor 2 score), which measures
the tendency to act rashly without any forethought; (3) Non-
planning Impulsiveness (BIS-11 Factor 3 score), which measures
the inability to adequately plan. Mean BIS-11 descriptive data
are reported in Supplementary Table 1.

In a subsample of 216 criminals from the whole group,
data about childhood environment were collected by the
Measure of Parental Style (MOPS) instrument, a validated
self-report questionnaire that measures the perceived
parental indifference (e.g., uncaring, uninterested parents
that leave children alone and forget about them), overcontrol
(e.g., overprotective, overcontrolling and critical parents),
and abuse (e.g., verbally and physically abusive parents
who make their own children feel unsafe and in danger)
experienced during the first 16 years of life (44). The
MOPS questionnaire includes 15 items concerning the
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behavior of both parents. Participants rated each item as
0 (not true at all), 1 (slightly true), 2 (moderately true)
or 3 (extremely true), as described in Parker et al. (44).
A total score, ranging from 0 to 45, was calculated for each
parent (Maternal MOPS score, n = 211; Paternal MOPS
score, n = 185. There was no score if the parent had not
been in the child’s life). Moreover, mother’s and father’s
scores were summed to calculate a total score (MOPS Total
score, n = 180). MOPS descriptive data are reported in
Supplementary Table 2.

Each participant also provided a sample of saliva
for DNA analysis by an Oragene collection tube (DNA
Genotek Inc., Kanata, Ontario, Canada). DNA was
extracted from saliva by the prepITL2P kit according to
the manufacturer’s protocol (DNA Genotek Inc., Kanata,
ON, Canada). Six candidate genetic variants of the
dopaminergic pathway were genotyped: ANKK1-rs1800497,
TH-rs6356, DRD4-rs1800955, DRD4-exonIII-VNTR,
SLC6A3-VNTR and COMT-rs4680. The following pairs
of primers were designed by using the Beacon Designer
v.8 software (PREMIER 128 Biosoft, Palo Alto, CA,
United States) and used for Polymerase Chain Reaction
(PCR) amplification:

– 5′-TGCAGCTCACTCCATCCTG-3′ and 5′-GCAACA
CAGCCATCCTCAAA-3′ for ANKK1-rs1800497;

– 5′-CTTTGAGGAGAAGGAGGGGA-3′ and 5′-ACC
TCAAACACCTTCACAGC-3′ for TH-rs6356;

– 5′-GGATGAGCTAGGCGTCGG-3′ and 5′-CTCACC
CTAGTCCACCTGG-3′ for DRD4-rs1800955;

– 5′-GCGACTACGTGGTCTACTCG-3′ and 5′-AGGAC
CCTCATGGCCTTG-3′ for DRD4-exonIII-VNTR;

– 5′-TGTGGTGTAGGGAACGGCCTGAG-3′ and
– 5′-CTTCCTGGAGGTCACGGCTCAAGG-3′ for

SLC6A3-VNTR;
– 5′-CAGCGGATGGTGGATTTC-3′ and 5′-TTCCAGG

TCTGACAACGG-3′ for COMT-rs4680.

DRD4-exonIII-VNTR and SLC6A3-VNTR were genotyped
by running the PCR amplicons on 2% ethidium bromide-
stained agarose gel. DRD4-rs1800955 was genotyped by PCR-
Restriction Fragment Length Polymorphism (RFLP) by using
the restriction endonuclease FspI (New England BioLabs Inc.,
Ipswich, MA, United States). ANKK1-rs1800497, TH-rs6356,
and COMT-rs4680 were genotyped by High Resolution Melting
(HRM)-PCR using the CFX Connect instrument (Bio-Rad,
Hercules, CA, United States) and the Bio-Rad Precision Melt
Analysis software.

The Hardy–Weinberg equilibrium (χ2 test) was assessed for
each allelic variant.

