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Topological triple phase transition in 
non-Hermitian Floquet quasicrystals

Sebastian Weidemann1,4, Mark Kremer1,4, Stefano Longhi2,3 & Alexander Szameit1 ✉

Phase transitions connect different states of matter and are often concomitant with 
the spontaneous breaking of symmetries. An important category of phase transitions 
is mobility transitions, among which is the well known Anderson localization1, where 
increasing the randomness induces a metal–insulator transition. The introduction of 
topology in condensed-matter physics2–4 lead to the discovery of topological phase 
transitions and materials as topological insulators5. Phase transitions in the symmetry 
of non-Hermitian systems describe the transition to on-average conserved energy6 
and new topological phases7–9. Bulk conductivity, topology and non-Hermitian 
symmetry breaking seemingly emerge from different physics and, thus, may appear 
as separable phenomena. However, in non-Hermitian quasicrystals, such transitions 
can be mutually interlinked by forming a triple phase transition10. Here we report the 
experimental observation of a triple phase transition, where changing a single 
parameter simultaneously gives rise to a localization (metal–insulator), a topological 
and parity–time symmetry-breaking (energy) phase transition. The physics is 
manifested in a temporally driven (Floquet) dissipative quasicrystal. We implement 
our ideas via photonic quantum walks in coupled optical fibre loops11. Our study 
highlights the intertwinement of topology, symmetry breaking and mobility phase 
transitions in non-Hermitian quasicrystalline synthetic matter. Our results may be 
applied in phase-change devices, in which the bulk and edge transport and the energy 
or particle exchange with the environment can be predicted and controlled. 

Phase transitions are defined as drastic changes of a system’s charac-
teristics upon a small change of a single parameter. A classic example 
stems from chemistry, where changes between solid, liquid and gaseous  
phases can be induced by varying the temperature or pressure. In mate-
rial sciences, the transition between the ferromagnetic and paramag-
netic phases of magnetic materials at the Curie temperature is another 
fundamental example. The notion of phase transitions is established 
for understanding a diversity of different systems and phenomena, 
for instance, the evolution of planets in astrophysics12, intracellular 
functioning13 and the emergence of disease in biological systems14, 
Bose–Einstein condensation15, and the evolution of the early Universe 
and the formation of the fundamental forces16–18.

An important category among phase transitions—which are mani-
fested in a plethora of different systems and phenomena—is mobility 
transitions19,20. These are a drastic change of the conductance, that is, 
the spreading and localization of quantum particles, upon altering a 
parameter beyond a critical point. When certain metals and ceramics 
are cooled below a critical temperature, superconductivity abruptly 
emerges21. Another seminal example is Anderson localization1, which 
is a sudden metal–insulator transition when uncorrelated randomness 
in a system is increased beyond a critical level.

A paradigmatic model showing a mobility transition is the  
Aubry–André–Harper (AAH) model22. It describes a one-dimensional 
system in an intermediate phase between perfect periodic order 

(crystal) and a completely disordered medium, possessing only 
long-range order without periodicity. This so-called quasicrystal23 is 
known for undergoing a metal–insulator phase transition in one dimen-
sion at a critical value of the potential strength24,25. At the critical point, 
the AAH model reduces to the Harper equation26 that can be directly 
mapped onto the two-dimensional Hofstadter model, which describes 
integer quantum Hall topology on a square lattice, resulting in the well 
known Hofstadter butterfly energy spectrum27.

Metal–insulator phase transitions have usually been regarded as 
unrelated to other types of phase transition, such as spontaneous sym-
metry breaking occurring in dissipative systems or topological phase 
transitions observed in topological matter. This common wisdom has 
been challenged by recent theoretical studies9,10, where the intriguing 
interplay between aperiodic order and dissipation has been unrav-
elled. In such systems, the localization of the wavefunctions and the 
metal–insulator phase transition are usually associated with a spectral 
(symmetry breaking) phase transition28, which can be characterized 
by the change of a topological (winding) number emerging from the 
closed contours of the eigenvalue spectrum in the complex plane9. 
In general, non-Hermitian contributions, such as dissipation, break 
the Hermitian time-reversal symmetry. However, one might find a 
combined parity–time (PT) symmetry6, which allows for a completely 
real energy spectrum, if unbroken. The discovered exotic behaviour 
at the critical point of PT phase transitions has sparked numerous 
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applications, such as enhanced sensing29, unidirectional invisibility30 
and mode-selective vortex lasing31.

