
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9699  | https://doi.org/10.1038/s41598-022-12877-z

www.nature.com/scientificreports

Hodge theory‑based biomolecular 
data analysis
Ronald Koh Joon Wei, Junjie Wee, Valerie Evangelin Laurent & Kelin Xia*

Hodge theory reveals the deep intrinsic relations of differential forms and provides a bridge between 
differential geometry, algebraic topology, and functional analysis. Here we use Hodge Laplacian 
and Hodge decomposition models to analyze biomolecular structures. Different from traditional 
graph-based methods, biomolecular structures are represented as simplicial complexes, which can 
be viewed as a generalization of graph models to their higher-dimensional counterparts. Hodge 
Laplacian matrices at different dimensions can be generated from the simplicial complex. The spectral 
information of these matrices can be used to study intrinsic topological information of biomolecular 
structures. Essentially, the number (or multiplicity) of k-th dimensional zero eigenvalues is equivalent 
to the k-th Betti number, i.e., the number of k-th dimensional homology groups. The associated 
eigenvectors indicate the homological generators, i.e., circles or holes within the molecular-based 
simplicial complex. Furthermore, Hodge decomposition-based HodgeRank model is used to 
characterize the folding or compactness of the molecular structures, in particular, the topological 
associated domain (TAD) in high-throughput chromosome conformation capture (Hi-C) data. 
Mathematically, molecular structures are represented in simplicial complexes with certain edge flows. 
The HodgeRank-based average/total inconsistency (AI/TI) is used for the quantitative measurements 
of the folding or compactness of TADs. This is the first quantitative measurement for TAD regions, as 
far as we know.

With the help from various experimental tools, including mass spectrometry, X-ray, Nuclear magnetic resonance 
(NMR), and Cryogenic electron microscopy (cryo-EM), there is an accumulation of biomolecular structure 
data in various databanks, such as Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB). 
The availability of these large amount of biomolecular data provides great opportunities for researchers in data 
sciences1. Due to the biomolecular structure–function relationships, a better description and characterization of 
biomolecular structures can help to improve the accuracy of models for biomolecular functions2. For quantitative 
structure-activity/property relationship (QSAR/QSPR) and machine learning models, structure-based molecular 
descriptors are of essential importance3,4. Structural features that characterize deep, intrinsic and fundamental 
molecular properties have better learning accuracy, as they have a better transferability5,6. Recently, Hodge 
theory-based persistent spectral models, including persistent spectral graph7,8, persistent spectral simplicial 
complex9, and persistent spectral hypergraph10, have been used in protein B-factor and protein-ligand binding 
affinity prediction. Different from traditional graph-based molecular descriptors, Hodge theory-based molecu-
lar features incorporate both topological and geometric information and provide a balance between structure 
complexity and data simplification9.

Mathematically, as a bridge between differential geometry, algebraic topology, and functional analysis, Hodge 
theory unveils the fundamental relations of differential forms11,12. Based on de-Rhams cohomology and Hodge 
star operator, Hodge Laplacian (HL) operator is defined from differential forms on Riemannian manifolds13. The 
kernel of the HL operator induces harmonic forms, which reflect the homology of the manifold. Furthermore, 
Hodge theory provides an orthogonal decomposition of the differential forms, known as Hodge decomposition14. 
Hodge theory, which was originally defined on the Riemannian manifolds, can be viewed as “differentiable Hodge 
theory”. A “continuous Hodge theory” is proposed by the generalization of Hodge theory onto metric spaces15.

Computationally, combinatorial Hodge theory or discrete Hodge theory has been proposed16–23. Essen-
tially, this discrete version can be viewed as part of exterior calculus and discrete differential geometry. To 
avoid confusion, there are two components of discrete Hodge theory, i.e., Hodge Laplacian matrices and dis-
crete Hodge decomposition18,24,25. HL matrix (or combinatorial Laplacian matrix) is constructed on simplicial 
complex16–18 and hypergraph26–30. It can be regarded as a generalization of the graph Laplacian matrix into its 
higher-dimensional counterpart. The spectral information of HL matrices contains the topological information 
of the underlying structures. In particular, the multiplicity of the zero eigenvalue of HL matrices corresponds to 
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Betti numbers, i.e., number of cycles or loops. Eigenvectors from zero eigenvalues are related to the homology 
generators. Geometrically, the components with large-absolute-values of zero-eigenvalue-related eigenvectors 
concentrate around cycles or loops of structures31. Furthermore, discrete Hodge decomposition models have been 
used in statistical ranking25 and game theory32. HodgeRank models have been developed for ranking incomplete 
or imbalanced data from e-commerce and internet applications25. The essential idea is to reveal ranking infor-
mation from edge flows, which represent difference between pairs of vertices and thus are pairwise ranking. In 
particular, an edge flow can be decomposed into three orthogonal components, a gradient flow that represents the 
optimal global ranking, a curl flow (locally cyclic), and a harmonic flow (locally acyclic but globally cyclic). The 
curl flow and harmonic flow are divergence-free flow (cyclic) that measures the ranking inconsistency. Recently, 
a five-component orthogonal decomposition model has been proposed33,34. It can split a discrete vector field, 
which is represented as discrete differential forms, into two potential fields, as well as three additional harmonic 
components. The model has been successfully used for the analysis of biological macromolecules and subcellular 
organelles, in particular, the flexibility and normal modes of molecular structures33,34.