As far as Single Nucleotide Polymorphisms are concerned,
homozygotes for the minor allele were grouped with
heterozygotes (i.e., ANKK1-rs1800497 T/T + C/T, TH-
rs6356 A/A + A/G, DRD4-rs1800955 C/C + C/T, COMT-rs4680

A/A + A/G) and compared to the homozygotes for the
ancestral allele.

For the VNTR (variable number tandem repeats)
polymorphisms, genotypes were grouped based on their
functional effect, as reported in the scientific literature.
Specifically, the DRD4-exonIII-VNTR low activity allele (7r)
was compared to the high activity alleles (non-7r) (45–50),
while the SLC6A3-VNTR low activity genotype (10r/10r) was
compared to the high activity allele (9r) (32, 33, 51–53).

Statistical analysis was performed by using the SPSS
21 software package (IBM Corporation, Armonk, NY,
United States). For each variable, the deviation from a normal
distribution was assessed by the Shapiro-Wilk test. Outliers were
searched by the Interquartile Range (IQR) method [previously
described in Jones PR (54)].

Generalized estimating equations (GEE), with an
exchangeable working matrix and Tweedie model with
identity link function, were used to model the associations
between BIS-11 and MOPS scores, between genotype and
BIS-11 scores, and among genotype, BIS-11 and MOPS scores.

Age significantly correlated with BIS-11 Total (ρs = −0.142,
p = 2.6 × 10−4), Factor 1 (ρs = −0.166, p = 9 × 10−6), and
Factor 2 (ρs = −0.87, pBonf. = 0.042) scores, but not with Factor
3 (ρs =−0.78, pBonf. = 0.087) scores.

IQ significantly correlated with BIS-11 Total (ρs = −0.152,
p = 1.04 × 10−4), Factor 1 (ρs = −0.113, pBonf. = 0.006), and
Factor 3 (ρs = −0.151, pBonf. = 6.9 × 10−5) scores, but not with
Factor 2 scores (ρs =−0.058, pBonf. = 0.315).

Between the two ethnic groups (Latin/Hispanic and
not-Latin/Hispanic), there were no significant differences
in BIS-11 scores (Total scores: Mann–Whitney U test
z-score = −1.484, p = 0.414; Factor 1 scores: Mann–Whitney
U test z-score = −0.068, pBonf. = 1; Factor 2 scores: Mann–
Whitney U test z-score =−1.511, pBonf. = 0.131; Factor 3 scores:
Mann–Whitney U test z-score = −0.160, pBonf. = 1), but there
was a significant weak influence on MOPS Total scores (Mann–
Whitney U test z-score = 2.083, p = 0.037). No differences
emerged, instead, neither in Maternal (Mann–Whitney U
test z-score = 2.073, pBonf. = 0.076) nor in Paternal MOPS
(Mann–Whitney U test z-score = 1.747, pBonf. = 0.162) scores.

Finally, the distribution of genotype groupings differed
between Latin/Hispanic and not-Latin/Hispanic subjects for
ANKK1-rs1800497 (Fisher’s exact test: pBonf. = 0.006) and
COMT-rs4680 (Fisher’s exact test: pBonf. = 0.008), but not for
TH-rs6356 (Fisher’s exact test: pBonf. = 0.119), DRD4-rs1800955
(Fisher’s exact test: pBonf. = 1), DRD4-exonIII-VNTR (Fisher’s
exact test: pBonf. = 0.165) and SLC6A3-VNTR (Fisher’s exact test:
pBonf. = 1).

Association analyses were, therefore, adjusted for age,
IQ, and ethnicity.

In addition, a linear regression analysis allowed
for the prediction of the amount of variance of
BIS-11 scores explained by MOPS scores per se
or in interaction with genotype. A stepwise linear
regression was used to predict the contribution of both
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TABLE 1 Genotype frequencies and Hardy–Weinberg equilibrium (χ2 test).