Here we experimentally demonstrate a triple phase transition, where a 
topological phase transition, a mobility phase transition and spontaneous  
PT-symmetry breaking coincide (Fig. 1). We consider a non-Hermitian 
Floquet quasicrystal with PT symmetry, supporting the non-Hermitian 
skin effect11,32,33, and possessing non-trivial point-gap topology9. 
Remarkably, the triple phase transition is observed by changing  
a single parameter, which can be purely Hermitian (strength of the 
nearest-neighbour coupling) or purely non-Hermitian (strength of 
the non-Hermitian gauge field), both of which we connect in a phase 
transition equation.

We implement our ideas in an optical system with controllable  
dissipation, consisting of coupled optical fibre loops11,34,35, where the 
light propagation corresponds to the time evolution of a single-particle 
wavefunction within a one-dimensional discrete lattice. By modulating 
the phase of the light, we are able to emulate a quasicrystalline lattice 
potential. In the Hermitian aperiodic lattice, we observe a Floquet 
version of the Hofstadter butterfly quasienergy spectrum. When an 
imaginary gauge field is added to the quasicrystal, we observe a topo-
logical triple phase transition.

Theory
We start by introducing a Floquet version of the Hermitian AAH model 
and derive its metal–insulator transition, as well as its energy spectrum 
at the phase transition point (that is, the Floquet Hofstadter butterfly). 
In a second step, we include a non-Hermitian skin effect modulation11 to 
observe the topological, PT symmetry-breaking and metal–insulator  
phase transitions.

In its original form, the AAH model22 represents a chain of sites 
with an on-site potential that is incommensurable compared with the  
lattice spacing, thus realizing a quasicrystal23. We consider a Floquet 
implementation of the AAH model, where the static AAH model is 
mapped onto a discrete-time quantum walk34,36, as shown in Fig. 2. 
Such a quantum walk describes the evolution of a quantum particle 
on discrete lattice sites n, which are coupled to only the neighbouring  
sites, in a two-step protocol along the propagation direction  m  

(time axis). The underlying lattice potential is controlled by introducing 
local phase terms between the couplings. The dynamics is governed by 
the equations
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where un
m denotes the amplitude on left-moving paths of the quantum 

walk and vn
m denotes the corresponding amplitude on right-moving 

paths at position n and time step m (Supplementary Section 1). We find 
that it is possible to implement a Floquet version of the AAH model by 
a temporally changing two-step phase modulation ϕn

u v,  and constant 
sublattice (nearest-neighbour) coupling β. This modulation reads
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where φ is an irrational number for an incommensurable potential. 
The motivation for this modulation stems from the appearance of the 
vector potential in the original Harper model26, where the magnetic 
field in the Landau gauge leads to phase gradients with opposite signs, 
depending on the hopping direction. This is reflected by the opposite 
signs in the phase terms for the left- and right-moving components 
ϕn

u v, . The additional sign flip along the temporal direction m is based 
on the sublattice structure and assures that the same phase terms are 
aligned. This is illustrated in Fig. 2b, where the vertical lines connect 
identical phase modulations. Like in the original AAH model, our  
Floquet version displays a localization–delocalization phase transition 
without mobility edges, as the coupling parameter β is varied.  
The sudden metal–insulator phase transition is observed at the sym-
metry point β = π/4. This result can be rigorously proven from a 
self-similarity argument and it is also supported by a numerical analysis  
of the Lyapunov exponent (see Supplementary Section 2 for details). 
At this critical point, which lies exactly at the localization transition, 
when the phase gradient φ is varied, a Floquet version of the Harper–
Hofstadter butterfly emerges for the quasienergy spectrum(Fig. 3b).
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Fig. 1 | Intertwinement of the triple phase transition in the non-Hermitian 
Floquet AAH model. By intertwining a one-dimensional quasicrystal  
(AAH model) with a non-Hermitian anisotropy (skin effect model) via a 
temporal driving (Floquet mechanism), one obtains the non-Hermitian Floquet 
AAH model that is discussed in this work. Although none of the models on the 
left show a phase transition, except for a localization transition in the AAH 