Biomolecular folding and compactness are of great importance to their intrinsic functions and properties. 
The importance of protein folding cannot be overstated. Ill-folded proteins can lead to various diseases, such 
as Alzheimer’s disease, mad cow disease, and Parkinson’s disease. Further, as the most important genetic infor-
mation, DNA also forms highly complicated structures. In eukaryote cells, DNA molecules bind with histone 
proteins to form nucleosomes. A nucleosome has a core region and a linker region. The core region consists of 
around 146 DNA base pairs wrapped around eight histone proteins in a left-handed superhelical pattern. The 
core regions are connected to nucleosome linker DNA, which can be as long as 80 DNA base pairs. Geometrically, 
the core region looks like a “bead” and the linker DNA like a “string” between “beads”. The nucleosome “beads-
on-a-string” chains fold into chromatin fibres, which are at the size of 30-nanometer. Moreover, these chromatin 
fibres will further fold into highly complicated and compacted chromosome structures. Folding properties and 
compactness are key to the understanding of chromosomal structures and their functions. As one of the most 
complex and important cellular entities, chromosomes are the physical realization of genetic information35–41, 
and play important roles in various biological functions42,42–45, such as DNA replication, DNA transcription, 
repair of DNA damage, chromosome translocation, the development of epigenetic organizations, the regulation of 
genome functions, and the epigenetic inheritance of various cell states. Various experimental tools are developed 
to understand the chromosome folding and compactness, among them is the chromosome conformation capture 
(3C) technique46,47 and its derived methods, including chromosome conformation capture-on-chip (4C)48,49, 
chromosome conformation capture carbon copy (5C)50 and high-throughput chromosome conformation capture 
(Hi-C)51. These experimental techniques have been developed and begun to uncover general features of genome 
organization51–59. In particular, the modeling and analysis Hi-C data have indicated a special folding pattern 
known as topologically associating domains (TADs)52,53. TADs are highly-compacted and folded chromosome 
regions with a size from about 200 kilobases (Kb) to 2 megabases (Mb). Computationally, they are defined to 
be the contiguous square regions along the diagonal Hi-C maps with large contact values. These square regions 
are found to be very consistent between different cell types and species and their spatial distributions are highly 
correlated with many genomic features such as histone modifications, coordinated gene expression, lamina, 
and DNA replication timing. Various algorithms and software are designed to identify these TAD regions from 
Hi-C data, such as hidden Markov model (HMM)52, Armatus60, HiCseg61, spectral models TADs62,63. All these 
models focus on matrix or graph segmentation and optimization of the block or square regions. No rigorous 
mathematical definitions or models are proposed to uniquely define TAD regions.

In this paper, we analyze biomolecular data and Hi-C data with Hodge theory-based models. The Hodge 
Laplacian-based spectral information is used for biomolecular structure analysis. The multiplicity of the zero 
eigenvalue represents Betti numbers18. Eigenvectors are used to identify homology and non-homology genera-
tors. Geometrically, homology generators (eigenvectors from zero eigenvalues) correspond to the cycle struc-
tures within the data. Non-homology generators can be used in clustering (spectral clustering) and community 
detection17,21. Furthermore, eigendecomposition-based HodgeRank model can be used in biomolecular structure 
folding analysis. Different from general molecules from materials and chemistry, biomolecules are three-dimen-
sional structures that are folded from one or several individual chains. In our model, molecular structures are 
represented in simplicial complexes with certain edge flows. The average/total inconsistency (AI/TI) is used as 
a quantitative measurement of the folding or compactness of structures. More specifically, we incorporate coor-
dinate-related structural information into edge flow terms. The curl flow terms and harmonic flow terms, from 
the Hodgerank decomposition, characterize the local and non-local compactness/folding properties. For Hi-C 
data, an important issue is the topological associated domain (TAD). Even though various elegant algorithms 
and methods have been proposed for the identification of TADs, there is no quantitative way to characterize how 
likely a certain region in Hi-C data is a TAD. Here we generate simplicial complexes from Hi-C contact matrix, 
and use AI as a way to quantitatively measure TAD likelihood. The AI characterizes the compactness or folding 
of the structure. We have validated the model with experimental Hi-C data from human embryonic stem cells 
chromosome 10. The predictions from our models are highly consistent with the TAD patterns.

Methods
We use discrete Hodge models, including Hodge Laplacian and Hodge decomposition, for biomolecular struc-
ture representation and characterization. Different from previous graph-based models, molecular structures are 
represented as simplicial complexes. Algebraic tools from chain groups, homology groups, boundary operators, 
Laplacian matrices, and orthogonal decomposition, are used to reveal deeper geometric and topological proper-
ties of these molecular structures.
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Topological representations for biomolecules.  The biomolecular topology is of essential impor-
tance for biomolecular flexility, dynamics and functions. For instance, molecular dynamic (MD) force field 
involves geometric/topological features, such as bond length, bond angle, dihedral angle, and other graph-based 
properties64. In fact, graphs or networks are the most frequently used models for the representation of molecular 
structures from materials, chemistry and biology3,4. Mathematically, a graph G = (V ,E) contains the vertex set 
V = {vi : 1 ≤ i ≤ N} and the edge set E = {(vi , vj) : 1 ≤ i, j ≤ N} . Generally speaking, graph representations 
only characterize the zero and one-dimensional information within the structure. A simplicial complex is a gen-
eralization of graphs into their higher dimensional counterpart. The most commonly used simplicial complexes 
are triangle meshes and tetrahedron meshes. A general simplicial complex is composed of simplexes. Based 
on simplicial complexes, various algebraic groups, boundary operators, and Hodge Laplacian matrices can be 
defined.