Whole sample of 655 criminals Subsample of 216 criminals with both
BIS-11 and MOPS data

Polymorphism Genotype N Frequency Hardy–Weinberg
equilibrium

N Frequency Hardy–Weinberg
equilibrium

ANKK1-rs1800497 T/T 55 0.084 χ2 = 0.353 16 0.074 χ2 = 1.122

C/T 258 0.396 p = 0.552 97 0.449 p = 0.290

C/C 339 0.520 103 0.477

TH-rs6356 A/A 106 0.164 χ2 = 0.230 37 0.172 χ2 = 0.026

A/G 319 0.493 p = 0.632 102 0.479 p = 0.872

G/G 222 0.343 75 0.349

DRD4-rs1800955 C/C 122 0.189 χ2 = 0.300 35 0.165 χ2 = 0.007

C/T 310 0.479 p = 0.584 102 0.486 p = 0.933

T/T 215 0.332 74 0.349

DRD4-exonIII-VNTR 7r/7r 36 0.055 χ2 = 1.811 6 0.028 χ2 = 0.482

7r/non-7r 208 0.321 p = 0.178 68 0.321 p = 0.488

non-7r/non-7r 405 0.624 137 0.651

SLC6A3-VNTR 9/9 27 0.045 χ2 = 2.061 12 0.057 χ2 = 0.245

9/10 237 0.374 p = 0.151 71 0.338 p = 0.621

10/10 370 0.584 126 0.605

COMT-rs4680 A/A 140 0.219 χ2 = 0.463 43 0.204 χ2 = 0.035

A/G 309 0.484 p = 0.496 102 0.488 p = 0.851

G/G 190 0.297 65 0.308

Data are reported for the whole sample of 655 criminals with only BIS-11 data and for the subsample of 216 criminals with both BIS-11 and MOPS data. r = repeats.

Paternal and Maternal MOPS scores to the variance
of BIS-11 scores.

Significance level was set according to the Bonferroni
method, considering the number of simultaneously
tested hypotheses.

Results

Forty-one percent (n = 267) of the enrolled criminals
had abnormally elevated scores of impulsivity (BIS-11
scores ≥ 72) (55).

The distribution of genotype frequencies for all the six
polymorphisms was in Hardy–Weinberg equilibrium both in
the whole sample (n = 655) with BIS-11 data only and in the
subsample of subjects (n = 216) with both BIS-11 and MOPS
data (Table 1).

None of the analyzed polymorphisms showed any
statistically significant association with BIS-11 scores
(Supplementary Table 3).

Mean Maternal MOPS scores (8.73 ± 7.88) were
significantly lower than mean Paternal MOPS scores
(12.30± 11.09; Wilcoxon signed-rank test: Z = 4.387, p < 10−4;
Supplementary Table 2).

Correlations between Barratt
Impulsiveness Scale and Measure of
Parental Style questionnaire

Measure of Parental Style total scores were not significantly
correlated to BIS-11 Total scores (Waldχ2 = 2.847, df = 1,
p = 0.092).

Concerning BIS-11 subscales, MOPS Total scores positively
correlated with BIS-11 Factor 1 scores (Waldχ2 = 6.153,
df = 1, pBonf. = 0.039; Figure 1A), but not with Factor 2
(Waldχ2 = 0.029, df = 1, pBonf. = 1; Figure 1B) and Factor
3 (Waldχ2 = 1.769, df = 1, pBonf. = 0.549; Figure 1C)
scores.

BIS-11 Factor 1 scores positively correlated with
Paternal MOPS scores (Waldχ2 = 6.153, df = 1,
pBonf. = 0.039; Figure 2A) but not with Maternal
MOPS scores (Waldχ2 = 2.707, df = 1, pBonf. = 0.3;
Figure 2B).