model, the combined model on the right shows a triple phase transition,  
that is, a localization phase transition and a topological phase transition are 
connected to spontaneous PT symmetry breaking (energy-conservation 
transition). All three transitions occur at the same critical point of a single 
parameter, which can be a purely Hermitian parameter (the coupling strength) 
or a purely non-Hermitian parameter (the anisotropy strength).
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We now turn to the non-Hermitian extension of the AAH model.  
To this end, we employ a skin effect modulation11. The exact mapping 
is shown in Fig. 2, where, besides a phase modulation, the amplitudes 
are also manipulated. Mathematically, this corresponds to a complex 
phase term ϕ ϕ h→ − in

v
n
v  and ϕ ϕ h→ + in

u
n
u , which, in turn, leads to an 

effective anisotropic coupling11. The non-Hermitian contribution h to 
the phase term effectively corresponds to the implementation of an 
imaginary gauge field28 (see Supplementary Section 5).

By superimposing the quasiperiodic phase potential with the 
non-Hermitian contribution, the non-Hermitian Floquet AAH model 
is formed. Our analysis shows that the non-Hermitian model exhibits a 
triple phase transition (Fig. 4a) at the critical point βc, which is related 
to the anisotropy strength (or imaginary gauge field) h by (Supple-
mentary Section 3)
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In the Hermitian limit h → 0, the critical point takes the value of 
βc = π/4, according to the self-duality argument. Besides the localiza-
tion transition, now situated at βc(h), we find PT symmetry breaking 
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Fig. 2 | Experimental implementation of one-dimensional quasicrystals via 
photonic quantum walks. a, Simplified experimental setting for realizing 
photonic lattices via discrete-time quantum walks. Two unequally long optical 
fibre loops are connected by a variable beam splitter (VBS) that controls β.  
The non-Hermitian potential is realized by introducing controlled optical 
losses with acousto-optical modulators (AOMs). A phase modulator (PM) 
emulates the real part of the potential and creates the quasicrystalline order. 
Photodetectors measure the light intensity in both loops and hereby the  
time evolution of the quantum walk. b, The one-dimensional lattice (top) is 
implemented with a one-dimensional quantum walk (bottom) (equation (1)), 
based on a mesh lattice of beam splitters that is created with the coupled fibre 
loops (Supplementary Section 1). Gain and loss are incorporated at different 
lattice positions and in a two-step Floquet protocol, such that the skin effect 
modulation with anisotropic coupling with strength h (imaginary gauge field) 
is obtained. In a similar way, the potential (strength corresponds to amount of 
blue coloured filling) of the AAH model is realized via phase modulation 
(equation (2)) with a spatial phase gradient and alternating sign. The combined 
modulations realize the non-Hermitian Floquet AAH model based on a 
discrete-time quantum walk.
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Fig. 3 | Experimental Floquet metal–insulator transition and Floquet 
Hofstadter butterfly in the AAH model. a, Upon a single-site excitation of the 
Hermitian quasicrystal, the spatial spreading of the wavefunction is shown via 
the second moment M2 of its position operator after a large propagation time 
of m = 200. The grey area marks the tolerance region of expected deviations 
owing to limited accuracy in the lattice parameters (Methods). One can see that 
a drastic spatial localization of the wavefunction sets in upon increasing the 
intersite coupling parameter beyond βc = π/4 (top). This is exactly the  
metal–insulator phase transition, known from the static AAH model. b, At the 
symmetry point β = π/4, the Floquet Hofstadter–Harper model emerges.  
The evaluation of the quasienergies θ at m = 380 for 200 different phase 
gradients φ yields the Floquet Hofstadter butterfly (bottom) (Supplementary 
Section 3). The large propagation time allows for the high energy resolution. 
Compared with the original Hofstadter butterfly, our Floquet butterfly 
appears to be horizontally squeezed, due to the 2π periodicity in θ.  
The distribution of eigenvalues θ is obtained by applying the temporal Fourier 
transform (FT) to um

0 . Here, u| |m
0  is retrieved from the intensity measurement. 

