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Abstract

Purpose: We have compared cure from local/metastatic tumor growth in BALB/c mice receiving EMT6 or the poorly
immunogenic, highly metastatic 4THM, breast cancer cells following manipulation of immunosuppressive CD200:CD200R
interactions or conventional chemotherapy.

Methods: We reported previously that EMT6 tumors are cured in CD200R1KO mice following surgical resection and
immunization with irradiated EMT6 cells and CpG oligodeoxynucleotide (CpG), while wild-type (WT) animals developed
pulmonary and liver metastases within 30 days of surgery. We report growth and metastasis of both EMT6 and a highly
metastatic 4THM tumor in WT mice receiving iv infusions of Fab anti-CD200R1 along with CpG/tumor cell immunization.
Metastasis was followed both macroscopically (lung/liver nodules) and microscopically by cloning tumor cells at limiting
dilution in vitro from draining lymph nodes (DLN) harvested at surgery. We compared these results with local/metastatic
tumor growth in mice receiving 4 courses of combination treatment with anti-VEGF and paclitaxel.

Results: In WT mice receiving Fab anti-CD200R, no tumor cells are detectable following immunotherapy, and CD4+ cells
produced increased TNFo/IL-2/IFNy on stimulation with EMT6 in vitro. No long-term cure was seen following surgery/
immunotherapy of 4THM, with both microscopic (tumors in DLN at limiting dilution) and macroscopic metastases present
within 14 d of surgery. Chemotherapy attenuated growth/metastases in 4THM tumor-bearers and produced a decline in
lung/liver metastases, with no detectable DLN metastases in EMT6 tumor-bearing mice-these latter mice nevertheless
showed no significantly increased cytokine production after restimulation with EMT6 in vitro. EMT6 mice receiving
immunotherapy were resistant to subsequent re-challenge with EMT6 tumor cells, but not those receiving curative
chemotherapy. Anti-CD4 treatment caused tumor recurrence after immunotherapy, but produced no apparent effect in
either EMT6 or 4THM tumor bearers after chemotherapy treatment.

Conclusion: Immunotherapy, but not chemotherapy, enhances CD4" immunity and affords long-term control of breast
cancer growth and resistance to new tumor foci.
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Introduction growth in  CD200%® animals [8].Surgical resection in
CD200R1KO EMT6 tumor-bearing mice, followed by immuni-

The immunoregulatory molecule CD200 has been reported to zation with CpG as adjuvant, cured CD200R1KO mice of breast
regulate growth of human solid tumors [1,2] and hematological cancer recurrence in the absence of lung/liver metastases, and of

tumors [3-5]. Using a transplantable EMT6 mouse breast cancer micro metastases (defined by limiting dilution cloning in vitro) in
line CD200 expression, by tumor cells or host, increased local DLN [9].

tumor growth and metastasis to DLN [6,7], which was abolished
by neutralizing antibody to CD200, or following growth in mice
lacking the primary inhibitory receptor for CD200 (CD200R1KO
mice). In contrast to these observations, growth of the highly
metastatic 4THM breast tumor (derived from a 4Tl parent line)
was increased in CD200R1KO mice, with somewhat diminished

Multiple factors both intrinsic to tumor cells themselves and
host associated elements are implicated in tumor metastasis [10—
14]. Many such factors are associated with altering trafficking of
either host inflammatory-type cells to the local tumor environment
where they can facilitate metastasis through a variety of
mechanisms [15-17], including regulation of host resistance
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mechanisms [18-21]. Metastatic tumor cells are known to undergo
changes in gene expression profile leading to increased cancer
stem cell- like properties and the ability to survive, establish and
grow in a foreign environment [22-24]. Like CD200, an
inhibitory member of the B7 family of T cell co stimulation,
expression of another such molecule, B7x (B7-H4) has been
reported to influence metastasis using 4T'1 tumor cells and B7KO
mice [25]. B7KO mice with 4T'1 tumors, like CD200R1KO with
EMT6, showed enhanced survival and a memory response to
tumor re-challenge, which was correlated with decreased infiltra-
tion of immunosuppressive cells, including tumor-associated
neutrophils, macrophages, and regulatory T cells, into tumor-
bearing metastatic lung tissue [25]. CD200R1KO mice showed
increased growth of 4THM tumors [24].