Indeed, a stepwise linear regression analysis showed that
Paternal MOPS scores produced a significant model that
explained 1.8% (R2 = 0.024, F1,178 = 4.332, p = 0.039; β = 0.154)
of the variance of BIS-11 Factor 1 scores, while Maternal MOPS
scores did not contribute to this variance.
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FIGURE 1

Correlations between BIS-11 subscales and MOPS Total scores. MOPS Total scores significantly correlated with BIS-11 (A) cognitive/attentive
(Factor 1) scores, but not with (B) motor (Factor 2) and (C) non-planning (Factor 3) scores.

FIGURE 2

Correlations between BIS-11 cognitive/attentive (Factor 1) and both Paternal and Maternal MOPS scores. BIS-11 cognitive/attentive scores
significantly correlated with (A) Paternal MOPS scores, but not with (B) Maternal MOPS scores.

FIGURE 3

Correlation between BIS-11 cognitive/attentive (Factor 1) and Paternal MOPS scores divided by ANKK1-rs1800497 genotype groupings and in
ANKK1-rs1800497-T allele carriers divided by TH-6356 genotype groupings. (A) In ANKK1-rs1800497-T allele carriers, Paternal MOPS scores
positively correlated with BIS-11 cognitive/attentive scores. (B) Among ANKK1-rs1800497-T allele carriers, Paternal MOPS scores positively
correlated with BIS-11 cognitive/attentive scores in TH-rs6356-A allele carriers.
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Genotype by Paternal MOPS by BIS-11
Factor 1 score interaction

After including genetics in the analysis, ANKK1-rs1800497
significantly influenced the correlation between Paternal MOPS
scores and BIS-11 Factor 1 scores (Waldχ2 = 13.178, df = 2,
pBonf. = 0.006). Specifically, Paternal MOPS scores positively
correlated with BIS-11 Factor 1 scores in ANKK1-rs1800497-T
allele carriers (pBonf. = 0.002; Figure 3A), but not in ANKK1-
rs1800497-C/C genotype carriers (pBonf. = 1).

The interaction between Paternal MOPS scores and
ANKK1-rs1800497-T allele increased the explained variance of
BIS-11 Factor 1 scores up to 12.7% (R2 = 0.136, F1,93 = 14.62,
pBonf. < 10−6; β = 0.369), while the C/C genotype produced a
non-significant model (pBonf. = 1).

None of the other analyzed polymorphisms showed any
significant direct effect on the correlation between Paternal
MOPS and BIS-11 Factor 1 scores (Supplementary Table 4).

However, the ANKK1-rs1800497-T allele significantly
interacted with TH-rs6356 (Waldχ2 = 26.351, df = 2,
pBonf. = 1 × 10−5). Indeed, among the ANKK1-rs1800497-T
allele carriers, Paternal MOPS scores positively correlated
with BIS-11 Factor 1 scores in the TH-rs6356-A allele
carriers (pBonf. < 10−6; Figure 3B), but not in the TH-
rs6356-G/G genotype carriers (pBonf. = 1). Moreover, in the
ANKK1-rs1800497-T allele carriers, the interaction between
Paternal MOPS scores and TH-rs6356-A allele increased the
variance of BIS-11 Factor 1 scores up to 20.5% (R2 = 0.217,
F1,66 = 117.99, pBonf. < 10−6; β = 0.466), while the TH-
rs6356-G/G genotype produced a non-significant model
(pBonf. = 0.63).

None of the other polymorphisms significantly interacted
with the ANKK1-rs1800497-T allele (Supplementary Table 5).

Discussion

In the present study, we investigated the potential
association between six candidate genetic variants of the
dopaminergic pathway (ANKK1-rs1800497, TH-rs6356, DRD4-
rs1800955, DRD4-exonIII-VNTR, SLC6A3-VNTR, COMT-
rs4680) and impulsivity within a large sample of US male
inmates convicted for violent crimes. In a subsample of the
same group of criminals, we also examined the influence on
impulsivity of the interaction between the dopaminergic genetic
variants and the individual parental style experienced during the
first 16 years of life.