Let d, k be any two positive integers and U = {u0, u1, . . . , uk} be a collection of points in Rd . We say that 
this collection of points are affinely independent if the set {ui − u0}

k
i=1 is linearly independent. A point x ∈ R

d is 
said to be an affine combination of points in U if it can be written as a linear combination of points in U whose 
coefficients sum to 1, that is,

for some �i ∈ R and 
∑k

i=0 �i = 1. If �i ≥ 0 also holds, then x is said to be a convex combination of points in U. 
The convex hull of U is the set of all convex combinations of points in U. The fundamental building blocks of 
simplical complex are simplexes.

Let U = {u0, u1, . . . , uk} be an affinely independent set of k + 1 points in Rd . A k-simplex σ k is the convex 
hull of U, denoted by [u0, u1, . . . , uk] . The dimension of σ k is k. Geometrically, a 0-simplex is simply a point, an 
1-simplex is called an edge, a 2-simplex is called a triangle and a 3-simplex is called a tetrahedron. A face τ of 
a k-simplex σ k is the convex hull of a non-empty subset A of U, denoted by τ ⊂ σ k . An oriented k-simplex is a 
k-simplex with an orientation, i.e., a sequence arrangement of its vertices. If two k-simplexes σ k

1  and σ k
2  are of 

the same orientation, they are denoted as σ k
1 ∼ σ k

2  . Two simplexes σ k
1  and σ k

2  are upper adjacent and denoted as 
σ k
1 ⌢ σ k

2  , if they are faces of a common (k + 1)-simplex, and they are lower adjacent and denoted as σ k
1 ⌣ σ k

2  , if 
they share a common (k − 1)-simplex as their face. For these two oriented k-simplices, if the orientations of their 
common lower simplex are the same, they are called a similar common lower simplex and denoted by σ k

1 ⌣ σ k
2  

and σ k
1 ∼ σ k

1  . Otherwise, it is called a dissimilar common lower simplex and denoted by σ k
1 ⌣ σ k

2  and σ k
1  ∼ σ k

2  . 
The (upper) degree of a k-simplex σ k , denoted by d(σ k) , is the number of (k + 1)-simplices of which σ k is a face.

A simplicial complex K is a finite collection of simplices that satisfy two conditions. Firstly, any face of a 
simplex in K is also in K. Secondly, the intersection of any two simplices in K is either empty or a face of both. 
A simplicial k-complex is a simplicial complex where the largest dimension of simplices in K is k. Figure 1 illus-
trates the comparison between a graph and a simplicial complex for a protein (ID:2OFS). For the graph model, 
vertices represent molecular atoms and the edges are for covalent-bonds. The simplicial complex is constructed 
using Vietoris-Rips complex. Essentially, a cutoff-distance of 4.0Å is used and a k-simplex is formed among k + 1 
vertices whose pair-wise distances are all smaller than 4.0Å.

x =

k
∑

i=0

�iui ,

Figure 1.   The comparison of molecular graph and simplicial complex representations for a protein (ID:2OFS). 
(a) Surface representation for protein 2OFS. (b) A graph representation for protein 2OFS. (c) The simplicial 
complex model for protein 2OFS. A simplicial complex can be viewed as a generalization of graph into its higher 
dimensional counterpart. Vertices (0-simplexes) and edges (1-simplexes) from graphs can be extended to higher 
dimensional elements, including triangles (2-simplexes) and tetrahedrons (3-simplexes).
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Hodge Laplacian and Hodge decomposition
Hodge Laplacian matrices of different dimensions can be constructed on a simplicial complex. A k-th dimen-
sional HL matrix characterizes topological connections between k-th simplexes. Note that the graph Laplacian, 
which is 0-th dimensional HL, characterizes relations between vertexes (0-simplexes).

Hodge Laplacian model.  Mathematical background for Hodge Laplacian.  The kth chain group Ck(K) of 
a simplicial complex K over some field F is a vector space over the F whose basis is the set of k-simplices of the 
simplicial complex K. Elements of Ck(K) are called k-chains. The dual of Ck(K), denoted by Ck(K), is the set of 
all linear functionals on Ck(K):

Ck(K) is called the k-th cochain group and its elements are called k-cochains. Boundary operators are defined on 
both the chain and cochain groups. The boundary map ∂k : Ck(K) → Ck−1(K) is a linear transformation which 
acts on a k-simplex σ k = [u0, u1, . . . , uk] as follows

The coboundary map δk : Ck(K) → Ck+1(K) is a linear transformation defined as follows: for a linear functional 
φ ∈ Ck(K) and a k + 1-simplex σ k+1 = [u0, u1, . . . , uk+1],

The boundary map gives rise to a chain complex, which is a sequence of chain groups connected by boundary 
maps as follows:

Similar to the boundary map giving rise to the chain complex, the coboundary operator gives rise to a cochain 
complex:

Since Ck(K) and Ck(K) are finite-dimensional, there exists unique matrix representations for ∂k and δk . We have 
some useful relations regarding matrix representations of ∂k and δk ( AT represents the transpose of a matrix A):

•	 For all k ≥ 0 , ∂Tk+1
= δk,

•	 ∂Tk = ∂∗k ,
•	 δTk = δ∗k .

