
sensors

Article

A New Adaptive Method for the Extraction of Steel Design
Structures from an Integrated Point Cloud

Pawel Burdziakowski 1,* and Angelika Zakrzewska 2

����������
�������

Citation: Burdziakowski, P.;

Zakrzewska, A. A New Adaptive

Method for the Extraction of Steel

Design Structures from an Integrated

Point Cloud. Sensors 2021, 21, 3416.

https://doi.org/10.3390/s21103416

Academic Editors: Alessandro Sabato,

Adam Martowicz, Piotr Kohut and

Krzysztof Holak

Received: 19 April 2021

Accepted: 10 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geodesy, Faculty of Civil and Environmental Engineering, Gdansk University of Technology,
Narutowicza 11-12, 80-233 Gdansk, Poland
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80-171 Gdańsk, Poland; zakrzewska.ang@gmail.com

* Correspondence: pawel.burdziakowski@pg.edu.pl

Abstract: The continuous and intensive development of measurement technologies for reality mod-
elling with appropriate data processing algorithms is currently being observed. The most popular
methods include remote sensing techniques based on reflected-light digital cameras, and on active
methods in which the device emits a beam. This research paper presents the process of data integra-
tion from terrestrial laser scanning (TLS) and image data from an unmanned aerial vehicle (UAV)
that was aimed at the spatial mapping of a complicated steel structure, and a new automatic structure
extraction method. We proposed an innovative method to minimize the data size and automati-
cally extract a set of points (in the form of structural elements) that is vital from the perspective of
engineering and comparative analyses. The outcome of the research was a complete technology
for the acquisition of precise information with regard to complex and high steel structures. The
developed technology includes such elements as a data integration method, a redundant data elimi-
nation method, integrated photogrammetric data filtration and a new adaptive method of structure
edge extraction. In order to extract significant geometric structures, a new automatic and adaptive
algorithm for edge extraction from a random point cloud was developed and presented herein. The
proposed algorithm was tested using real measurement data. The developed algorithm is able to
realistically reduce the amount of redundant data and correctly extract stable edges representing the
geometric structures of a studied object without losing important data and information. The new
algorithm automatically self-adapts to the received data. It does not require any pre-setting or initial
parameters. The detection threshold is also adaptively selected based on the acquired data.

Keywords: photogrammetry; TLS; UAV; steel structure; monitoring; integration; fusion

1. Introduction

Today, measurement technologies for spatial modelling data are under continuous
and vigorous enhancement. The most popular methods include photogrammetric tech-
niques based on digital visible light cameras and laser scanning. The development of these
sensors drives engineers and scientists to come up with newer measurement methods and
associated applications. More and more of the above find their application in civil engi-
neering [1–3], environmental engineering [4–6], construction [7–10] or architecture [11,12],
thus intensively stimulating the further progress of these technologies.

When using the aforementioned photogrammetric techniques, the differences arising
from the various types of used sensors should be taken into account. On the one hand, we
are dealing with a passive sensor: a photo camera, the images from which constitute a basis
for further geometric studies; on the other hand, a laser scanner that collects information
on the surrounding terrain via an active sensor, most usually in the red band. Various
sensors and different methods for the acquisition of spatial information result in such data
also being different. Both technologies have their pros and cons, which are described in
more detail in [13]. Their simultaneous use cross-eliminates the restrictions of both sensors.
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Information from two or more sensory sources can be fused or integrated, which supports
the modelling process and minimizes the modelling issues arising from the physics of a
given sensor.

Quite often, the data acquired using an unmanned aerial vehicle (UAV) constitute a
perfect complement to the terrestrial laser scanning (TLS) data. Therefore, these techniques
can be deemed complementary.

In general, as indicated by a review of the source literature below and the nature
of both technologies, it should be concluded that TLS information is used to generate
a true geometric model (quantitative data), while visible light camera or multispectral
camera data additionally provide qualitative and quantitative data. The source literature
already contains multiple methods for fusing UAV and TLS data, and the number of
their applications is constantly growing. The authors of [14–16] developed an improved
method for assessing landslide risk based on a generated 3D surface model. UAV photos
were used within the research to assess slope-forming rock cracks. The synergistic use of
photogrammetric products and their fusion is often the case in the assessment of landslide
risks, which is demonstrated by [17,18]. The authors of [19] concluded that the method for
acquiring photos from a UAV is characterized by higher accuracy in modelling key forest
properties during its regeneration phase. In their publication [20], the authors compared
data acquired via stationary laser scanning and data from a scanner on-board a UAV.
This is a concept created by the Austrian company Riegl. UAV Laser Scanning (ULS)
proved to be more efficient, faster and more accurate in the case of forest areas than the
stationary method that is recognized as the reference in this study. As also noted, airborne
laser scanning (ALS) provided lower-density clouds that, in the case of forest areas, failed
to guarantee data—an aspect that is vital in terms of this object. The combination of
image and laser scan data is widely used in forestry. In the case of [21,22], data from two
different sources significantly improves the elaboration quality and the ultimate initial
point accuracy.

Low-altitude photogrammetry (or UAV photogrammetry) was found to be excellent
for an accurate analysis of coastline and littoral areas [23–25]. The study [26] thoroughly
assessed the accuracy of the applied digital surface model (DSM) that was aimed at
detecting changes in a coastal area. The authors of [25] also presented a filtration method
involving UAV data that was intended to enhance the matching of coastal area models. The
publication [27] comprehensively described a method of fusing sensory data for coastal
protection systems.

Salach et al., in [28], thoroughly analysed the accuracies achieved owing to UAV Laser
Scanning (ULS) and UAV-photogrammetry, in which case it was concluded that the Digital
Terrain Model (DTM) generated by ULS was significantly more accurate and enabled
the elimination of inaccuracies related to terrain vegetation. The authors indicate that
laser technology had clear advantages over photogrammetric models in situations where
vegetation can be a problem during terrain surface reconstruction. In contrast, in the case
of terrains not covered by vegetation, UAV photogrammetry enables the achievement of
surface model determination accuracy from 1 cm [29].

Information on the natural environment can also be enhanced owing to use of mul-
tispectral sensors and the integration of these with spatial data. Salehi et al., in [30],
reviewed a methodology for integrating multispectral camera and scanning laser data for
the evaluation of sea cliffs in the Arctic region. Bujakowski et al., in [31], stated that the
data from ALS and multispectral photography constituted grounds for the assessment of
embankment stability.

Very good results are also achieved by combining scans and a photogrammetric model
when studying engineering structures. Such data provide increased amounts of information
and enable the precise stocktaking of cultural heritage structures [32]. Furthermore, owing
to numerical and spatial models, the damage and degradation of cultural structures are
assessable [33]. The research [34] was conducted from a similar perspective, in which laser
scans were used to develop orthoimages to be used as a base to detect structural cracking.
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Moreover, scans and images can be integrated in order to obtain even more information,
which in the case of structural assessment is an innovative method, and was described for
the first time in [35].

The analysis of the geometry obtained from a point cloud was described in [35],
which, just like the previously presented publications, focused on converting the cloud
into orthoimages, then subjected these to analyses (e.g., edge detection). It should be noted
that these methods develop a two-dimensional image representation (orthoimage), which
is then assessed.

A very interesting publication [36] discussed the possible use of photogrammetric
data for the supplementation of airborne laser scanning (ALS) data. Airborne scanning is
characterized by the generation of a relatively low density of points; hence, high-resolution
photos are perfect to complement the missing data. It is worth mentioning that the authors
of [37] suggested reconstructing characteristic geometric structures (building roof outlines
in this case) using integrated spatial data. Extracting only vital geometric structures enables
the achievement of a significant data volume reduction.

It should be recognized that point clouds and high-resolution imagery carry large
amounts of information. Their magnitude, therefore, can be limited only to what is essential,
e.g., by isolating vital geometric structures. This issue was addressed by such elaborations
as [38], in which Serna et al. used huge point clouds to extract only the objects that were
important from the modelling perspective (building facades in this case). Xie et al. in [38]
also presented an urban area building shape extraction method. In addition, they discussed
methods of filtering and preparing the data for analyses.