The phase information, which is only a ± sign here, is lost in the intensity 
measurement, and we therefore added this minor information to the 
experimental data based on equation (1). The Floquet butterfly without this 
sign information is shown in Supplementary Section 3.
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at βc, separating a regime with an exponential net energy growth 
(β < βc) from a regime where the energy exchange with the environ-
ment is on-average balanced (β > βc). A derivation of the PT symmetry is  
provided in Supplementary Section 6. The third transition that occurs 
at this point is a topological one. As the quasienergies of equation (1) 
form closed contours in the complex plane for β < βc, a topological 
winding number can be introduced9
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which counts the number of times the complex spectral trajectory 
encircles a base point quasienergy θB when the phase ϑ is varied from 
zero to 2π. Here, H is the Hamiltonian with periodic boundary condi-
tions and L is the overall number of sites (Supplementary Section 4). 
The phase ϑ adds to the phase modulation in the form ϑϕ ϕ L→ + /(2 )u u and 

ϑϕ ϕ L→ − /(2 )v v  (Supplementary Section 4). One can further conclude 
from equation (3) that the triple phase transition shows a fundamental 
duality between Hermitian and non-Hermitian parameters, as it can 
be induced by changing either the site coupling β or the non-Hermitian 
gauge field h. Owing to the non-Hermitian contributions, the sym-
metry protection of the critical point is lost, and the phase transition 
point can be tuned with the anisotropy strength.
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Fig. 4 | Experimental triple phase transition in a non-Hermitian Floquet 
quasicrystal. a, Three simultaneous phase transitions are shown from top to 
bottom. The two regimes of the triple phase transition are separated from left 
to right by the vertical dashed line. Top: for β < βc (left), the quasicrystal is 
expected to be in a topologically non-trivial phase, owing to the formation of 
point-energy gaps with non-zero winding w = 1. The quasienergy spectra are 
obtained from numerical diagonalization of the Floquet propagator with 
periodic boundary conditions. For β > βc (right), the topological phase changes, 
as the spectrum becomes real and the winding changes. Centre: for β < βc (left), 
the quasicrystal is in the broken PT phase, which is marked by the exponential 
growth λ of the overall energy u v∑ + ∝ en

m2 2 λ
n
m

n
m  in time. For β > βc (right), the 

system changes to the unbroken PT phase, where the spectrum becomes real, 
and the overall energy becomes on-average constant. Bottom: for β < βc (left), 
the quasicrystal is in the delocalized phase, which is marked by a monotonic 

increase of the second moment that indicates strong spatial spreading of the 
wavefunction. For β > βc (right), all eigenstates become exponentially  
localized, which is marked by the extremely low and bounded second moment. 
All experiments are based on single-site excitations. The experimental data 
agree well with the predicted transition point at βc = 0.275π. The grey areas 
mark the tolerance regions of expected deviations owing to limited accuracy in 
the lattice parameters (Methods). b, Although a direct measurement of the 
winding number is not possible with the experimental setup, we observe light 
localization at a topological interface (top, β1 = 0.70βc and β2 = 1.03βc compared 
with a trivial interface (bottom, β1 = 0.70βc and β2 = 0.89βc), where light does 
not localize at the interface. The localization at the interface vanishes, as soon 
as the right medium exceeds critical coupling βc, such that both sides would 
have the same topological winding w = 1.
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Experimental results
The Floquet non-Hermitian quasicrystal is implemented using an inte-
grated photonic platform, in which classical light pulses propagate in 
two coupled and unequal long fibre loops connected by a beam splitter 
(Fig. 2). This setting realizes a discrete-time quantum walk (Supple-
mentary Section 1) and has proven to serve as versatile platform for 
the implementation of Hermitian37,38 and non-Hermitian11,35 synthetic 
lattices.