Here, δ∗k : Ck+1(K) → Ck(K) is the adjoint/transpose map of δk where

for every f ∈ Ck(K) , g ∈ Ck+1(K) and a suitable inner product 〈 , 〉 for Ck(K) and Ck+1(K). The adjoint of the 
boundary operator ∂k , ∂∗k  is also defined analogously. These relations above allow us to work unilaterally from 
the boundary operator’s perspective, which is the easiest to compute amongst the two.

The k-dimensional combinatorial Laplacian is the linear operator �k : C
k(K) → Ck(K) is defined as follows:

The case where k = 0 gives rise to the expression of the well-known graph Laplacian.

Discrete Hodge Laplacian.  The boundary operator ∂k has a unique matrix representation. Given a simpli-
cial complex K, the k-th boundary matrix BBBk is defined as,

Here σ k−1
i  is the i-th (k − 1)-simplex and σ k

j  is the j-th k-simplex.
Given that the highest order of the simplicial complex K is n, the kth Hodge Laplacian (or combinatorial 

Laplacian) matrix LLLk of K is

Ck(K) =
{

φ : Ck(K) → F : φ is linear
}

.

∂k([u0, u1, . . . , uk]) =

k
∑

i=0

(−1)i[u0, . . . , ui−1, ui+1, . . . , uk].

δk(φ)(σ
k+1) =

k+1
∑

i=0

(−1)iφ([u0, . . . , ui−1, ui+1, . . . , uk+1]).

0 → Cn(K) → · · ·
∂k+1
−−→ Ck(K)

∂k
−→ Ck−1(K) · · ·

∂2
−→ C1(K)

∂1
−→ C0(K) → 0.

0 ← Cn(K) ← · · ·
δk
←− Ck(K)

δk−1
←−− Ck−1(K) · · ·

δ1
←− C1(K)

δ0
←− C0(K) ← 0.

�δk(f ), g� = �f , δ∗k (g)�,

�k =

{

δ∗k ◦ δk + δk−1 ◦ δ
∗
k−1

if k ≥ 1,

δ∗k ◦ δk if k = 0.

(BBBk)ij =











1 if σ k−1
i ⊂ σ k

j and σ k−1
i ∼ σ k

j ,

−1 if σ k−1
i ⊂ σ k

j and σ k−1
i �∼ σ k

j ,

0 if σ k−1
i �⊂ σ k

j .
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These k-th HL matrices can also be expressed in terms of simplex relations. When k = 0,

The HL matrix LLL0 is the graph Laplacian matrix. When k > 0,

Mathematically, the eigenvalues of HL matrices are independent of the choice of the orientation18.

Hodge decomposition model.  Hodge decomposition is an orthogonal decomposition of a vector field 
into gradient part, harmonic part and curl part. Hodge decomposition has been used in fluid mechanics, data 
analysis, game theory and molecular dynamics25,32–34.

Mathematically, from the 1st cochain group, if we denote,

the Hodge decomposition25 can be expressed as follows,

Geometrically, the cochain C1(K) can be viewed as edge flows as it consists of all scalar functions on the 1-sim-
plices (edges). The term ker(δ1) can be regarded as gradient flows, term ker(�1) can be regarded as harmonic 
flows, and term Im(δ∗1 ) can be regarded as curl flows.

Discrete Hodge decomposition and HodgeRank.  Computationally, Hodge decomposition-based 
surface vector field analysis14 have received a lot of attention, and found various applications in geometric pro-
cessing, computer graphs, and fluid dynamics analysis. Different from these 2D surface or 3D domain-based 
vector decomposition models, a simplicial complex-based Hodge decomposition model, known as HodgeRank, 
has been proposed for statistical ranking25.

In HodgeRank25, an edge flow value Y on an edge is regarded as a ranking order, that is if the flow goes from 
vertex i1 to vertex i2 , then the score is higher at i1 than i2 (as flow goes from higher “place” to lower “place”). The 
edge flow from vertex i1 to vertex i2 is denoted as Y[i1,i2] . If the rank value for i1 is a scale with value fi1 and for i2 
is fi2 , then Y[i1,i2] = fi1 − fi2 . In this way, gradient flows Yg are globally consistent in terms of ranking, as they 
always go from higher values to low values25. In contrast, harmonic flows Yh and curl flows Yc are inconsistent 
in ranking models25. In both terms, the flows can travel from one vertex to some other vertices and then return 
to the same exact vertex. This is problematic for ranking, as it means a “large” value can keep on decreasing to 
“small” values, but still return to the same value. The harmonic flows are globally inconsistent and curl flows 
are locally inconsistent.

Given the edge flow values Y, HodgeRank gives the gradient flow term Yg , the curl flow term Yc , and the 
harmonic flow term Yh . The detailed algorithm for Hodge decomposition is listed in Algorithm 1.

LLLk =







BBBTnBBBn if k = n,

BBBTk BBBk + BBBk+1BBB
T
k+1

if 1 ≤ k < n,

BBB1BBB
T
1 if k = 0.