In the case of the stocktaking of engineering structures, high-accuracy spacing map-
ping for the purposes of reconstruction or comparison is a very important issue. Publica-
tions [39–42] have thoroughly described the comprehensive use of measuring devices in
order to improve the accuracy. What is more, they list and develop appropriate algorithms
for the evaluation of structural performance.

Very often, the mapping accuracy in such analyses must be at a level of 1 mm; however,
in the case of the object described in this on-going article (a complex steel structure), its
dynamic operation and erection precision must fall within a tolerance of 1 cm. It is quite
complicated to achieve such a result; therefore, in our article, we propose an innovative
method for combining data in order to achieve the required outcome.

Integrated spatial data has a very large number of points. The integration of TLS
and UAV clouds results in a number of points that commonly exceeds several million.
In most engineering applications, such dense point clouds are not required, and only
some characteristic elements of the structure—such as its edges—are analyzed [43–46].
Additionally, as in the presented case, the constructed object is compared with the design
data in CAD (Computer Aided Design) software. Such CAD projects contain mainly lines,
representing the edges of the object and its elements. Therefore, it seems reasonable to
implement a method to extract only such characteristic features of an engineering structure
from a fully integrated point cloud.

As the literature analysis indicates, edge extraction techniques from point clouds can
be divided into methods using rouboust statistics [47–50], surface segmentation [51,52], line
segmentation [53], region growing methods [54–57] and neural methods [58,59]. The appli-
cation of the methods ranges widely, including robotics [60], reverse engineering [61,62],
manufacturing industries [63–65] and cartography [46]. One feature common to the above-
mentioned methods is the sensitivity to the noise present in the point cloud. Due to the fact
that point clouds derived from real measurements of engineering objects generally have a
large amount of noise, the selected method should have some noise robustness, while the
process of preparing the cloud for analysis should also take this fact into account.

This study integrated TLS data with UAV image data in order to reconstruct a complex
spatial steel structure and then minimize the volume of data and automatically extract
vital structural elements from the perspective of engineering analyses. The outcome of
the research was the development of a technology for the acquisition of precise complex
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spatial information related to a high steel structure. This contains such elements as a
method for integrating data and using it to extract vital structures, as well as methods for
eliminating redundant data and for filtering integrated photogrammetric data. Ultimately,
the subsequently applied structure extraction algorithms isolate structural elements that can
be easily compared with best steel structure design practices, and consequently evaluate
them in terms of execution. In the work, the developed final product, owing to the
minimization of the volume of spatial information and the isolation of vital elements, was
compared with a theoretical 3D model of the structure.

This study presents the following new solutions in the field of spatial measurements
and data analysis:

• The development and presentation of a complete integration technology for spatial
data generated from two sensory measurements: data from TLS and that from airborne
photogrammetry obtained through UAV flights was integrated.

• The comparative analysis of the developed models and the accuracy analysis of the
integration process.

• The development and testing of a new adaptive and automatic algorithm for the
extraction of the edges of geometric structures from point clouds.

• A new algorithm used to develop a reduced spatial model of a building’s steel structure.

Within this context, the paper has been organized as follows: the first section is the
Introduction, which presents the motivation and background of this study; the second
section, Materials and Methods, describes the tools and methods used to process the data,
and presents the developed extraction algorithm. The third section discusses the results and
quality obtained. The paper ends with a section entitled “Conclusions”, which summarizes
the most important aspects of the study.

2. Materials and Methods
2.1. Object History and Description

The subject matter of the study was the Palm House of the Oliwa Park in Gdansk
(Figure 1), constructed in the second half of the 18th century. It is located within the Adam
Mickiewicz Park, which occupies an area of almost 10 ha. This park used to be a monastery
garden established by the Cistercians and inspired by the French garden ark of the Baroque.
The palm house located therein acted as a winter garden housing exotic plants [66].
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Figure 2. (a) Palm house prior to its reconstruction, 2017; (b) during the reconstruction, 2018, measurement and 
construction process inspection period; (c) the glazed and commissioned building [66] (Reproduced with permission from 
Dyrekcja Rozbudowy Miasta Gdanska). 

The palm house structure was demolished in September 2017 in order to replace it 
with a taller building that would incorporate the height of the date tree, which was 
distorting the roof structure as of 2013. The new structure is cylindrical, and has a glass 
rotunda with a height of 24 m and a width of 17 m. The volume of the building is 4.4 
thousand m3. Of note, 1400 supporting points were installed on the steel structure, each 
of which was individually fitted.  

2.2. Process Description 
A work methodology and algorithm were developed in order to process the 

measurement data and isolate the geometric structures of the studied building (Figure 3). 
The individual stages of the algorithm below are thoroughly discussed in the further 
sections of this research paper. 

Figure 1. (a) Oliwa Park Palm House, 1972–1978 (photo credit: Andrzej Zborski). (b) Site location (WGS-84).

The inside of the building houses palms, cacti, aloe, philodendrons and banana trees
in near-natural conditions. The palm house, as an element of a post-Cistercian complex,
was entered into the register of monuments in 1971. The date plant therein is 180 years
old, and it is the only such object in Poland. Prior to its renovation, the facility consisted of
an eastern, single-story brick building. Its cylindrical body was constructed in 1954. The
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dome—the southern section and parts of the western section of which are glazed—was
15 m high (Figure 2).
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Figure 2. (a) Palm house prior to its reconstruction, 2017; (b) during the reconstruction, 2018, measurement and construction
process inspection period; (c) the glazed and commissioned building [66] (Reproduced with permission from Dyrekcja
Rozbudowy Miasta Gdanska).

The palm house structure was demolished in September 2017 in order to replace it with
a taller building that would incorporate the height of the date tree, which was distorting
the roof structure as of 2013. The new structure is cylindrical, and has a glass rotunda
with a height of 24 m and a width of 17 m. The volume of the building is 4.4 thousand m3.
Of note, 1400 supporting points were installed on the steel structure, each of which was
individually fitted.

2.2. Process Description

A work methodology and algorithm were developed in order to process the mea-
surement data and isolate the geometric structures of the studied building (Figure 3). The
individual stages of the algorithm below are thoroughly discussed in the further sections
of this research paper.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 27 
 

 

. 

Figure 3. Data processing algorithm (PC: point cloud; *.LAS: LAS file format). 

2.3. Data Acquisition 
The data acquisition process was conducted using terrestrial laser scanning and UAV 

flight image acquisition. The fact that the upper section of the facility was unavailable to 
a laser scanner necessitated the use of a UAV with a non-metric camera. Figure 4 shows a 
graphical data acquisition diagram. TLS stations were uniformly distributed around the 
building. In this case, the laser scanner was based on 17 stations. The distance of the 
scanner from the measurement object was determined experimentally, and is a certain 
compromise between the available space and the theoretical density of the measurement 
points. The essence of the determination of the distance is to choose such a distance from 
the structure as to obtain a combined coverage with the TLS data for the bottom part and 
the UAV data for the upper.  