The studies below compared protection seen in surgically
treated/immunized EMT6 or 4THM tumor injected WT mice
with/without manipulation of CD200:CD200R interactions using
Fab anti-CD200R, with attenuation of disease after surgical
resection followed by chemotherapy.

Materials and Methods [9]

Ethics approval and animal use guidelines

This study was carried out in strict accordance with the
recommendations of the Canadian council for Animal Care
(CCAC). The protocol was approved by the Committee on the
Ethical use of Animals for experimentation at the University
Health Network (Permit Number:AUP.1.5). All surgery was
performed under sodium pentobarbital anesthesia, and all efforts
were made to minimize suffering.

Mice

CD200KO and CD200R1 knockout mice are described
elsewhere [9]. WT BALB/c mice were from Jax Labs. All mice
were housed 5/cage in an accredited facility at UHN. Female
mice were used at 8 wk of age.

Monoclonal antibodies, and CpG deoxyoligonucleotide
for adjuvant use, are described elsewhere [6,9,26]

Rabbit Fab anti-CD200R1 antibody was prepared using a
commercial kit (Pierce Protein Products, Rockford, IL, USA) and
rabbit IgG isolated by Cedarlane Labs (Hornby, Ontario,
Canada), following immunization of rabbits with 500 pg mouse
CD200R1 emulsified in Freund’s Adjuvant. In independent
studies (not shown) this antibody (1:1000 dilution) inhibited
binding (FACS analysis) of FITC-labeled mouse CD200 to Hek
cells transduced to over-express murine CD200R1.

EMT6 breast tumor cells, induction of tumor growth in
BALB/c mice, and limiting dilution cultures to establish
frequency of metastasis to draining lymph nodes (DLN)
were as described earlier [9,26]

4THM tumors, a highly metastatic variant of 4T'1, were derived
by Erin et al as reported elsewhere [24].

Surgical resection and immunotherapy/chemotherapy of
tumor-bearing mice [9]

Mice receiving 5x10° EMT6 or 1x10° 4THM tumor cells
injected into the mammary fat pad in 100 pl PBS underwent
surgical resection 14-16 d later. For immunotherapy, mice
received intraperitoneal immunization with 3x10° EMT6 (or
4THM) tumor cells (irradiated with 2500Rads) mixed with 100 ug
CpG ODN (see above) in 100 pl PBS, emulsified with an equal
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volume of Incomplete Freund’s adjuvant, 2 days after surgery.
Mice treated with chemotherapy post surgical resection, received 4
injections of paclitaxil intraperitoneally in 0.15 ml PBS (Taxol:
10 mg/Kg), beginning on the day of surgery, and at 21 day
intervals thereafter. In addition, beginning on the day following
surgery, and at 14 day intervals for a total of 6 injections, the same
mice also received anti-VEGF (30 mg/Kg) iv in 0.3 ml PBS.

All animals were monitored Xx3/week for weight loss and
general health and sacrificed at the times indicated in individual
experiments (>10% weight loss), with visible tumor colonies in the
lung/liver enumerated. DLN cell suspensions were prepared from
individual mice and cloned under limiting dilution in 96-well flat-
bottomed microtitre plates to assess tumor colony formation [7].
Important variables measured were time post treatment to
sacrifice, and tumor growth-note that aggressive uncontrolled
tumor growth in some groups in individual experiments led to
certain groups being sacrificed before others (see text).