(LLL0)ij =







d(σ 0
i ) if i = j,

−1 if i �= j and σ 0
i � σ 0

j ,

0 if i �= j and σ 0
i �/ σ 0

j .

(LLLk)ij =



















d(σ k
i )+ k + 1 if i = j,

1 if i �= j, σ k
i �/ σ k

j , σ
k
i ⌣ σ k

j and σ k
i ∼ σ k

j ,

−1 if i �= j, σ k
i �/ σ k

j , σ
k
i ⌣ σ k

j and σ k
i ∼/ σ k

j ,

0 if i �= j, σ k
i � σ k

j or σ k
i ⌣/ σ k

j .

ker(�1) = ker(δ1) ∩ ker(δ∗0 ),

C1(K) = Im(δ0)⊕ ker(�1)⊕ Im(δ∗1 ).
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Further, total inconsistency (TI) can be defined as follows,

here [i, j] is oriented 1-simplex in the simplicial complex K, the term Y[i,j] is the orginal vector flow on 1-simplex 
[i, j], and the term (Yc + Yh)[i,j] represents the sum of the curl and harmonic flows on the 1-simplex [i, j].

To compare the structures with different sizes, one can use average inconsistency (AI),

here N is the total number of 0-simplexes (vertices) in the simplicial complex. We also note that the TI/AI indices 
does not depend on the ordering of vertices, as the number of edges and triangles in a Vietoris-Rips simplicial 
complex with a fixed threshold distance γ is invariant under the renumbering of data points, and the set of values 
in the vectors of curl and harmonic flows are each uniquely determined by γ.

Hodge‑theory‑based biomolecular structure analysis.  We use Hodge Laplacian and Hodge decom-
position models to analyze biomolecular structures. Both homological and non-homological eigenvectors from 
Hodge Laplacian can be used in the different types of spectral clustering. The Hodge decomposition-based 
Hodgerank model can be used in the systematic characterization of biomolecular folding and compactness, in 
particular, the analysis of TAD regions from Hi-C data.

Hodge Laplacian‑based biomolecular structure analysis.  The multiplicity of the zero eigenvalue, i.e., the total 
number of zero eigenvalues, of Lk is the k-th Betti number βk . Geometrically, β0 is the number of connected 
components, β1 is the number of circles or loops, and β2 is the number of cavities. Moreover, the zero eigenvalue 
related eigenvectors are related to homology generators. They can be used to identify the associated topological 
features, such as circles, loops, and voids in the structures. The eigenvectors from nonzero eigenvalues are related 
to clusters and communities within the data, and can be used for spectral clustering.

Figure 2 illustrates L1-based eigenvectors for Guanine structures. The absolute values of L1 eigenvectors 
are plotted on the edges and represented by colors.Two homology generators, i.e., eigenvectors from the zero-
eigenvalue, are considered. It can be seen that for each homology generator, their largest absolute values are all 
concentrated around a loop structure, which is either a pentagon ring or a hexagon ring. In contrast, for the two 
(non-homological) eigenvectors that are from the non-zero-eigenvalues, their values can be used to identify 
domains or clusters.

HodgeRank‑based biomolecular structure analysis.  Recently, Hodge decomposition for vector fields over 3D 
bounded domains has been systematically explored and been applied to biomolecular dynamic analysis33,34.

The essential idea is to use HodgeRank-based TI/AI indices as a way to measure the folding, curvedness 
and compactness of the biomolecular structures. In our model, edge flows represent distance relations between 
biomolecular atoms. Note that biomolecular atoms have a unique ordering or sequence. For instance, DNAs are 

(1)TI =
∑

[i,j]∈K

∣

∣

∣

∣

∣

(Yc + Yh)[i,j]

Y[i,j]

∣

∣

∣

∣

∣

,

(2)AI =
1

N

∑

[i,j]∈K

∣

∣

∣

∣

∣

(Yc + Yh)[i,j]

Y[i,j]

∣

∣

∣

∣

∣
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double helix structures from the gene sequence, and proteins are from peptide sequences. The gene or peptide 
sequence provides a natural ordering of the atoms in a biomolecule. In this way, even though the biomolecules 
have highly complicated 3D structures, their atoms, in particular the backbone atoms, can be systematically 
arranged into a unique sequence (following their gene sequence). Furthermore, the inconsistence from edge 
flows can be used to model Euclidian distances deviated from the straight lines. For two vertices i1 and i2 with 
coordinate ri1 and ri2 , the edge flow Y[i1,i2] is defined as,

Note that edge flows are always positive if they follow the chain sequence. More specifically, if vertex i2 comes 
later than i1 along the chain sequence, then Y[i1,i2] is always positive, otherwise the edge flow is negative.