In a first experiment, the properties of the Hermitian Floquet AAH 
model are probed, using the potential of equation (2). Upon exciting 
a single lattice site u v δ( , ) = ( , 0)n n n

0 0
0 , where δij denotes the Kronecker 

delta, we measure the evolving intensity distribution u v| | + | |n
m

n
m2 2  of 

both loops. The localization transition is measured by evaluating the 
second moment M n u v= ∑ (| | + | | )n n

m
n
m

2
2 2 2 of the wave packet after 

m = 200 propagation steps, while using the irrational lattice frequency 
of φ = ( 5 − 1)/2, which is the inverse of the golden mean. The dynam-
ical wave packet spreading is evaluated for several different splitting 
ratios β, encompassing the phase transition region around β = π/4.  
The results clearly show the occurrence of a delocalization–localization 
transition (Fig. 3a), in agreement with the numerical predictions.

To highlight the feasibility and controllability of our photonic setting, 
in a second experiment we measure the quasienergy spectrum at the 
phase transition point (β = π/4) for different potential frequencies in 
the range φ ∈ {0, π}, that is, different magnetic fluxes in the corresponding  
Harper equation. To obtain the information about the energy spectrum, 
we apply a Fourier transform on the lattice-site amplitudes along the 
propagation direction m (see Supplementary Section 3 for details).  
By using a large propagation time of m = 380, a high energy resolution 
is obtained. For the experiments, the phase modulation equation (2) 
is slightly adapted to the form ϕ n φ= (−1) πn

u m  and ϕ = 0n
v , which is 

equivalent to the used modulation, as the lattice symmetry and the 
relative phase difference between the u and v components is main-
tained. With the adapted phase potential, a single site excitation u δ=n n

0
0 

now results in Ru ∈m
0  owing to the underlying symmetry of the lattice, 

which is explained in Supplementary Section 3. In an intensity measure-
ment, any phase information is lost. However, as Ru ∈m

0 , only the infor-
mation about the sign is lost, which makes the phase measurement 
less crucial for the reconstruction of the spectrum. In Fig. 3b, we show 
the Fourier transform of the experimentally retrieved u| |m

0 , comple-
mented with the sign information obtained from our simulations.  
The reconstructed energy spectra are reminiscent of the famous  
Hofstadter butterfly with a fractal structure, clearly showing that our 
Floquet photonic quantum walk can well reproduce the rich features 
of the Hermitian AAH model.

In the last and central experiment, we consider the non-Hermitian 
quantum walk, which displays the triple phase transition. The imaginary 
gauge phase h can be continuously varied from zero (Hermitian limit) 
to about h ≈ 0.12. In the experiment, we fixed the gradient to the irra-
tional Diophantine value φ = ( 5 − 1)/2. By varying the coupling β at a 
fixed non-vanishing gauge phase h, we simultaneously monitor the 
topology, energy exchange and bulk transport of the non-Hermitian 
quasicrystal (Fig. 4a). One can clearly see that the system undergoes 
three phase transitions as soon as β exceeds βc = 1.1π/4, where all eigen-
values become real and the energy gaps in the complex plane are closed 
(Fig. 4a, top row). To verify the topological nature of this phase transi-
tion, we deduce the change of the winding number based on the dynam-
ical (propagation) data, either in the bulk or by comparing a 
topologically non-trivial interface to a trivial interface (Fig. 4b). From 
the presence of a biased transport in the bulk owing to the non-Hermitian 
skin effect (as visible far from the interface), one can infer a non-zero 
winding39, that is, a topologically non-trivial phase. However, the skin 
effect is suppressed in the localized phase, from which one can deduce 
a zero winding, that is, a topologically trivial phase9,39. Furthermore, 
we numerically verified that only if the winding numbers of the adjacent 

media are different, light localizes at the interface instead of being 
transmitted through it. This observation supports the change of the 
topological phase, and such a behaviour suggests that the existing 
non-Hermitian bulk–boundary correspondence9,40 might be extend-
able to quasicrystals. Simultaneously, at the phase transition point, 
the exponential accumulation of energy in the systems stops, and the 
overall energy becomes on-average conserved as the PT phase transi-
tion from the broken to the unbroken PT phase occurs (Fig. 4a, centre 
row). In addition, a localization transition is observed: for β < βc, there 
is a strong growth of the wavefunction’s second moment, whereas for 
β > βc, the second moment becomes bounded, indicating that all eigen-
states are localized (Fig. 4a, bottom row).