Our data did not find a nominal influence on impulsivity
scores by anyone of the analyzed polymorphisms taken
individually. These results, although in contrast with other
studies that showed a significant interaction between BIS-11
Total scores and SLC6A3-VNTR (32), DRD4-exonIII-VNTR
(56) or COMT-rs4680 (56) and between BIS-11 non-planning

scores and COMT-rs4680 (57), are in line with some previous
findings showing no association between BIS-11 Total scores
and SLC6A3-VNTR (58, 59), TH-rs6356 (60), DRD4-exonIII-
VNTR (32), COMT-rs4680 (32, 58, 60), or ANKK1-rs1800497
(56, 60).

Of note, the data reported by Forbes (32) and Soeiro-De-
Souza (57) would lack statistical significance if corrected for
multiple comparisons, while the sample enrolled in the Varga’s
study (56) included non-institutionalized subjects with mixed
gender and different age, ancestry and ethnicity as compared
to our sample. This may contribute to explain why we did not
observe the same associations (61, 62).

Concerning the role of the environment, we found that
Paternal MOPS scores explained only 1.8% of the variance of
the BIS-11 cognitive/attentive scores. As the cognitive/attentive
subscale of BIS-11 evaluates the inability to concentrate and
pay attention on current tasks and to focus thoughts (63), our
data suggest that paternal indifference, over-control and abuse
may exert a weak, yet significant, influence on the normal
development of child cognitive skills, favoring more distracting
and moving thoughts, as well as a restless behavior.

Maternal MOPS scores were not significantly associated
with BIS-11 scores in our sample. However, as most of the
criminals recruited in the present study reported low Maternal
MOPS scores, thus suggesting that they had not been exposed
to dysfunctional mothering, our data do not allow to exclude
that a negative mother’s parenting may exert an impact on
impulsivity as well.

In line with our results, several previous studies showed that
early traumas, including childhood maltreatment, may affect
impulsivity (64, 65) and the executive functions impaired in
cognitive/attentive impulsivity (66) (e.g., memory, attention,
concentration, conceptualization, verbal comprehension,
spatial orientation, and analysis and synthesis abilities)
[see Su et al. (67) for a comprehensive review and Liu
(68) for a meta-analysis]. None of the previous studies,
however, focused on the distinct impact of mothering and
fathering. Thus, our data indicate for the first time that
paternal parenting influences the normal development
of cognitive/attentive impulsivity, producing long-lasting
behavioral consequences. This observation is in agreement
with the United States 2006 Child Abuse and Neglect
User Manual Series, which describes as involved fathers
play a beneficial role on child verbal skill development,
intellectual functioning, academic achievement, and cognitive
capacity (69).

Our results also showed that the impact of paternal
maltreatment on cognitive/attentive impulsivity is strengthened
by the interaction with the ANKK1-rs1800497-T allele. The BIS-
11 cognitive/attentional scores variance explained by Paternal
MOPS scores, indeed, increased significantly from 1.8 to 12.7%.

Consistently, previous studies observed that the ANKK1-
rs1800497-T allele interacts with both prenatal and rearing
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adverse environments, negatively affecting the offspring
executive functions, and predisposing to irritability, attention
deficits and violence (70–72). Moreover, female offenders
carrying the ANKK1-rs1800497-T allele, born from criminal
fathers, more often present persistent and violent delinquency
(73), in line with the role of ANKK1-rs1800497-T allele in
increasing vulnerability to maladaptive fathering. Of note, the
ANKK1-rs1800497-T allele has been previously associated with
attention deficit hyperactivity disorder (ADHD) (74–76) and
with deficits in sustaining attention observed in individuals
with alcohol dependence (74).