Motivated by the triangle inequality definition, we propose to use local inconsistence to measure the curved-
ness of the biomolecular chains. More specifically, if three vertices i1 , i2 and i3 are located in a straight line, we 
should always have the sum Y[i1,i2] + Y[i2,i3] + Y[i3,i1] = 0 , meaning there is no curvedness or folding. In con-
trast, if the sum is nonzero, there will be a deviation from the straight line. More generally, if the whole chain is 
a straight line, the edge flows defined above will only have gradient terms. Both harmonic flows and curl flows 
will be zero. In contrast, if a chain is folded, the harmonic flows and curl flows are nonzero and can be used to 
characterize the curvedness, folding and compactness of structures. In Fig. 3, we illustrate different flow terms 
of the simplicial complexes generated from an partially-folded protein structure (details in “Protein folding 
analysis”). It can be seen that the large-valued curl flow terms are all concentrated in the highly-packed or folded 
regions. The harmonic flow terms are all zero as there is no 1D harmonic circles in the simplicial complexes. It 
is worth mentioning that the curl flow terms are only defined on 2-simplexes (triangles), thus there will be no 
curl flow terms if there is no 2-simplexes.

Results
In this section, we apply Hodge Laplacian and HodgeRank models into biomolecular data analysis and Hi-C 
data analysis. HL-based eigenvectors are used to reveal cycle or loop structures within molecules. Furthermore, 
Hodge decomposition-based TI/AI indices are used for protein, DNA and chromatin folding analysis.

Hodge‑theory‑based biomolecular data analysis.  HL‑based biomolecular structure analysis.  The 
representation and characterization of biomolecular structures are of great importance for analyzing biomolecu-
lar functions. Among the various structural properties are biomolecular topological features, including rings, 
channels, cages, voids, etc. For instance, the closing and opening of ion channels are highly related to the channel 
structures. The virus capsids are cage-like structures with high symmetries. All these topological information 
can be well characterized by homology generators. Mathematically, eigenvectors of the zero eigenvalues of the 
kth HL matrices are kth homology generators.

(3)Y[i1,i2] =

{

|ri1 − ri2 | i1 < i2,
−|ri1 − ri2 | i1 > i2.

Figure 2.   The illustration of HL-based structure analysis. (a) The graph representation for Guanine. (b) The 
zero-eigenvalue-related eigenvectors are homology generators. Geometrically, their largest absolute values 
indicate the associated loop structures. (c) Nonzero-eigenvalue-related eigenvectors are more related to domain, 
cluster and community structures.
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Figure 3.   The illustration of the different flow terms, i.e., gradient, curl, and harmonic, for a partially-folded 
protein. Only Cα atoms are considered and the protein configuration is taken from the SMD simulation65. The 
simplicial complex is generated with a cutoff at 11 Å. It can be seen that most of curl terms with larger values are 
concentrated near highly-packed regions. All harmonic terms are zero, since there is no harmonic flows (no 1D 
harmonic circles in the simplicial complex).

Figure 4.   HL-based protein structure analysis for protein (ID:1AXC). Four 1D homology generators are from 
four zero eigenvalue related eigenvectors of 1D HL matrix. Two non homology generators are from two smallest 
nonzero eigenvalue related eigenvectors. Homology generators characterize loop and cycle structures, while 
non-homology generators indicate information about domains and communities.
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Figure 4 illustrates the eigenvectors from 1-th HL matrix for protein (ID: 1AXC). There are four zero eigenval-
ues, i.e., the multiplicity of the zero eigenvalue is four. The corresponding eigenvectors characterize the cycle or 
loop structures. More specifically, if we plot the absolute value of the eigenvectors on the edges with large values 
represented by deep blue color, it can be seen that blue-colored edges are all concentrated around each cycle or 
loop. The nonzero eigenvalue related eigenvectors characterize clusters, domains, and communities. The two 
smallest nonzero eigenvalue related eigenvectors are depicted. Note that for each eigenvector, the large absolute 
values are all concentrated within a domain or a community.

Protein folding analysis.  Here we use HodgeRank-based inconsistence to quantitatively measure the folding 
of protein configurations. We consider the Titin molecule. The trajectory data is obtained from the Steered 
molecular dynamics (SMD) simulation65. SMD simulations are designed to study the protein folding mechanism 
through an inverse unfolding process65. Essentially, a constant force or velocity is applied to one end of protein 
(with the other end fixed) to unfolded into a straight chain. In this way, various metastates can be observed 
from the dynamic process. We take 97 configurations equally from the simulation trajectory and renumber 
the sequence so that the last configuration (which is the straight chain) comes first and the first configuration 
(initial well-folded structure) comes last. Eight of these configurations are plotted in Fig. 5. Only Cα atoms are 
considered. It can be seen that, after renumbering, a protein folding process from a straight peptide chain to a 
well-folded 3D structure is observed. From these protein configurations, we can construct a series of simplicial 
complexes using the Vietoris-Rips complex. Figure 5 illustrates eight simplicial complexes generated from eight 
different Titin configurations. A cutoff distance of 11 Å is used to generate the Vietoris-Rips complex.