Each UAV flight followed a circle with several different radii ( 𝑟 , 𝑟 ) and at 
respectively different altitudes (ℎ , ℎ ). Additionally, several vertical flights were 
conducted in order to photograph the structure below the dome. Figure 4 contains a 
diagram with circular flight trajectories marked in red, which constitute the theoretical 
minimum. It also contains the vertical flight trajectories that are advocated for the 
scanning of such structures. In practice, flying over numerous concentric radii is 
recommended. The objective of such a flight plan is to maximize the overlapping of the 
photos and to multiply the projecting rays for a selected area. Two independent flights 
were applied in the case in question. The first one covered seven concentric trajectories 
over the structure in a clockwise direction, while the second included nine counter-
clockwise concentric trajectories. Some of the trajectories were executed automatically 
using the available UAV flight automation functions, whereas those at a short distance 
over the building were conducted manually, as manual flight control over such a structure 
improves the air operation safety. 
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2.3. Data Acquisition

The data acquisition process was conducted using terrestrial laser scanning and UAV
flight image acquisition. The fact that the upper section of the facility was unavailable to
a laser scanner necessitated the use of a UAV with a non-metric camera. Figure 4 shows
a graphical data acquisition diagram. TLS stations were uniformly distributed around
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the building. In this case, the laser scanner was based on 17 stations. The distance of the
scanner from the measurement object was determined experimentally, and is a certain
compromise between the available space and the theoretical density of the measurement
points. The essence of the determination of the distance is to choose such a distance from
the structure as to obtain a combined coverage with the TLS data for the bottom part and
the UAV data for the upper.
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Each UAV flight followed a circle with several different radii (rc1, rc2) and at re-
spectively different altitudes (hAGL1, hAGL2). Additionally, several vertical flights were
conducted in order to photograph the structure below the dome. Figure 4 contains a
diagram with circular flight trajectories marked in red, which constitute the theoretical
minimum. It also contains the vertical flight trajectories that are advocated for the scanning
of such structures. In practice, flying over numerous concentric radii is recommended.
The objective of such a flight plan is to maximize the overlapping of the photos and to
multiply the projecting rays for a selected area. Two independent flights were applied in
the case in question. The first one covered seven concentric trajectories over the structure in
a clockwise direction, while the second included nine counter-clockwise concentric trajec-
tories. Some of the trajectories were executed automatically using the available UAV flight
automation functions, whereas those at a short distance over the building were conducted
manually, as manual flight control over such a structure improves the air operation safety.

2.3.1. UAV Photogrammetry: Initial Data Processing

The photogrammetric flight was conducted using a DJI Mavic Pro (Shenzhen DJI
Sciences and Technologies Ltd., Shenzhen, China) UAV. Such an UAV is representative of
the commercially available aerial vehicles designed and intended primarily for recreational
flying. It was equipped with an integrated non-metric camera. A total of 1180 photos
bearing metadata with the current UAV position were taken during the two flights. The
data was saved in EXIF (Exchangeable Image File Format). The results were processed
using commercial Bentley ContextCapture (Bentley Systems Inc., Exton, PA, USA) software
(Table 1). The result of the processing was exported to a point cloud in a *.las format
(Figure 5). The UAV image data were processed using the direct georeferencing method,
which means that each image contained location data recorded using an UAV on-board
global navigation satellite system. Due to the height of the structure and its design, ground
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control points could not be placed on the object. With the direct georeferencing method,
the object was modeled according to its actual scale.

Table 1. Accuracy-related data of the developed photogrammetric model.

Series Distance to Object Ground Resolution Reprojection Error

1 1–15 m 11 mm/pix 0.71 pix
2 1–15 m 2.4 mm/pix 0.77 pix

Camera locations and error estimates (mean)
X error (m) Y error (m) Z error (m)

1 0.00127 0.00137 0.00128
2 0.00082 0.00084 0.00092
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2.3.2. TLS Initial Data Processing

The laser scanning was conducted in a continuous mode using a Leica P30 (Leica
Geosystems AG: Part of Hexagon, Sankt Gallen, Switzerland) scanner (Table 2). The mea-
surement stations (17 in total) were placed on the ground, evenly around the structure. The
measurements were taken using the option of recording up to a million points per second.

Table 2. TLS technical data—Leica P30.

Technical Data Leica P 30

Measurement speed: Up to 1 MM points per second
Range accuracy: 1.2 mm + 10 ppm over the entire range

Angular accuracy: 8” horizontally; 8” vertically
3D position accuracy: 3 mm at 50 m; 6 mm at 100 m

Laser wave length: 1550 nm (invisible)/658 (visible)

Distance noise: 0.4 mm RMS at 10 m
0.5 mm RMS at 50 m

Horizontal field of view: 360◦

Vertical field of view: 270◦

The robust estimation method and the well-known ICP (Iterative Closest Points)
algorithm were used in order to align the images from the individual scans. This method
aims to appropriately filter the points in order to determine automatic reference points
on the station’s point cloud, and then combine them relative to the subsequent stations.
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The method utilizes an algorithm described in [16], in which the author aligned stationary
stations relative to airborne ones using the least squares method. Another interesting
modification of the ICP algorithm is presented here [67]. The record alignment results are
shown in Table 3, as appropriate translations of PX, PU, PZ (scan shift over individual
axes), as well as Roll, Pitch and Yaw (inter-rotation of the stations). PKT is the automatically
computed number of reference points that must be taken into account in the calculations.
The processing result in the form of a point cloud was exported to the *.las format.

Table 3. Station transformation parameters during stocktaking work involving a steel engineer-
ing structure.

Name PX PY PZ Roll Pitch Yaw Scale PKT

Stan1 0.000 0.000 0.000 0.000 0.000 0.000 0.0 188
Stan2 0.000 0.000 0.000 0.000 0.011 0.000 0.0 293
Stan3 0.001 0.000 0.003 0.007 −0.015 0.005 0.0 364
Stan4 0.001 0.001 0.004 0.011 −0.015 0.005 0.0 428
Stan5 0.001 0.001 0.007 0.002 0.024 0.005 0.0 330
Stan6 0.000 0.001 0.008 0.017 −0.003 0.001 0.0 359
Stan7 −0.001 0.000 0.011 0.015 −0.021 0.002 0.0 306
Stan8 −0.002 0.000 0.008 0.025 −0.009 0.009 0.0 238
Stan9 −0.001 −0.001 0.007 0.014 0.017 0.006 0.0 304
Stan10 −0.001 −0.001 0.003 0.005 0.012 0.003 0.0 228
Stan11 −0.001 −0.001 0.005 −0.003 0.005 0.002 0.0 245
Stan12 −0.001 −0.002 0.002 −0.006 −0.018 −0.011 0.0 142
Stan13 0.000 −0.002 0.003 0.001 0.003 0.005 0.0 138
Stan14 −0.001 −0.001 0.006 −0.009 −0.008 0.004 0.0 311
Stan15 −0.004 −0.001 0.004 −0.015 −0.003 −0.004 0.0 32
Stan16 −0.009 0.000 0.009 0.001 −0.024 0.010 0.0 536
Stan17 −0.010 0.000 0.009 −0.002 -0.025 0.014 0.0 539

2.4. Point Cloud Filtration

The point clouds generated within the previous stage have a certain amount of re-
dundant data that is irrelevant from the point of view of the extracted structures, and a
certain amount of noise and random data (Figure 5). For this reason, the developed point
clouds were pre-filtered. As demonstrated in [68], cloud pre-filtration is very important
and enables the isolation of vital infrastructure elements. Pre-filtration was also applied
in [69]. Pre-filtration consists of four stages: noise filtering, cloth simulation filtering [70]
(CSF), data reduction and statistical outlier removal (SOR) filtering. The same stages were
applied for each of the acquired point clouds and are recommended prior to the cloud
integration stage.

A Surface Distance-Based Filter [70] was applied in the case of the point cloud acquired
using an UAV. This filter eliminates outliers (considered noise) that do not fall within a
defined distance from the local surface, as determined inside a kernel window defined by a
search radius. In this way, it is possible to eliminate noise, i.e., points beyond the minimum
distance (Dmin), which are defined as:

Dmin = sdk + nσ[−] (1)

where sdk means the mean distance from the local surface determined by k of the adjacent
points around an indicated central point, n is a user-defined coefficient and usually takes
the value of 1–3, and σ is the standard deviation of the distance from the flat surface. It
should be noted that setting overly aggressive parameters for this method can lead to
excessive point cloud filtration. This process can be iterative in order to avoid this. Such
filtration also tends to remove rounded surfaces and edges. In the case in question, the sdk
value was set at 0.006474 m, while n adopted the value of 1. This operation enabled the
elimination of 90,290,876 outliers. After this stage, the number of points in the UAV cloud
was reduced to 92,214,210 (Table 4) (Figure 6a).
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Table 4. Number of points in the individual clouds, after each filtration stage.