Preparation of cells and cytotoxicity, proliferation and
cytokine assays: see [9,26]

In bricf, 5x10° splenocytes from mice treated as described in
the text were stimulated in vitro in triplicate with 2 x 10 irradiated
(2500Rads) tumor cells in 2 ml aMEM with 10% fetal calf serum.
100 ul aliquots of supernatants were assayed at 48 hr for various
cytokines using commercial kits (BioLegend, San Diego, USA).
Cells were harvested from cultures at 6 d, washed X2, and
incubated for 18 hr with 1 x10” "HTdR-labelled tumor target cells
at varying effector:target ratios to determine direct anti-tumor
cytotoxicity.

Statistics

Cloneable tumor cell frequency was determined as before [6].
Within experiments, comparison between groups used ANOVA,
with subsequent paired Student’s t-tests as indicated.

Results

Surgical resection followed by immunization along with
Fab anti-CD200R, or chemotherapy alone, prevents
metastasis of EMT6, but not 4THM, in BALB/c mice
Surgical resection of a primary tumor in CD200R1KO mice
followed by immunization prevented macroscopic lung/liver
metastases enumerated at 90 d post tumor inoculation, compared
with surgery alone [9]. As shown in Figure 1 (data pooled from 2
independent studies) no protection was seen in wild type (WT)
mice Figure 1, panel a), but WT mice were cured if given Fab
anti-CD200R  following surgery/immunization (panel b). Note
that aggressive tumor growth led to WT control mice having to be
sacrificed within 18 d or 21 d of surgery (panels a/b), unlike
immunotherapy-treated mice receiving anti-CD200R (panel b)
where mice were able to be followed for =90 d post surgery.
When mice in this latter group were sacrificed earlier (18-21 d
post surgery) again no lung/liver colonies were observed (not
shown, but note no colonies at 90 d). Both CD200R1KO and WT
mice showed no evidence of macroscopic metastases following
chemotherapy instead of immunotherapy post surgery (Figure 1,
panels c¢/d respectively). Again note that addition of chemotherapy
treatment allowed mice to be monitored for tumor metastases
(90 d post surgery) much longer than non-chemotherapy controls
(21 and 18 d in panels c, d respectively-however, in studies where
chemotherapy mice were deliberately sacrificed early, no metas-
tases were observed on days 18/21 (not shown-but note data for
90 d). In mice receiving 4THM tumors, attenuation of lung/liver
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metastasis was achieved using surgery+chemotherapy, but not by
surgery followed by immunotherapy (see Figure 1, panels e and f
respectively). Failure of immunotherapy to protect from 4THM
tumors again led to these mice (panel e) being sacrificed much
earlier (10 d post surgery) than with EMT6 mice (panels a—d) or
4THM mice receiving chemotherapy (panel f). Once again, in
studies where chemotherapy-treated 4THM injected mice were
sacrificed at 10 d post surgery, no metastases were seen (not

a)

in inmunized WT mice
) Surgery done:d18

No protectionfrom EMT6 tumor metastasis to lungdiver b)

shown-but seen marked attenuation of metastases even at 90 d in
panel f).

DLN cell suspensions of mice sacrificed at the times shown in
Figure 1 were cultured under limiting dilution conditions with
cultures monitored over a 21-day period for colony growth, to
enumerate the frequency of tumor cells in the initial DLN samples
(Figure 2: panel a shows data for EMT6 tumors, panel b for
4THM) [7]. Data to the far left in each panel show the frequency
of tumor cells cloned from DLN of mice sacrificed on the day of
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Figure 1. Comparison of lung and liver metastases of tumor cells in WT BALB/c mice receiving EMT6 or 4THM tumor cells and
subsequently treated with surgical resection and chemotherapy/immunotherapy (see )Methods. 4 mice were used per group, with mice
sacrificed at the times show post surgery (number above histogram bars) to measure macroscopic tumor metastases in the lung/liver. All data
represent arithmetic means (*SD) for each group. nc indicates no metastatic colonies detected; *, p<<0.05 relative to similar group receiving either