TI is used to measure the folding of protein structures. Since the Titin molecule has only a single chain, we 
take all the Cα atoms and rank them according to their amino acid sequence numbers. In this way, for two atoms 
i1 and i2 ( i1 < i2 ) with coordinate ri1 and ri2 , if there exists an edge between them in a simplicial complex, their 
edge flow Y[i1,i2] = |ri1 − ri2 | according to Eq. (3). Furthermore, we can use the HodgeRank model and calculate 
TI for each configuration. Other than the cutoff distance of 11Å, we also consider other cutoff distances from 
8Å to 14Å. Figure 6 illustrates the TIs of the 97 Titin configurations during the SMD simulation. As mentioned 
above, the renumbering is considered so the very first configuration corresponds to the straight line structure at 
the very end of SMD simulation. It can be seen that when Titin folds from a peptide chain to its 3D structure, the 
TIs increase monotonically with only small fluctuations. When Titin is a long unfolded peptide chain, TI is 0 as 
there is no curvedness or folding in the structure. The largest TI is obtained when Titin is well folded into its 3D 
structure. Moreover, with the enlargement of cutoff distance, the corresponding TI increases. This is due to the 
increasing size of associated simplicial complexes as cutoff distance increases. A larger cutoff distance ensures 
that the relations between atoms that are far away from each other are still well considered. More importantly, it 
can be seen clearly that as the increase of TI value, the fluctuations become smaller and smaller, and the TI curve 
becomes smoother. Even though a larger cutoff distance is preferred, the computational cost increases dramati-
cally. Therefore, in our calculations, we do not consider a fully-connected simplicial complex, i.e., any k + 1 atoms 
forming a k-simplex, instead, a median-sized cutoff distance is used. However, our TI still provides a suitable 
quantitative measurement for protein folding. Note that all these protein configurations have the same amount 
of atoms, therefore their corresponding AIs are of the same pattern as TIs. It is worth mentioning that the Hodg-
eRank is based simplicial complex representation, if there is no 2-simplexes, all the curl flow terms will be zero.

DNA and chromatin folding analysis.  We consider the folding of DNA at the atomic level. Three different DNA 
structures, including DNA helix, nucleosome and tetranucleosome (part of chromatin), are used in our analy-
sis. Topologically, DNA helix is the preliminary structure, and can be folded into nucleosome and further into 
tetranucleosome. We consider only the phosphorus atoms in the three molecules and construct their simplicial 
complexes using Vietoris-Rips complex. The total numbers of phosphorus atoms for DNA helix, nucleosome 
and tetranucleosome, are 22, 291 and 692, respectively. Six different cutoff distances are used, including 10 Å, 
12 Å, 14 Å, 16 Å, 18 Å and 20 Å. The DNA structures and the associated simplicial complexes are illustrated in 

Figure 5.   Eight configurations (after renumbering) extracted from the steered molecular dynamics simulation 
of Titin molecule, and their associated simplicial complexes. A cutoff distance of 11 Å is used to generate the 
Vietoris-Rips complex.
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Fig. 7. It can be seen that with a cutoff distance of 10 Å, no 2-simplexes are generated in the DNA helix structure. 
In contrast, with a cutoff distance of 16 Å, connected simplicial complexes are generated for all three structures.

The corresponding TIs and AIs, from the three DNA structures at different cutoff distances are illustrated in 
Table 1. Since the simplicial complex for the DNA helix structure at 10 Å has no 2-simplexes, there is no curl flow 
terms, i.e., all the Yc terms in Eqs. 1 and 2 are zero. Similarly, the Yh terms are also zero. In this way, the TI and 
AI for the DNA helix structure are all very close to 0. Similarly, at a cutoff of 12Å, both TI and AI are very close 
to 0 as no 2-simplexes are generated in DNA helix. Due to the folding of DNA chains, the TIs and AIs for both 
nucleosome and tetranucleosome structures are nonzero. Moreover, TIs for tetranucleosome are consistently 
larger that those of nucleosome. However, AIs for tetranucleosome are smaller that those of nucleosome at 10 
Å. This is due to the reason that our AI is the average TI over the total number of atoms. From Fig. 7, it can be 
seen that the proportion of 2-simplexes over the total atom number for tetranucleosome is smaller than that of 
nucleosome, due to the missing 2-simplexes in the center linkage region. With the increase of cutoff distance, 
well-connected simplicial complexes are generated. The monotonic increase of TIs and AIs from DNA helix to 
nucleosome, and to tetranucleosome, can be observed clearly. There are highly consistent with the DNA folding 
patterns, indicating that both our TI and AI models are suitable for the description of curvedness, folding and 
compactness of biomolecular structures at molecular level.

Hodge decomposition‑based Hi‑C data analysis.  Chromosomes have complicated hierarchial structures. Based 
on the analysis of Hi-C structures, it is believed that there are two possible types of structures (domains, subre-
gions, etc), i.e., topologically associating domains (TADs) and genomic compartments. Computationally, TAD 
is defined to be the square region along the diagonal Hi-C maps with large contact values and a size of about 200 
kilobases (Kb) to 2 megabases (Mb). Biologically, larger contact values mean these chromosomal loci (specific 
fixed positions on a chromosome) are close to each other, i.e., they are within a certain highly compacted/folded 
region. Figure 8 illustrates TAD regions in a Hi-C data. Geometrically, each TAD region (cartoon representa-
tion, not realistic experimental results) is believed to be a highly-packed region. The black dash lines mark the 
boundaries of TADs. However, the TAD is not mathematical rigorously defined, as it is not always easy to clearly 
identify the so-called “square regions”. For instance, its is also reasonable to believe that the two TADs in the 
middle region can be aggregated into one TAD. Due to the highly complicated hierarchial structure of chromo-
some, various algorithms have been developed to provide an approximation or estimation of TADs52,60–63, but a 
rigorous definition of TAD remains to be a problem.