Our experimental results show that all three phase transitions coin-
cide at βc(h). We stress that, although in the Hermitian limit only a locali-
zation–delocalization phase transition can be found at βc = π/4, in the 
non-Hermitian case a triple phase transition emerges, where the critical 
point shifts to βc = 1.1π/4, in agreement with our theoretical analysis.

Conclusion
We have experimentally demonstrated the concurrence of a triple 
phase transition in a one-dimensional non-Hermitian synthetic qua-
sicrystal, which is realized in a Floquet photonic quantum walk with 
a controlled imaginary gauge field and an quasicrystalline potential. 
The usual metal–insulator phase transition found in the Hermitian 
limit corresponds to the simultaneous breaking of PT symmetry and 
to a topological phase transition when a synthetic imaginary gauge 
field is applied to the quasicrystal. Our results provide experimental 
evidence on the exceptional properties of synthetic non-Hermitian 
quasicrystalline matter in terms of topology, localization–delocaliza-
tion and symmetry-breaking phase transitions, which are responsible 
for phenomena that are drastically distinct from the familiar Hermitian 
realm. As such, our results have far-reaching consequences in a wide 
range of energy-conserving and open systems, as it offers a step towards 
unifying seemingly distinct phenomena.
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Methods

Experimental setup
The experimental setup is similar to the setup described in refs. 11,35. 
The setup consists of two optical fibre loops, which are coupled 
by a variable beam splitter that controls the coupling parameter β.  
The loops are of unequal length, such that the roundtrip times are 
approximately given by 27 μs ± 50 ns. The time difference of 100 ns 
defines the temporal width of a time-bin, in which the lattice positions 
n are encoded, such that approximately 270 positions can be encoded 
in the loops. The extended propagation time in each loop is achieved 
by using spools of single mode fibre (Corning Vascade LEAF EP). At the 
beginning of each measurement, a single 70-ns pulse is injected into 
the longer loop, here called the v-loop, via a fused fibre-optical beam 
splitter. The initial pulse is generated with a continuous-wave distrib-
uted feedback laser ( JDS Uniphase, 1,550 nm) in combination with a 
Mach–Zehnder modulator (SDL Integrated Optics), which cuts out 
70-ns pulses via intensity modulation. A pulse-picker acousto-optical 
modulator (Gooch & Housego) is used to further increase the on–off 
ratio of the light intensity. After the initial injection, the pulse circulates 
in the loop arrangement and periodically splits up at the variable beam 
splitter and multipath interference between the emerging subpulses 
takes place. The time multiplexing imposes the interference condition 
that two pulses will interfere only if they have travelled a permutation 
of the same sequence of long and short loop roundtrips. This interfer-
ence condition guarantees an extremely stable phase relation between 
the interfering pulses, as external phase noise is acquired equally for 
a large frequency range of noise. The temporal intensity distribution 
of the propagating pulses is obtained by photodetectors (Thorlabs).  
The output voltages of the photodetectors are amplified with a loga-
rithmic amplifier (FEMTO HLVA-100) and then acquired by an oscil-
loscope (R&S RTO1104). With the propagation timescales Δt = 100 ns 
and T =27 μs, one can map the light intensity onto the discrete 1 + 1D 
lattice (time step m and position n). The measured pulse intensities 
correspond to the squared modulus of the wave function at lattice site n 
and time step m. To realize desired the phase and gain/loss modulation, 
an additional phase modulator (ixBlue Photonics) is placed in the u-loop 
and an acousto-optical amplitude modulator (zeroth order, Brimrose) 
is placed in each loop. To also realize gain and compensate for global 
losses (for example, insertion loss or propagation losses in optical 
fibre) an erbium-doped fibre amplifier (Thorlabs) is placed in each 
loop. The amplifiers are optically gain clamped with by an additional 
distributed feedback laser ( JDS Uniphase, 1,538 nm) that is coupled to 
the amplifier input via wavelength division multiplexing coupler (AC 
Photonics). Excess light from the gain clamping protocol is removed 
by an optical band-pass filter (WL Photonics), which also suppresses 
optical noise that stems from the amplification. All optical components 
are designed for operation at 1,550-nm wavelength and use a standard 
single mode fibre (SMF28 or comparable). The polarization is aligned 
between each loop and in front of polarization-sensitive components. 
Arbitrary waveform generators (Keysight Technologies, 33622A) gener-
ate the voltage signals that drive the electro-optical modulators. For 
each measurement, we perform an additional noise measurement in 
which no input pulse is injected. The measured light intensity then 
corresponds to the noise data and can be subtracted from the original 
date in post-processing.