ANKK1-rs1800497 (C/T) is a missense variant producing
a glutamine to lysine amino acidic change at position 713,
located close to the dopamine receptor D2 (DRD2) gene.
The ANKK1-rs1800497-T allele has been shown to decrease
by 30–40% the DRD2 expression in the striatum (77–85).
More specifically, the ANKK1-rs1800497-T allele seems to
reduce the expression of the S isoform of DRD2. DRD2S
mainly acts as a presynaptic inhibitory auto-receptor, which
inhibits the dopamine release through negative feedback on
dopaminergic neurons and promotes the dopamine reuptake
by facilitating the expression of the dopamine transporter on
the surface of presynaptic terminals (86, 87). DRD2S also
acts as a heteroreceptor, by modulating the release of GABA,
glutamate and acetylcholine from striatal interneurons (88, 89)
and the glutamate inputs from sensory and motor cortical areas
(89–91); DRD2S is abundantly expressed on striatal dopamine
terminals (92) and seems to be the main regulator of striatal
function (93).

Finally, the striatal DRD2S appears to be critically
involved in the regulation of the default mode network
(DMN) (93), a circuit that comprises several brain regions
(from prefrontal cortex to medial posterior cortex to
lateral areas, including inferior parietal lobule and medial
temporal lobes) functionally connected to the striatum
(94–96). The DMN acts as a sentinel of the surrounding
environment that allows directing attention toward or
away from external stimuli; the activity of DMN is maxima
during rest but is reduced during attention-demanding
and externally oriented tasks [for example, see Anticevic
et al. (97)]. An altered DMN activity has been associated
with attention deficits; patients with ADHD, for example,
show difficulties in suppressing DMN activity on attention-
demanding tasks (98, 99), as well as subjects with high BIS-11
cognitive/attentive scores show a higher connectivity within the
DMN (100).

As early life traumas have been demonstrated to modify
the functional connectivity between the DMN and the striatum
(101, 102) and to alter the striatal dopamine turnover (103), the
impact of traumas on the DMN connectivity might be mediated
by their effects on dopamine signaling. We thus hypothesize that
the ANKK1-rs1800497-T allele and paternal maltreatment may
synergistically hamper the disengagement of DMN, necessary

in goal-directed and attention-demanding tasks (104), thus
favoring the attentive/cognitive impulsivity.

Finally, we observed that the effect of ANKK1-rs1800497-
T allele in interaction with paternal maltreatment on
cognitive/attentive impulsivity was further increased
by the presence of the TH-rs6356-A allele. More
specifically, the variance of BIS-11 cognitive/attentive
scores, explained by Paternal MOPS scores, increased
up to 20.5% in carriers of both ANKK1-rs1800497-T and
TH-rs6356-A alleles.

The TH-rs6356 (G/A) is a missense variant of the gene
coding for the tyrosine hydroxylase (TH), the enzyme deputed
to the hydroxylation of the amino acid L-tyrosine into L-3,
4-dihydroxyphenylalanine (L-DOPA), a rate-limiting step for
dopamine synthesis (105).

As DRD2S has been shown to deactivate the catalytic activity
of TH in the striatum by inhibiting the enzyme phosphorylation
(106), we hypothesize that the reduced expression of DRD2S
mediated by the ANKK1-rs1800497-T allele may result in
a higher TH phosphorylation that produces an increased
dopamine synthesis. Concerning the TH-rs6356-A allele, its
function is not known yet, while it is known its location in
a regulatory domain of TH. This suggests that it might affect
the TH catalytic activity and likely cooperate with the ANKK1-
rs1800497-T allele in increasing the dopamine synthesis rate.

Overall, these findings deepen our understanding of
the complex interplay between nature and nurture in the
modulation of impulsive behavior. Specifically, in a large
sample of criminals, we detected a synergistic interaction
in promoting attentive/cognitive impulsivity between two
dopaminergic genetic variants that cooperate in increasing
dopaminergic neurotransmission and paternal maladaptive
parenting. More in general, these results highlight the
reciprocally connected role of genetics on one hand and of
early life environment and childhood parental care on the
other hand in shaping the individual ability to modulate their
behavior in adult life.
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