immunotherapy or chemotherapy.
doi:10.1371/journal.pone.0113597.g001
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Figure 2. Attenuation of outgrowth of tumor from DLN of mice shown in Figure 1 as assessed by limiting dilution frequency (see
Methods). DLN cells from separate mice were also cloned alone at the time of surgery (data to far left of each panel-control*). All frequencies were
calculated based on the input numbers of cells from DLN of control mice only. *, p<<0.05 compared with control* mice

doi:10.1371/journal.pone.0113597.g002

tumor resection. Cells in all clones were stained (~100% positive)
with anti-BTAK (anti-tumor) antibody (data not shown-see [7]).

The frequency of tumor cells cloned from DLN of both WT and
CD200R1KO EMT6-injected mice treated only by surgical
resection increased over 18-21 d post resection, relative to the
frequency seen in DLN at the time of surgical resection (panel a).
Surgical resection followed by immunotherapy and control IgG
led to little decrease in the DLN tumor frequency in WT' mice
sacrificed at 21 d post surgery. Fab anti-CD200R along with
surgery/immunization resulted in a marked decrease (>7x) in
tumor cells cloned from DLN of WT mice (d90). In similarly
treated CD200R1KO mice no tumor cells were detected
(detection limits in assay ~1 in 1x107) at 90 d post surgery. No
detectable tumor cells could be cloned from DLN of either WT or
CD200R1KO mice 90 d post surgery if animals received
chemotherapy following surgical resection (data to far right in
Figure 2a). In 4THM tumor-bearers (panel b), sacrifice of mice
10 d after surgery with either no additional treatment, or
immunotherapy (CpG+ irradiated 4THM), indicated an increase
(~8x) in frequency of cloned tumor cells in DLN compared with
the numbers present at the time of surgery. Surgery followed by
chemotherapy decreased the number of cloned tumor cells at d90
(far right in Figure 2b).

In separate studies (not shown), no WI' or CD200R1KO mice
survived following treatment with surgery and anti-VEGF alone,
and survival with paclitaxil as the sole chemotherapeutic agent was
=50% of that seen using the combination shown, in both
CD200R1KO and WT mice with each tumor used. Combined
surgery and chemotherapy "cured" WT mice of EMT6 tumor
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growth, as defined by an absence of macroscopic metastases at
300 d post surgery, and undetectable tumor cells cloned from
DLN of mice at this time (limits of detection ~1 in 2x10’ DLN
cells)-see also [9]. All 4THM mice treated in this fashion died
beforel10days post surgery (data not shown).

Absence of cells attenuating ability to clone tumor from
DLN of mice receiving chemotherapy

Figure S1 investigated whether DLN of either immunotherapy-
or chemotherapy-treated W'I' mice contained populations of cells
which non-specifically attenuated growth of tumor cells, leading to
maccurate estimation of tumor cell frequency in limiting dilution
[9]. Groups of 5SWT mice were treated as in Figure 1 with EM'T6
or 4THM tumor cells, followed by surgical resection and
combined chemotherapy with anti-VEGF and paclitaxil. Mice
were sacrificed 90 days post surgery. DLN cells from WT mice
recetving either EMT6 or 4THM tumor cells 14d earlier (WT* in
Figure S1) were cultured under limiting dilution conditions (from
2x10% to 1x10° cells/well) alone, or with a five-fold excess of
DLN cells from the 90d chemotherapy-treated mice (from 1x10*
to 5x10°). Cells from these WT or CD200R1KO mice were also
cloned alone. All tumor cells frequencies were subsequently
calculated based on the input numbers of control cells only. Data
shown in this Figure are pooled from 3 separate studies.