Filtration Phase UAV Point Cloud TLS Point Cloud

Initial 182,505,086 103,680,397
Noise filter 92,214,210 60,791,121

CSF 81,005,411 37,192,129
Manual cleaning 69,029,458 24,033,077

Reduction 24,160,311 24,033,077
SOR 18,806,444 23,875,659
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A neighbourhood distance filter was used in the case of the TLS cloud in order to
eliminate outliers. These filter k studies define the neighbours of a point for each of the
points within a tested cloud; points with a distance higher than the sum of the mean
distance and standard deviation values are classified as outliers. This can be expressed
as follows:

Dmin = dk + nσ[−] (2)

where dk is the mean distance k of points adjacent to the measured point (centre) and n
is a user-defined coefficient that usually takes the value of 1–3. The elimination of the
outliers for the studied cases was conducted for k = 6 neighbours and n = 1. The use
of the algorithm resulted in the removal of 42,889,276 points deemed noise from the TLS
cloud. The number of points after this operation was 60,791,121 (Table 4) (Figure 6b).

The next stage of the pre-filtration is the removal of the points representing the
Earth’s surface and other objects located in the vicinity of the studied structure. The cloth
simulation filter (CSF) followed by the manual elimination of small ambient objects was
applied for this purpose. The CSF technique [70] enables the segmentation of point clouds
and their division into points representing the ground and other elements placed on it.

Cloth simulation is a collision detection algorithm. These are used in computer
graphics and computer simulations in order to find movement restrictions in 2D and
3D scenes. In general, a collision detection algorithm answers the following question:
is moving any object in a given direction possible or are there obstacles in its path, i.e.,
other moving or stationary objects? Collisions between various fragments of the same
object should also be detected as part of the cloth simulation. Certain modifications were
introduced in order for this algorithm to be used for point cloud filtering. Collisions are
detected by comparing the heights of the simulated cloth particle and the terrain. As
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soon as a particle reaches ground level, it is immobilized. The simulation provides an
approximation of the real terrain, and then the distances between original cloud points
and the simulated particles are calculated using an algorithm for the calculation of the
distances between clouds. Points with distances smaller than a defined distance threshold
are classified as ground, while the others constitute measurement (terrain) objects.

The practical implementation of the CSF algorithm requires the definition of three
parameters. The first is the cloth resolution, which relates to the grid size. The next value
concerns the number of iterations. Usually, 500 iterations are sufficient. The last parameter
is the classification threshold, which defines the distance between points and the simulated
terrain. In order to filter both clouds (UAV and TLS), we assumed the following parameter
values: grid size 2500 iterations, and 0.5 for the classification threshold. This eliminated the
points classified as the ground surface, and the total number of points in both clouds was
once again reduced (Table 4).

After eliminating the ground surface, objects located in the vicinity of the studied
structure were removed manually. They included a bucket truck and elements of technical
infrastructure that the analysis did not cover. After this operation, the UAV and TLS point
clouds were deemed fully cleaned and ready for another density balancing operation
(Figure 7).
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The next step in preparing the clouds for integration is balancing their density. A
cloud of higher density should be reduced by a determined density reduction factor (RD).
For the purposes of this study, the reduction factor was defined as

RD =
100

(DPCHI /DPCLOW)
(3)

where DPCHI and DPCLOW are the mean densities for the clouds with higher and lower
density, respectively. The mean cloud density (DPC) was defined as the product of the sum
of the mean surface density (Di) of the cloud for k-neighbours of the studied point, with a
radius of r, and the total number of points in this cloud should be

DPC =
1

nT

nT

∑
i=1

Di (4)
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Di =
ni

πr2 (5)

where Di is the cloud surface density (points/m2), ni is the number of points adjacent to
the studied point i, r–radius (m), nT is the total number of points in a cloud.

Using the expressions above, the mean density and the UAV cloud reduction factor
were calculated for both data sets: UAV and TLS. Consequently, the mean UAV data density
amounted to 4973.59 (points/m2), the mean TLS data density was 1624.03 (points/m2),
and the reduction factor was 32.65%. As a result, the number of points in the UAV cloud
was reduced and the densities of both clouds were balanced. The number of points in the
UAV cloud after this operation was 24,160,311 (Table 4).

The ultimate stage in preparing the data for integration is filtration based on a statisti-
cal filter [71,72]. This filter is based on the assumption that an outlier is considered to be a
point located further than the adopted threshold, defined as the mean standard deviation
distribution for all of the k-neighbours of each cloud point. As such, if we let point mi
described with coordinates xi, yi, zi within space R3 belong to point cloud M with a total
number of points Mp, then

M = {mi}, i = 1, . . . , Mp, mi = xi, yi, zi (6)

And let mq mean a studied point, such that mq ∈ Mi, and mn means its neighbouring
point wherein mn ∈ Mi, then the closest neighbourhood Mn k of points adjacent to the
studied point mq, such that Mn =

{
mn

1 , . . . , mn
k
}

, satisfies the condition:

p

√√√√ k

∑
1

∣∣mn
k −mq

∣∣p ≤ dm (7)

where dm is the maximum adopted distance between the studied point, and mn
k ∈ Mn, as

well as p ≥ 1 (here adopted p = 2).
In consequence, if the mean distance around point mq relative to all points k in its

vicinity is

di =
1
k

k

∑
1

√(
mn

k −mq
)2 (8)

And for all points mi, the mean value of di is

µ = ∑Mp
i

di
Mp

(9)

The standard deviation for the studied set M can be defined as

ξ =

√
1

Mp
∑Mp

i (di − µ)2 (10)

Thus, the resultant point cloud Mo, without outliers relative to the mean point will be
defined as follows:

Mo =
{

mq ∈ M
∣∣(µ− αξ) ≤ di ≤ (µ + αξ)

}
(11)

where α is an experimentally determined multiplier for a given point cloud.
The aforementioned statistical filter was applied only once for any given cloud. In

the case of the UAV data, we adopted k = 6 and α = 1, and k = 8 and α = 4 for TLS, which
enabled the ultimate elimination of the outliers (Table 4). Results in the form of a cloud
image are shown in Figure 8, which indicates that a UAV cloud clearly better maps the
geometry in the upper part of the object, especially near the peak rosette. The TLS cloud
does not exhibit complete object geometry in this section. TLS cloud noise and irrelevant
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data were removed, which revealed the shortcomings of this model. This was a predictable
situation because the scanner was positioned in the bottom object section, such that it was
not physically possible to fully map the object in this area.
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2.5. Point Cloud Integration

Point cloud integration is the final process in preparing the data for geometric struc-
ture extraction. In this case, the integration will successively use 4-Point Congruent Sets
(4PCS) [73] and Iterative Closest Point [74–76] (ICP) algorithms. Integration, in fact, in-
volves, in this case, the determination of elementary rotation matrices RX(θ), RY(θ), RZ(θ)

and the 3D coordinates of the translation vector
→
T X,

→
TY,

→
T Z. This procedure is often

encountered when undertaking similar tasks [77].
Cloud integration is conducted in two stages. The first stage is coarse matching and

the next is precise matching. As described above, the data was significantly filtered and
denoised. However, it should be noted that the data sources differ, and that the modelled
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surfaces of the structural elements have a slightly different shape depending on the data
source. TLS cloud objects have sharp and clear shapes. Metal section cross-sections are very
sharp; however, due to occlusions, some of the closed sections only have one part modelled
(usually, the outer) that is directly illuminated by the laser beam. The model based on
UAV has slightly more rounded section edges. The cross-section of the metal sections
is geometrically correct, and has rounded and smoother edges. This is directly related
to the characteristics and accuracy of photogrammetric modelling. The phenomenon of
occlusion did not have such a significant impact on the data volume, and most sections were
completely modelled. Minimizing occlusion results directly from the number of stations
taking the photographs. In practice, these were hundreds of positions, whereas in the case
of TLS, there were 18 stations. It follows that the 4PCS algorithm, as preliminary matching,
will fit perfectly in this case. This was also demonstrated in [53]. As a consequence, the
outcome of preliminary matching involving a cloud balanced with the 4PCS algorithm was
the following values of the rotation matrix R and transformation vector t:

M = R(S − t) (12)

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

=
 −0.821028828621 − 0.570886731148 0.0

0.570886731148 − 0.821028828621 0.0
0.000000000000 0.000000000000 1.0

 (13)

t =

 TX
TY
TZ

 =

 9.172649383545
10.196824073792
0.000000000000

 (14)

where, S andM represent a source cloud and the target cloud or model, respectively.
Coarse matching was conducted using the 4-Points Congruent Sets (4PCS) algo-

rithm [73]. This technique is rapid, noise-resistance and enables the matching of point
clouds with a high number of outliers. As claimed by the authors of this algorithm, cloud
pre-filtration and data denoising are not required. The essence of aggressive cloud filtration
is the prevention of the loss of significant object elements. Overly aggressive filtration
results in the significant loss of high-frequency features, especially in UAV models. The
UAV model has significantly fewer high-frequency details. This is manifested by rounded
edges of sharp objects, with eliminated small objects. In the case of photogrammetric
models, elements smaller than 1.5xGSD (ground sampling distance) are often omitted. The
mean GSD for the UAV model is 11 mm; therefore, objects smaller than 16.5 mm will rather
be eliminated in the data processing and cloud pre-filtration processes.

The authors of the studies presented in [73], after pre-matching clouds with the 4PCS
algorithm, then used precise matching with the ICP algorithm. Moreover, in this case,
the ICP algorithm was used within the second stage, where the rotation matrices and
translation vectors were also determined. Hence, good cloud pre-matching is important.
This stems directly from the ICP algorithm’s principle of operation. In our study, let us
assume that S andM represent a source cloud and a target cloud or model, respectively. In
this case, the source cloud is the TLS one, while the UAV cloud is considered as the target.
Therefore, we are looking for rigid transformation which minimizes the distance between
corresponding points in the clouds. The resultant cloud is shown below (Figure 9).
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2.6. Adaptive Structure Extraction Algorithm

The objective of the extraction of a structural object from an integrated point cloud is
the isolation of its stable representatives. These are the point clouds which best represent
the geometric structure of the object, regardless of their source, and are noise-independent.
In our study, an original automatic and adaptive method involving the extraction of edges
from a random point cloud and adaptive thresholding was developed in order to extract
the target steel structure. Our method is based on the automatic extraction of edges from
a point cloud, as described in [62] and modified using the study [63]. Furthermore, the
method by Otsu [78], used in [62], was replaced by adaptive thresholding [79]. This led to
the attainment of a new, adaptive and automatic algorithm for the extraction of edges from
a point cloud. This algorithm was developed for the extraction of the geometric structure of
this particular steel building, as it has a rather complicated shape. However, the algorithm
does not exclude universality and its possible application for other purposes. The method
is automatic and does not require the provision of any parameters.

The first stage of this algorithm for each point pi of the cloud has a calculated normal
vector

→
ni for the vicinity of this point that is determined by the k nearest neighbouring

points. The normal vector
→
ni will be equal to the lowest eigenvector corresponding to the

lowest eigenvalue of the covariance matrix defined in [80]:

C =
1
k

k

∑
i=1

(pi − p)·(pi − p)T , C·→vj =
→
λj·
→
vj, j ∈ {0, 1, 2} (15)

where k is the defined number of neighbours of the query point pi, p is the centroid for k
neighbours, λj is the j eigenvalue of the covariance matrix, and

→
vj is the j eigenvector. For a

given query point, the pi k of the nearest neighbours can be determined through [81].
The neighbours of point pi can be expressed as Vi = {n1, n2, . . . , nk}; therefore, the

centroid pi for set Vi can be calculated from the following formula [63]:

pi =
1
|Vi|

k

∑
j=1

nj (16)
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The scalar product of vector
( →

pi − pi

)
and the normal vector

→
ni in point pi can be

expressed as:

Pd(i) =

∣∣∣∣( →
pi − pi

)
·→ni

∣∣∣∣ (17)

And will become smaller the more the query point pi will be positioned in the vicinity
of the points forming the flat surface [62]. In contrast, the scalar product Pd for points
located on the edges will adopt the highest values. This method enables the classification
of all of the points located on the edge or not. Sample Pd values for several cases are shown
in Figure 10.
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The next stage of the algorithm involves iterative calculations of Pd for successive k
neighbours. In the case in question, it was assumed that k = {8, 16, 32 . . . 128), which gives
a total of 16 results for one cloud. If a given edge appears in each iteration for different k
values, it can be considered to be a very stable feature. In other words, if a high Pd value
appears in all of the results at the same point pi, it represents the given structure’s stable
edge. Thus, if value Pd in point pi is equal to or exceeds a certain determined threshold T,
such a point represents an edge, and conversely, if the value is lower than threshold T, it is
not treated as an edge. This relationship can be expressed for all iterations as:

F(i) =
{

1 i f ∑ns
i=1 Pd(i) ≥ T

0 i f ∑ns
i=1 Pd(i) < T

(18)

where T is defined adaptively, globally for all potential edges, using the adaptive method [79],
and ns represents the total number of iterations.

In the case of the method in question, the proper determination of the T threshold is
important. In order to automatically match the value of this threshold, the authors used an
adaptive thresholding technique that was discussed in [79]. This algorithm performs its
task via two stages. In the first stage, an integral image is calculated based on the source
image [82]. In the second stage, the integral image is used to calculate the mean for the
value of s× s pixels surrounding each studied image point, followed by a comparison of
the pixel values. If the value of the current pixel is t percent lower than the calculated mean
for its surroundings, then the pixel takes the value 0 (black). Otherwise, it takes the value 1
(white). In the case of this research, t = 50%.

3. Results and Discussion
3.1. Integration Quality Assessment

The accuracy assessment of the mutual cloud matching after the integration was con-
ducted visually, by developing cross-sections at various levels (Figure 11), and objectively,
by using the methods from [83,84]. An M3C2 distance map (Multiscale Model to Model
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Cloud Comparison) was developed for each point cloud. The results for the processed
clouds are shown in Figure 12.
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Figure 11. Cross-sections of the integrated point clouds: blue, the UAV cloud; red, the TLS point cloud (values in meters).

An analysis of the cross-sections based on integrated point clouds on four representa-
tive levels (Figure 11) clearly indicates the achieved precision of the integration process and
point distribution. Cross-section A, developed at the top of the structure, is characterized
by a significant number of UAV points, whereas the TLS points have a trace share in
the modelling of the level-A elements. The UAV cloud at level A ensures the required
separation between the elements and data continuity within the element cross-section. The
TLS cloud, in contrast, does not ensure modelling continuity, and a concentration of TLS
points is visible at level B; however, this only takes place on the outer structural elements.
The UAV also guarantees element modelling continuity and its separation at this level.
Level C exhibits a clear balancing of the modelling continuity for both techniques. The TLS
and UAV cloud enables the modelling of elements throughout their entire perimeter; the
cross-section is relatively continuous, and the data are available even for internally located
structural sections. It is noteworthy that, at the same level, the TLS cloud is a significantly
clearer representation of the modelled element, and its shape is precisely reflected. This
same element from a UAV cloud is clearly rounded, and its shape is not so sharp. The
differences in the distance at this level amount to several millimetres (a maximum of 5 mm)
and result from the nature of the very technique of point cloud acquisition and the UAV
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flight plan. No peripheral flights were detected at this level. In the case of level D, the
separation ability of the UAV technique is significantly lower, yet it maintains continuity,
although incorrect. The UAV cloud at this level does not enable the modelling of smooth
elements in close proximity, because they merge into one shape. In this case, the TLS
technique enabled the achievement of a clear structural model, similar to level C.
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on UAV points.