Energy growth estimation
In the broken PT phase, it is expected that the overall light intensity 
can exponentially grow with propagation time m. Such growth in 
optical power can lead to a quick and nonlinear gain saturation of the 
amplifiers. Furthermore, high optical power might induce nonlinear 
effects via self-phase modulation or damage the optical components. 
To avoid the exponential light intensity growth, we impose artificial 
losses to the system in the broken phase, until the overall power no 

longer grows exponentially. These losses are equal in both loops and 
do not vary in time, such that the overall dynamic in the quantum walk 
is not affected. To do so, we decrease the gain of both amplifiers, such 
that an excess net loss is induced in each roundtrip. Afterwards, we keep 
these parameters and measure a Hermitian quantum walk as a control 
measurement. Owing to the excess loss, the overall light intensity of 
the Hermitian quantum walk is not constant, but exponentially decays 
with propagation time m. From this decay, one can deduce the power 
growth of the previously measured non-Hermitian system.

Experimental error and tolerance regions
The experimental error is captured via the systematic and statistical 
errors. The tolerance regions show the expected deviations owing to 
systematic errors. We assume that the main contribution for systematic 
errors stems from the limited precision of the experimentally realized 
lattice parameters. The lattice parameters are implemented via phase 
and amplitude modulation of the propagating light and via the coupling 
of the variable beam splitter that connects the fibre loops. Therefore, 
the systematic error stems mainly from the limited precision of the 
electro-optic driving, for instance, owing to bias drifts and tolerances 
in the look-up curves of the modulators. We assume a relative error of 
±1% in the modulation parameters (that is, the imprinted phases, gain/
loss and the coupling β) and estimate the resulting error for the second 
moments and the energy growth via error propagation. The observed 
statistical fluctuations on repeating individual single-site excitations 
at least 10 times were negligible compared with the systematic error.  
The resulting overall errors can explain most of the discrepancies 
between the experimental and the theoretical data.

Accuracy of the irrational phase gradient
The experimental realization of the Hermitian and non-Hermitian Flo-
quet AAH model required the phase gradient strength φ to be an irra-
tional number to realize a potential that is incommensurable with 
respect to the lattice site spacing. It is therefore natural to ask with 
what accuracy an irrational parameter can be achieved and how any 
rational number (finite size) approximation would affect the results. 
On the one hand, the effect of a limited accuracy is already captured 
within the grey areas in Figs. 3, 4. Therefore, one can conclude that the 
limited accuracy of the phase modulation does not prevent an obser-
vation of the phase transitions that is based on the propagation data. 
On the other hand, it should be noted that owing to the time–energy 
uncertainty principle, in an experiment one can never resolve with an 
arbitrarily high precision the fine spectral or dynamical features 
observed when approaching the irrational φ. To clarify this point, let 
us assume that T is the largest observation time (time step) of the 
dynamics, and that we excite the lattice at the single site n = 0.  
The excitation spreads in the lattice with an upper speed bound v ≤ 1 
and thereby it is clear that one never probes more than L = vT = T sites 
in the lattice at the left and the right sides from n = 0. Therefore, the 
experiment would yield the same results for two different values of the 
phase gradients φ1 and φ2 such that dφ = |φ2 − φ1| is of the order of (or 
smaller than) 1/L = 1/T, because the light pulses effectively probe the 
same potential over the spatial interval L. Hence, in the experiment, 
we cannot distinguish any finer spectral or dynamical features arising 
from any change of dφ smaller than 1/T, and this also sets the accuracy 
we require to achieve the target irrational value of φ = ( 5 − 1)/2.

Data availability
All experimental data that have been used to produce the results reported 
in this manuscript are available in an open-access data repository41.
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