The frequency of detected tumor cells in the mice at 90 d post
combined surgery/chemotherapy was below the limits of detection
in this assay (see data to far right in each of the EMT6/4THM
groups of Figure S1). Addition of a 5-fold excess of cells from the
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DLN of these populations did not alter the measured frequency of
cloneable tumor cells from DLN of WT* mice sacrificed at 14 d
post tumor injection.

CD4" cells in immunotherapy-treated, but not in
chemotherapy-treated mice, are responsible for
decreased metastasis

Protection (in CD200KO or CD200R1IKO mice) was not
related to a direct immune response from recipient mice to CD200
expressed on tumor cells themselves [9,25]. CD200/CD200R is
not expressed on 4THM tumors, and thus an immune response to
such tumor-bearing epitopes could not explain the differences
observed above. Immunotherapy of EMT6 tumor growth was
abolished by infusion of anti-CD4 mAb [9]. To investigate
whether an active CD4-dependent immune process was implicat-
ed in protection afforded by (surgery + chemotherapy) we
performed the following study.

Groups of 30 W mice received EMT6 or 4THM cells into the
mammary fat pad, followed by surgical resection. 5 mice/group
received no further treatment. Two subgroups of 15 mice each
then received either combination chemotherapy, or immunother-
apy with irradiated tumor cells, CpG and Fab anti-CDOOR. 10 d
after immunotherapy/chemotherapy was initiated 5mice/group
began a course of anti-CD4mAb or control IgG injections (3
injections of 75 pug in 300 pIPBS at 72 hr intervals iv). Mice were
monitored for overall health, with sacrifice of all mice when there
was evidence of respiratory distress and/or weight loss (10%) in
any individual. Note that in the case of 4THM mice not receiving
chemotherapy, this necessitated sacrifice at 10 d post surgery,
while for EMT6 control mice, or EMT6 mice receiving
immunotherapy and anti-CD4 treatment, this necessitated sacri-
fice atl8, 26 d post surgery respectively (see also text to Figure 1
above). All surviving mice were terminated at 90 d post surgery,
and macroscopic liver/lung metastases determined, along with
frequency of tumor cells in DLN (see Figure 2). In addition (see
Figure S2), splenocytes from individual mice were stimulated in
vitro with irradiated tumor cells for 6 d, with cytokine production
measured (48 hr) and CTL assayed at 6 days, as described in the
Methods. Data for 1 of 3 such studies are shown in Figure 3.

Macroscopically visible metastases in lung/liver (Figure 3a),
along with increased frequency of tumor cells cloned from DLN
(Figure 3b), was seen in EMT6 tumor injected mice receiving
immunotherapy and anti-CD4 relative to mice receiving control Ig
(see also [9])-as noted in Figure 1, where other immunotherapy-
treated (but no anti-CD4) EMT6 groups were sacrificed at d18/26
(not 90 d as shown) there were, as expected, no metastases seen.
Also as noted in Figure 1, immunotherapy afforded no protection
from 4THM growth, regardless of subsequent anti-CD4 treat-
ment, and these mice had to be sacrificed early in the study (10 d
post surgery, by comparison to chemotherapy-treated mice,
sacrificed at 90 d post surgery). In contrast to these data, following
both EMT6 and 4THM tumor injection, the protection from
macroscopic (lung/liver) and microscopic (DLN) metastases
afforded by chemotherapy was apparently resistant to ant-
CD4mAb therapy (Figure 3a/b). In separate studies (not shown)
no affect was seen after infusion of anti-CD8 mAb into
chemotherapy treated mice either. These in vivo studies need to
be seen in the context of data from Figure S2, showing elevated
cytotoxicity (CD4*-dependent) only using splenocytes from
immunotherapy-treated EMT6 tumor-injected mice (panel b),
while in turn CD4" cells from these same mice produced increased
cytokines (TNFa, IL-2 and IFNY) relative to mice receiving
surgery alone. Note that in the cytotoxicity assay used in Figure
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S2b, killing itself was a function of CD8" cells in all groups (data
not shown).