When analysing the M3C2 (Figure 13) distance histogram and the normal distribution,
it can be concluded that the mean standard deviation is 16 mm, with a mean of 0 for the
TLS cloud, which means that this cloud overlaps with the UAV cloud. Because a UAV cloud
slightly differs from an actual section course in the bottom part of the structure (as shown
by cross-sections C and D in Figure 12), the distance projected onto the UAV cloud indicates
a slightly higher standard deviation of 34 mm and a mean of 6 mm. These differences
demonstrate that a UAV cloud slightly deviates from an ideal model, especially in the case
of the lower parts of the modelled structure. The change in the section shape to a more
rounded one can be observed when the number of stations decreases and GSD increases.
Conversely, TLS indicates greater shape stability at the expense of the data volume. In the
case of the upper structure sections, the TLS cloud (cross-sections A and B in Figure 12)
does not map the shape, or maps it very poorly; however, despite the lack of data, the
shape is geometrically very correct.
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3.2. Structure Extraction

The operation of the developed structure edge detection algorithm was validated in
two stages. In the first, the algorithm was tested on a source cloud fragment. It involved
subjecting the cloud fragment to data reduction, which meant the reduction of the cloud
density. The second stage involved testing the operation of the algorithm using the entire
source cloud (a fully integrated TLS and UAV point cloud).

The structural extraction was validated in the first stage on a test set, i.e., a representa-
tive fragment of a steel structure. The structure contains fragments of a vertical supporting
beam and thinner horizontal supports. Five data sets—such that the minimum distances
between the point clouds were 0.5 mm, 1 mm, 3 mm, 5 mm and 7 mm—were developed
in order to determine the ability of the algorithm to extract structures and the minimum
density of the source cloud. These sets were subsequently subjected to the operation of the
developed method, and the results are shown in Figure 14. The source cloud points from a
given data set are marked in magenta, and the points of the detected edges are marked
in green.
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Figure 14. Results for a set of reduced data: (a) no reduction, (b) 0.5 mm, (c) 1 mm, (d) 3 mm, (e) 5 mm, (f) 7 mm (magenta:
source points; green: edges detected).

The results analysis indicated that the developed algorithm extracts structure edges.
In the case of a source cloud (not subjected to reduction) (Figure 14a), all of the sharp edges
were indicated correctly. These sharp edges originated primarily from laser scanning, and
were especially apparent on the horizontal reinforcement beams. UAV points form slightly
smoother edges, and point islands appear on some flat surfaces of vertical sections, which
are detected as edges. Such a phenomenon occurs at a high density of an irregular point
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cloud, and is clearly minimized when the distance between cloud points is lower than
3 mm (Figure 14d). The correct edge detection is the case with clouds where the minimum
distance between points is 1–3 mm. In the case of these clouds, the edges of vertical beams
and of thinner strengthening elements are clearly marked. No loss of data concerning the
studied structure is indicated for this density. Further reduction (7 mm) causes the edges
of horizontal thinner elements to no longer be detected, with consequent visible loss of
data. The described phenomenon occurs for the proposed number of iterations (16) and the
highest number of k = 128. Because the integrated source point cloud exhibits a very high
density, the scale level number (16) planned herein might be insufficient. A larger span
of the k scale can be used for a higher density, at a clear expense of computing speed loss.
However, it should be noted that the nature of the integrated point cloud is not uniform.
The cloud originates from two sources. The structure has slightly rounded section edges,
such that, with high cloud density, such a potential edge is a rounded section element.
In other words, the algorithm is so sensitive that it detects even the smallest edges at a
high density, especially on an uneven surface. This unexpected property can sometimes
be a great advantage when detecting cracks in particular; however, this was not the goal
in this case. Additionally, these surface irregularities originate from the type of applied
point cloud acquisition technology, and are notably visible in the case of a UAV cloud. A
close-up of this phenomenon is shown in Figure 15. This figure shows clouds divided into
UAV (blue), TLS (green) points and detected edge points (red).
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Figure 15. Structure extraction results by the source of the point origin: (a) no reduction, (b) 0.5 mm, (c) 1 mm, (d) 3 mm,
(e) 5 mm, (f) 7 mm (green: TLS points; blue: UAV points; red: edges detected).

Obtaining the optimal point cloud density enabled us to carry out the final compu-
tations for the entire object. The results are shown in Figure 16. The detected edges are
shown in the left view and constitute characteristic elements of a steel spatial structure. In
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the middle is the view of the structures with the source cloud reduced to a value of 3 mm.
On the right, we see a composite view, with two clouds representing the source and the
detected edges in green, and the baseline cloud in magenta.
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The analysis of the ultimate elaboration shows that the essential structural elements
have been preserved. The algorithm was very correct in isolating all of the edges of
the structural elements and connections. Moreover, the peak rosette has been correctly
depicted on the detected edges. Overall, the detected elements enable the conduction
of a proper comparative assessment of the steel structure. Such an appraisal is the out-
come of comparing the design data and the data acquired as a result of measuring the
actual structure.

4. Conclusions

This study shows a comprehensive approach to the issue of processing spatial mea-
surement data using modern techniques. The measured building was a steel structure
subjected to verification. The structural verification in the course of construction involved
the comparison of its current shape with the design shape. Measurements using terrestrial
laser scanning and low-level photogrammetry were conducted for this purpose. Because
terrestrial laser scanning was unable to cover the entire structure of the building, its upper
part was mapped using data from a UAV. This vehicle was used to reach the peak rosette
crowning the building, where it took imagery that was then applied for the construction
of a point cloud that was then integrated with the cloud obtained on the basis of the
laser scanning.

This article thoroughly presents the process of the acquisition of measurement data
from various sources, as well as their integration and geometric structure extraction. The
entire process involved a separate and independent filtration of both point clouds. It also
involved the reduction of noise, the number of outliers and the elements of the structure’s
surroundings. This filtration was followed by balancing the cloud density and integrating
both point clouds. The resulting integrated point cloud enabled an objective presentation
of the current geometric state of the building. Because both applied technologies have
very broad reality visualization abilities, the reconstructed building had many additional
elements that were unnecessary in assessing the geometry of the steel structure itself. Fur-
thermore, the integrated cloud had over 40 million points, which is a maximum reflection
of the actual state, but also significantly hinders work in engineering software (a cloud for
model assessment and comparison should be smaller than one million points). However,
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simple data reduction also significantly reduces the important elements of the structure
itself. Therefore, such a solution was not considered. In order to extract structurally signifi-
cant building elements, a new and adaptive algorithm for the extraction of edges from a
random point cloud was developed, tested and adopted for the whole process.

The developed adaptive algorithm was based on previously presented studies, but was
significantly modified. This algorithm was developed for the extraction of the geometric
structure of this particular steel building, as it has a rather complicated shape. However,
the algorithm does not exclude universality and its possible application for other purposes.
The method is automatic, and does not require the provision of any additional parameters.
The applied adaptive thresholding technique enables the algorithm’s operation without
specifying the threshold value, thus greatly facilitating the structural extraction process.
The developed algorithm correctly detects building element structures based upon the
detection of their edges. The object edges were correctly extracted from the integrated
cloud, for a minimum point-to-point distance of 1–3 mm. The further reduction of the
data for distances between cloud points above 7 mm results in the edges of horizontal thin
elements no longer being found, and a visible loss of data.

In contrast to the studies quoted herein, the algorithm was developed and tested by
means of actual measurement data. Moreover, data from actual measurements were used
to assess the operation. This additionally increases the value of the presented solution.
This proves that the adaptive part of the algorithm correctly operates on real data that, in
practice, is burdened with irregular noise, processing errors and imperfect shapes. The
presented algorithm works for any kind of point cloud. As it was stated above, the point
clouds were integrated for the completeness of the data.