Resistance to implantation of fresh EMT6, but not 4THM,
tumor in immunotherapy-treated EMT6-injected mice,
but not in chemotherapy-treated EMT6/4THM-injected
mice

The data in Figure 3 show that cure of both EMT6- and
4THM-injected mice of macroscopic and microscopic (DLN)
tumor metastases following surgical resection and chemotherapy is
resistant to anti-CD4 treatment, unlike mice cured of EMT6
tumor following surgery and immunotherapy. We next investigat-
ed resistance to fresh tumor implants of the same or different
tumor in mice cured following immunotherapy/chemotherapy.

Groups of mice receiving EMT6/4THM tumors underwent
surgical resection, followed by either chemotherapy (for all of 15
4THM- and 15 EMT6-injected mice) or immunotherapy (15
EMT6- injected mice). 90 d post surgical resection, with all
animals free of obvious tumor growth and gaining weight, 5 mice/
group, and 5 fresh mice, received either 5x10° EMT6 or 1x10°
4THM tumors in the contralateral mammary fat pad to that used
previously. Primary tumor growth was followed daily for all mice,
and animals sacrificed 20 d later, with DLN harvested to assess
tumor cells by limiting dilution. Data in Figure 4 show results (1 of
2 studies) for this experiment. None of the mice not receiving
further tumor inoculation developed overt tumor recurrence in
this time-data not shown to retain clarity.

Figure 4a shows that mice which undergo surgical eradication
of EMT6, followed by immunotherapy, are refractory to re-
challenge with EMT6 as monitored over 20 d by either visible
tumor (panel a) or microscopic DLN metastases (panel b). There
was no such protection seen if re-challenge was with 4THM tumor
cells. Growth of either EMT6 or 4THM in mice receiving EM'T6
followed by surgery/chemotherapy was equivalent to that seen in
naive mice. Mice receiving primary injections with 4THM, and
subsequently treated with chemotherapy, showed no resistance to
re-challenge with either EM'T6 or 4THM (Figure 4b). These data
were mirrored by analysis of tumor cells frequencies in DLN of
treated/re-challenged mice (Figure 4c). Only EMT6 tumor
bearers cured by immunotherapy showed decreased DLN
micro-metastasis after re-challenge with EMT6, but not 4THM,
tumors. Note however, that in these mice (and mice cured of
4THM and re-challenged with EMT6) we cannot discern whether
tumor cells measured were of EMT6 or 4THM origin.

Further evidence suggesting that immunotherapy, but not
chemotherapy, treatment of EMT6-injected mice resulted in
protective immunity to re-challenge with the same tumor came
from studies using splenocytes pooled from 4mice/group 90 d post
either surgical resection of primary tumors followed by either
chemotherapy or immunotherapy. 50x10° of these cells were
infused iv into fresh mice initially receiving 5x10° EMT6, or
1x10° 4THM, tumor cells (Figure 5) 15 d earlier, and surgically
removed 1 d before spleen cell transfer. Lung tumor colonies were
enumerated in all groups at 15 days after surgery (14 d after spleen
cell transfer), and DLN used to estimate tumor cell frequency by
limiting dilution. Data for 1 of 2 studies are shown in Figure 5.

In this independent assay, protection from metastatic tumor
colony growth, either macroscopic (to lung) or microscopic (DLN
metastases assayed by limiting dilution), was afforded only by
transfer of splenocytes from mice cured of EMT6 by surgical
resection and immunotherapy, and not from mice cured by
chemotherapy. Furthermore, no protection from growth of
4THM tumors was observed.
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Anti-CD4 mAD attenuates protection from tumor metastasis in
immunotherapy-treated EMTS mice, but not in mice with either EMTS or 4THMtumors
receiving chemotherapy treatment
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Figure 3. Effect of anti-CD4 mAb on lung/liver (panel a) or DLN (panel b) metastases in mice receiving EMT6 or 4THM tumor cells
and treatment as in Figure 1. 5 mice were used per group for sacrifice at the time post surgery points shown (numbers above histogram bars).

Data show means for macroscopic tumor colonies/group;
surgery alone;
doi:10.1371/journal.pone.0113597.g003

Discussion

Breast cancer cells are thought to be continuously monitored by
host resistance mechanisms (immunosurveillance [27]), as evi-
denced by linkage of MHC expression (Class I) with breast cancer
growth [28-30], as well as analysis of the role of other immune
parameters on disease incidence/progression [31-34]. Included
amongst such studies are several reporting on the possible
mmportance of regulation of inflammation by T lymphocytes
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nc= no visible tumor colonies. * indicates p<<0.05, compared with control treated with

[35-37]. Consistent with these concepts, lymphocyte infiltration
into breast tumors is correlated with improved overall survival
[38], and peripheral blood of breast cancer patients show evidence
at both the cellular and humoral level of immunity to antigens
(MUC-1 and Her-2/neu) associated with human breast cancer
[39,40]. This in turn is reflected in the moderate success seen using
Her-2/neu peptides, and other antigenic moieties, as a cancer
vaccine [41,42]. While there remains controversy concerning
whether development of CD4 or CD8 immunity will best predict
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Specific host resistance to fresh EMT6 reinjection in mice cured of
EMT®6, but not 4THM, tumors by immuno- but not chemo-therapy
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metastases (panel c) in mice treated 90 d earlier by surgical tumor resection and immunotherapy. Naive mice had had no previous
EMT6 or 4THM tumor implants. All mice were sacrificed at 20 d post re-challenge. Data represent means for group. No protection was seen in mice
initially treated with 4THM tumors before treatment/re-challenge (panel b). *, p<<0.05 compared with equivalent fresh control mice.

doi:10.1371/journal.pone.0113597.g004

host-resistance [43,44], there is also concern that vaccination may
augment induction of Tregs to block effective tumor immunity
[45,46]. Compounding the complexity of understanding the role
of immunotherapy in breast cancer treatment is the potential effect
of concomitant chemotherapy on the immune system of the tumor
host. Conventional cyclophosphamide-methotrexate-5-fluoroura-
cil (CMF) chemotherapy decreases both NK cell activity [47]. In
contrast, in studies of taxane-based chemotherapy in 30 women
with advanced breast cancer, increased NK and LAK cell activity
and increased 1L-6, GM-CSF, and IFNYy levels with decreased 1L-
1 and TNFa levels were reported in cancer patients following

[48].

chemotherapy, and correlated with clinical responses
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Similarly, cyclophosphamide which is known to suppress T reg
cells, has been incorporated into some vaccine HER2/neu vaccine
trials [39].

Anti-CD200 mAb protects mice from micro-metastasis of
EMT6 to DLN, while EM'T6 over-expressing a CD200 transgene,
or growing in CD200® hosts, grew more aggressively and
metastasized at higher frequency [7]. CD200RKO mice were
more resistant both to primary and metastatic growth of tumor
[25]. In CD200R1KO mice cured (tumor-free for >300 d) by
surgical tumor resection and immunotherapy, CD4" cells, rather
than effector CD8" cells, were critical for protection [9]. Growth
and metastasis of a highly aggressive metastatic variant (4 THM) of
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Figure 5. Adoptive transfer of splenocytes from immune- but not chemo-therapy treated mice receiving EMT6 tumors can decrease
lung (panel a) and DLN (panel b) metastases in mice which had previously received EMT6 but not 4THM tumors. The tumors in the
latter mice were surgically removed 1 d before spleen transfer, and all mice sacrificed 14 d after spleen cell transfer. Data show means (£SD). *, p<
0.01 relative to control (no cell transfer).

doi:10.1371/journal.pone.0113597.g005
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the breast tumor 4T1 was reported to be refractory to attenuation
of CD200:CD200R interactions in CD200R1KO mice [8].