One more feature of the developed method was discovered in the course of the
study. This, we feel, will be of major importance in the future. In the case of very dense
point clouds (a dozen or so points per mm2), the algorithm detects even the smallest
edges and surface irregularities. This unexpected property could be of great advantage
when conducting laser scanning aimed at the detection of microcracking in buildings or
other structures.

In order to enable readers to conduct their study and apply the developed algorithm for
their own work, we have made the Matlab source code and the developed script available.
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and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo-Inf. 2018, 7, 342. [CrossRef]

29. Wierzbicki, D.; Nienaltowski, M. Accuracy Analysis of a 3D Model of Excavation, Created from Images Acquired with an Action
Camera from Low Altitudes. ISPRS Int. J. Geo-Inf. 2019, 8, 83. [CrossRef]

30. Salehi, S.; Lorenz, S.; Vest Sørensen, E.; Zimmermann, R.; Fensholt, R.; Heincke, B.H.; Kirsch, M.; Gloaguen, R. Integration of
Vessel-Based Hyperspectral Scanning and 3D-Photogrammetry for Mobile Mapping of Steep Coastal Cliffs in the Arctic. Remote.
Sens. 2018, 10, 175. [CrossRef]

31. Bujakowski, F.; Falkowski, T. Hydrogeological Analysis Supported by Remote Sensing Methods as A Tool for Assessing the
Safety of Embankments (Case Study from Vistula River Valley, Poland). Water 2019, 11, 266. [CrossRef]

http://doi.org/10.3390/w10060753
http://doi.org/10.3390/rs10111792
http://doi.org/10.3390/s19010022
http://www.ncbi.nlm.nih.gov/pubmed/30577647
http://doi.org/10.3390/ijgi8010044
http://doi.org/10.3390/su10114024
http://doi.org/10.3390/geosciences9020070
http://doi.org/10.3390/s18124332
http://www.ncbi.nlm.nih.gov/pubmed/30544605
http://doi.org/10.3390/rs11030365
http://doi.org/10.3390/rs11030297
http://doi.org/10.3390/geosciences9050242
http://doi.org/10.3390/rs10121923
http://doi.org/10.3390/rs11161951
http://doi.org/10.3390/rs12223740
http://doi.org/10.3390/rs10091475
http://doi.org/10.3390/ijgi7040142
http://doi.org/10.3390/rs11030233
http://doi.org/10.3390/s17102371
http://doi.org/10.3390/rs8020123
http://doi.org/10.3390/rs10020347
http://doi.org/10.1016/j.measurement.2017.10.023
http://doi.org/10.1016/j.measurement.2016.12.002
http://doi.org/10.3390/s20144000
http://doi.org/10.3390/rs8050387
http://doi.org/10.1080/14634988.2020.1807299
http://doi.org/10.3390/ijgi7090342
http://doi.org/10.3390/ijgi8020083
http://doi.org/10.3390/rs10020175
http://doi.org/10.3390/w11020266


Sensors 2021, 21, 3416 23 of 24

32. Napolitano, R.; Hess, M.; Glisic, B. Integrating Non-Destructive Testing, Laser Scanning, and Numerical Modeling for Damage
Assessment: The Room of the Elements. Heritage 2019, 2, 151–168. [CrossRef]

33. De Regis, M.; Consolino, L.; Bartalini, S.; De Natale, P. Waveguided Approach for Difference Frequency Generation of Broadly-
Tunable Continuous-Wave Terahertz Radiation. Appl. Sci. 2018, 8, 2374. [CrossRef]

34. Markiewicz, J.S.; Podlasiak, P.; Zawieska, D. A New Approach to the Generation of Orthoimages of Cultural Heritage Objects—
Integrating TLS and Image Data. Remote. Sens. 2015, 7, 16963–16985. [CrossRef]

35. Corso, J.; Roca, J.; Buill, F. Geometric Analysis on Stone Façades with Terrestrial Laser Scanner Technology. Geosciences 2017,
7, 103. [CrossRef]
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42. Miśkiewicz, M.; Sobczyk, B.; Tysiac, P. Non-Destructive Testing of the Longest Span Soil-Steel Bridge in Europe—Field Measure-
ments and FEM Calculations. Materials 2020, 13, 3652. [CrossRef] [PubMed]

43. Gong, M.; Zhang, Z.; Zeng, D. A New Simplification Algorithm for Scattered Point Clouds with Feature Preservation. Symmetry
2021, 13, 399. [CrossRef]

44. Han, H.; Han, X.; Sun, F.; Huang, C. Point cloud simplification with preserved edge based on normal vector. Optics 2015, 126,
2157–2162. [CrossRef]

45. Zhang, K.; Qiao, S.; Wang, X.; Yang, Y.; Zhang, Y. Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape
Models. Appl. Sci. 2019, 9, 2130. [CrossRef]

46. Song, H.; Feng, H.-Y. A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv. Manuf.
Technol. 2009, 45, 583–592. [CrossRef]

47. Fleishman, S.; Cohen-Or, D.; Silva, C.T. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 2005, 24,
544–552. [CrossRef]

48. Ii, J.D.; Ochotta, T.; Ha, L.K.; Silva, C.T. Spline-based feature curves from point-sampled geometry. Vis. Comput. 2008, 24, 449–462.
[CrossRef]

49. Öztireli, A.C.; Guennebaud, G.; Gross, M. Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression. Comput.
Graph. Forum 2009, 28, 493–501. [CrossRef]

50. Xia, S.; Wang, R. A Fast Edge Extraction Method for Mobile Lidar Point Clouds. IEEE Geosci. Remote. Sens. Lett. 2017, 14,
1288–1292. [CrossRef]

51. Demarsin, K.; Vanderstraeten, D.; Volodine, T.; Roose, D. Detection of closed sharp edges in point clouds using normal estimation
and graph theory. Comput. Des. 2007, 39, 276–283. [CrossRef]

52. Xu, J.; Zhou, M.; Wu, Z.; Shui, W.; Ali, S. Robust surface segmentation and edge feature lines extraction from fractured fragments
of relics. J. Comput. Des. Eng. 2015, 2, 79–87. [CrossRef]

53. Lin, Y.; Wang, C.; Cheng, J.; Chen, B.; Jia, F.; Chen, Z.; Li, J. Line segment extraction for large scale unorganized point clouds.
ISPRS J. Photogramm. Remote. Sens. 2015, 102, 172–183. [CrossRef]

54. Weber, C.; Hahmann, S.; Hagen, H. Sharp feature detection in point clouds. In Proceedings of the 2010 Shape Modeling
International Conference, Aix-en-Provence, France, 21–23 June 2010; pp. 175–186.

55. Weber, C.; Hahmann, S.; Hagen, H. Methods for Feature Detection in Point Clouds. In Proceedings of the OpenAccess Series in
Informatics, Kaiserslautern, Germany, 10–11 June 2011.

56. Gumhold, S.; Macleod, R.; Wang, X. Feature Extraction from Point Clouds. In Proceedings of the 10th International Meshing
Roundtable, Newport Beach, CA, USA, 7–11 October 2001.

57. Feng, C.; Taguchi, Y.; Kamat, V.R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June
2014; pp. 6218–6225.

58. Raina, P.; Mudur, S.; Popa, T. Sharpness fields in point clouds using deep learning. Comput. Graph. 2019, 78, 37–53. [CrossRef]
59. Raina, P.; Mudur, S.; Popa, T. MLS2: Sharpness Field Extraction Using CNN for Surface Reconstruction. In Proceedings of the

Proceedings—Graphics Interface, Toronto, ON, Canada, 9–11 May 2018.
60. Wang, Y.; Du, Z.; Gao, Y.; Li, M.; Dong, W. An Approach to Edge Extraction Based on 3D Point Cloud for Robotic Chamfering.