The current studies have extended our understanding of host
resistance to EMT6 tumors using WT mice as tumor recipients,
and, following surgical resection of tumor, by augmenting
immunization with tumor cells (with CpG as adjuvant) with
infusion of Fab anti-CD200R to block CD200:CD200R interac-
tions. We compared this treatment with a more conventional
approach using surgery followed by chemotherapy with anti-
VEGT and paclitaxel, and compared results with EMT6 and the
less immunogenic tumor, 4THM. 4THM mice were not
effectively treated with immunotherapy, as was evident from the
different times at which mice were sacrificed to measure tumor
metastases endpoints in Figures 1-3. In contrast, chemotherapy
was effective for both EMT6 and 4THM tumors, allowing us to
study mice up to 90 d post surgery (Figures 1-3). Data in
Figures 3-5, show that: (i) cure following chemotherapy in both
tumor models is not abolished by anti-CD#4 treatment, unlike cure
of EMT6 tumors by immunotherapy (Figure 3-see also [9]).
Immunotherapy in the EMT6 tumor model led to increased
induction of direct killing (by CD8" effector cells) using splenocytes
from treated mice, along with increased cytokine production in
vitro-both effects were attenuated in mice receiving anti-CD4
treatment in vivo (Figure S2). (i) following chemotherapy, mice
initially cured of either 4THM or EMT6 tumors were not resistant
to re-challenge with the same tumor, though immunotherapy of
EMT6 tumors afforded resistance to re-challenge with the same
tumor, but not with 4THM (Figure 4); and finally, (iii) only
splenocytes from immuno- but not chemo-therapy treated EMT6
mice, could adoptively transfer protection from macroscopic/
microscopic metastases to surgically treated WT mice (Figure 5)
previously injected with the same tumor. Again no protection was
afforded against 4THM tumors. Thus we were able to induce a
tumor-protective immune response in WT mice with EMT6
tumors, but not mice with the more aggressive 4THM tumors.
Additional features differentiating host inflammatory responses to
EMT6 and 4THM have been described elsewhere by Erin et al
(8). Given that the sensitivity of detection of metastases from DLN
in our limiting dilution assay is ~1:107 cells, and that anti-CD4
treatment of immunotherapy-treated EMT6 tumor injected mice
reveals increased metastases in mice otherwise “cured” of disease,
we speculate that such mice may harbor quiescent tumor cells,
whose growth is held in check by mechanisms which are CD4-
dependent.

The nature of the resistant mechanism(s) in mice undergoing
chemotherapy in the regimen prescribed is not yet clear.
Preliminary data show a difference in intra-tumoral cytokine
profiles in such animals, and a difference in phenotype of cells
infiltrating the re-challenged EMT6 tumor in WT mice compared
with those infiltrating a primary tumor challenge, with increased
CD4" cells. This in itself is of interest given the data of Figure S2a,
showing a CD4"-dependent augmented cytokine production
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(ITNFa, IL-2 and IFNY) in mice receiving immunotherapy, but
not chemotherapy. Infusion of exogenous soluble CD200 into
mice undergoing chemotherapy treatment did not attenuate cure
or increase metastasis (RMG-unpublished), confirming the inde-
pendence of this protection from an effect mediated by
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Figure S1 DLN cell from (surgery+chemotherapy) treat-
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clones from DLN of WT mice sacrificed 14d post EMT6/
4THM tumor cell injection. DLN cells from 5/group WT
mice were harvested at 90 d post tumor resection and chemo-
therapy treatment (see Figures 1 and 2), and from separate groups
of WT mice 14 d post EMT6/4THM injection-W'T* in Figure).
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(TIF)
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mean (£SD) for triplicate cultures, with a minimum of 4
individual spleen cells assayed/group. * p<<0.05 compared with
a surgery-only control group.
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