J. Phys. Conf. Ser. 2019, 1267. [CrossRef]

http://doi.org/10.3390/heritage2010012
http://doi.org/10.3390/app8122374
http://doi.org/10.3390/rs71215869
http://doi.org/10.3390/geosciences7040103
http://doi.org/10.3390/rs9030282
http://doi.org/10.3390/ijgi5010006
http://doi.org/10.3390/rs10121996
http://doi.org/10.1016/j.ndteint.2013.11.001
http://doi.org/10.1016/j.engstruct.2017.10.026
http://doi.org/10.3390/ma13030525
http://doi.org/10.3390/ma13163652
http://www.ncbi.nlm.nih.gov/pubmed/32824759
http://doi.org/10.3390/sym13030399
http://doi.org/10.1016/j.ijleo.2015.05.092
http://doi.org/10.3390/app9102130
http://doi.org/10.1007/s00170-009-1980-4
http://doi.org/10.1145/1073204.1073227
http://doi.org/10.1007/s00371-008-0223-2
http://doi.org/10.1111/j.1467-8659.2009.01388.x
http://doi.org/10.1109/LGRS.2017.2707467
http://doi.org/10.1016/j.cad.2006.12.005
http://doi.org/10.1016/j.jcde.2014.12.002
http://doi.org/10.1016/j.isprsjprs.2014.12.027
http://doi.org/10.1016/j.cag.2018.11.003
http://doi.org/10.1088/1742-6596/1267/1/012015


Sensors 2021, 21, 3416 24 of 24

61. Daniels, J.I.; Ha, L.K.; Ochotta, T.; Silva, C.T. Robust Smooth Feature Extraction from Point Clouds. In Proceedings of the IEEE
International Conference on Shape Modeling and Applications 2007 (SMI ’07), Minneapolis, MN, USA, 13–15 June 2007; Institute
of Electrical and Electronics Engineers: Piscataway, NJ, USA; pp. 123–136.

62. Tran, T.-T.; Cao, V.-T.; Nguyen, V.T.; Ali, S.; Laurendeau, D. Automatic Method for Sharp Feature Extraction from 3D Data of
Man-made Objects. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, Lisbon, Portuga, 5–8 January 2014; SciTePress—Science and Technology Publications: Setúbal,
Portugal, 2014; pp. 112–119.

63. Ahmed, S.M.; Tan, Y.Z.; Chew, C.M.; Al Mamun, A.; Wong, F.S. Edge and Corner Detection for Unorganized 3D Point Clouds
with Application to Robotic Welding. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA,
2018; pp. 7350–7355.

64. Xiao, R.; Xu, Y.; Hou, Z.; Chen, C.; Chen, S. An adaptive feature extraction algorithm for multiple typical seam tracking based on
vision sensor in robotic arc welding. Sens. Actuators A Phys. 2019, 297, 111533. [CrossRef]

65. Zhao, W.; Zhao, C.; Wen, Y.; Xiao, S. An Adaptive Corner Extraction Method of Point Cloud for Machine Vision Measuring
System. In Proceedings of the 2010 International Conference on Machine Vision and Human-machine Interface, Kaifeng, China,
24–25 April 2010; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2010; pp. 80–83.

66. Dyrekcja Rozbudowy Miasta Gdanska. Rewitalizacja i Przebudowa Kompleksu Budynków Palmiarni. Available on-
line: https://www.drmg.gdansk.pl/index.php/bup-realizowane/288-rewitalizacja-i-przebudowa-kompleksu-budynkow-
palmiarni-w-ogrodzie-botanicznym-w-parku-opackim-im-adama-mickiewicza-w-gdansku-oliwie-etap-i (accessed on 15
October 2020).

67. Marchel, Ł.; Specht, C.; Specht, M. Testing the Accuracy of the Modified ICP Algorithm with Multimodal Weighting Factors.
Energies 2020, 13, 5939. [CrossRef]

68. Chen, S.; Truong-Hong, L.C.; O’Keeffe, E.; Laefer, D.F.; Mangina, E. Outlier Detection of Point Clouds Generating from Low-
Cost UAVs for Bridge Inspection. In Proceedings of the Life-Cycle Analysis and Assessment in Civil Engineering, Ghent,
Belgium, 28–31 October 2018; Frangopol, D.M., Caspeele, R., Taerwe, L., Eds.; CRC Press/Balkema: Boca Raton, FL, USA, 2019;
pp. 1969–1975.

69. Szabó, Z.; Tóth, C.A.; Holb, I.; Szabó, S. Aerial Laser Scanning Data as a Source of Terrain Modeling in a Fluvial Environment:
Biasing Factors of Terrain Height Accuracy. Sensors 2020, 20, 2063. [CrossRef]

70. Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on
Cloth Simulation. Remote. Sens. 2016, 8, 501. [CrossRef]

71. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D Point cloud based object maps for household environments.
Robot. Auton. Syst. 2008, 56, 927–941. [CrossRef]

72. Balta, H.; Velagic, J.; Bosschaerts, W.; De Cubber, G.; Siciliano, B. Fast Statistical Outlier Removal Based Method for Large 3D
Point Clouds of Outdoor Environments. IFAC-PapersOnLine 2018, 51, 348–353. [CrossRef]

73. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008, 27,
1–10. [CrossRef]

74. Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]
75. Prochazkova, J.; Martisek, D. Notes on Iterative Closest Point Algorithm. In Proceedings of the 17th Conference on Applied

Mathematics Aplimat 2018 Proceedings; Slovak University of Technology in Bratislava in Publishing House SPEKTRUM STU,
Bratislava, Slovakia, 6–8 February 2018; p. 876.

76. Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. In Proceedings of the Proceedings. 1991 IEEE
International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 2724–2729.

77. He, Y.; Liang, B.; Yang, J.; Li, S.; He, J. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds
with Geometric Features. Sensors 2017, 17, 1862. [CrossRef]

78. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
79. Bradley, D.; Roth, G. Adaptive Thresholding using the Integral Image. J. Graph. Tools 2007, 12, 13–21. [CrossRef]
80. Hoppe, H.; Derose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. ACM SIGGRAPH

Comput. Graph. 1992, 26, 71–78. [CrossRef]
81. Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans.

Math. Softw. 1977, 3, 209–226. [CrossRef]
82. Viola, P.; Jones, M.J.C. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001;
Volume 1, p. 3.

83. James, M.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-
from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [CrossRef]

84. James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion pho-
togrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landforms 2017, 42,
1769–1788. [CrossRef]

http://doi.org/10.1016/j.sna.2019.111533
https://www.drmg.gdansk.pl/index.php/bup-realizowane/288-rewitalizacja-i-przebudowa-kompleksu-budynkow-palmiarni-w-ogrodzie-botanicznym-w-parku-opackim-im-adama-mickiewicza-w-gdansku-oliwie-etap-i
https://www.drmg.gdansk.pl/index.php/bup-realizowane/288-rewitalizacja-i-przebudowa-kompleksu-budynkow-palmiarni-w-ogrodzie-botanicznym-w-parku-opackim-im-adama-mickiewicza-w-gdansku-oliwie-etap-i
http://doi.org/10.3390/en13225939
http://doi.org/10.3390/s20072063
http://doi.org/10.3390/rs8060501
http://doi.org/10.1016/j.robot.2008.08.005
http://doi.org/10.1016/j.ifacol.2018.11.566
http://doi.org/10.1145/1360612.1360684
http://doi.org/10.1109/34.121791
http://doi.org/10.3390/s17081862
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1080/2151237X.2007.10129236
http://doi.org/10.1145/142920.134011
http://doi.org/10.1145/355744.355745
http://doi.org/10.1016/j.geomorph.2016.11.021
http://doi.org/10.1002/esp.4125

	Introduction 
	Materials and Methods 
	Object History and Description 
	Process Description 
	Data Acquisition 
	UAV Photogrammetry: Initial Data Processing 
	TLS Initial Data Processing 

	Point Cloud Filtration 
	Point Cloud Integration 
	Adaptive Structure Extraction Algorithm 

	Results and Discussion 
	Integration Quality Assessment 
	Structure Extraction 

	Conclusions 
	References