In this subsection, we use HodgeRank-based AI index in the quantitative measurement topological associat-
ing domains calculated from Hi-C. Computationally, the entry Mi,j of a Hi-C matrix M represents the contact 
frequencies between the i-th and j-th loci of the genome. The higher the contact frequencies between the ith and 
jth loci of the genome, the higher the probability that these two loci are closer to each other. Computationally, 
the distance d(i, j) between two loci i and j can be modeled as the α-reciprocal of contact frequency,

d(i, j) =
1

Mα
ij

.

Figure 6.   The illustration of total inconsistency (TI) for Titin configurations during the SMD simulations. A 
renumbering is considered so the first configuration is the last one in the SMD simulation. It can be seen that 
TIs are monotonically increasing when protein folds from a straight line to its 3D structures.
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Here α is the power term and is usually chosen from the range of (0, 1). In our model, we consider the α value to 
be α = 0.25 and two cutoff distance γ values, i.e., γ = 0.4 and γ = 0.5 , to construct Hi-C matrix-based simplicial 
complexes. More specifically, if d(i, j) is smaller than the cutoff distance, an 1-simplex (edge) is formed between 
vertices i and j. Similarly, a 2-simplex (edge) is formed among three vertices i, j, and k if d(i, j) < γ , d(i, k) < γ , 
and d(j, k) < γ . Since d(i, j) is not the direct experimental measurement for the distance between two loci, we 
consider two different types of the edge flows. The first type of edge flow is defined based on distance d(i, j) as 
follows,

Figure 7.   The illustration of three DNA structures, including DNA helix (a), nucleosome (b), and 
tetranucleosome (c), and their corresponding simplicial complexes at two different cutoff distances, i.e., 10 
Å and 16 Å. The protein IDs for DNA helix, nucleosome, and tetranucleosome, are 330D, 6KVD and 1ZBB, 
respectively. The Vietoris-Rips complex is used.

Table 1.   HodgeRank-based analysis of DNA folding at atomic level. There different DNA structures, including 
DNA helix (ID: 330D), nucleosome (ID: 6KVD) and tetranucleosome (ID:1ZBB), are considered. The 
simplicial complexes are generated using a series of different cutoff distances including, 10 Å, 12 Å, 14 Å, 16 Å, 
18 Å and 20 Å.

TIs AIs

Cutoff DNA helix Nucleosome Tetranucleosome DNA helix Nucleosome Tetranucleosome

10 Å 0.0 279.3223 631.4930 0.0 0.9599 0.9126

12 Å 0.0 302.6626 734.4815 0.0 1.0401 1.0614

14 Å 28.9381 653.4245 1590.3249 1.3154 2.2454 2.2982

16 Å 33.9428 739.7261 1774.1848 1.5429 2.5420 2.5639

18 Å 46.7132 987.8988 2530.9683 2.1233 3.3948 3.6575

20 Å 63.1120 1308.3067 3191.6790 2.8687 4.4959 4.6123
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A constant edge flow is used in our second model,

We call these two models as distance-based edge flow model and constant edge flow model respectively.
To test the performance of our two HodgeRank models for TAD analysis, we consider TAD regions obtained 

from human ES (embryonic stem) cells chromosome 10, using directionality index segmented by a Hidden 
Markov Model (HMM)52. The data has a resolution of 40,000 bp (base pairs) or 40 kb, i.e. each locus has a size of 
40,000 bp. Six TAD regions are selected and depicted in Fig. 9. The values of contact frequency are represented 
by colors. A bright yellow color indicates a higher contact frequency, thus a short distance (between the two 
loci). We systematically evaluate the AIs for all six TAD regions using two edge flow models under two different 
cutoff distances as stated above. The results are listed in Table 2. To avoid confusion, TAD (a) to TAD ( f) are 
TAD regions as illustrated in Fig. 9, respectively. It can be seen that even though we use two different edge flow 
models, the pattern for AIs are highly consistent. That is the AI value monotonically decreases from TAD (a) 
to TAD (f), except for TAD( a) and TAD( b) at γ = 0.5 . In fact, TAD ( b) has a larger AI value than TAD ( a) in 
both edge flow models. Mathematically, there is no rigorous model to quantitatively measure the folding of TAD 
regions. However, if there are more larger contact frequency values, the loci are closer to each other (note that 
two adjacent loci has same distance), thus the TAD is more compact or folded. It can be observed that our AI 
values are highly consistent with the TAD patterns as seen in Fig. 9. Further, we consider six different non-TADs. 
These non-TAD regions are obtained from diagonal regions with lower contact values. Figure 10 illustrates these 
non-TAD regions and their AI values are listed in Table 3. It can be seen that lower AI values are systematically 
found for non-TADs than those for TADs.

Conclusion
Hodge theory characterizes the deep intrinsic relations of differential forms and provides a bridge between vari-
ous areas in mathematics, including differential geometry, algebraic topology, and functional analysis. Here we 
considered both the Hodge Laplacian model and Hodge decomposition-based HodgeRank model for biomo-
lecular data analysis. The HL-based spectral information, in particular, eigenvectors, are used for protein and 
DNA structure characterization. More specifically, homology generators are used for cycle and loop structure 

(4)Y[i,j] =

{

d(i, j) i < j and d(i, j) < γ ,

−d(i, j) i > j and d(i, j) < γ .

(5)Y[i,j] =

{

1 i < j and d(i, j) < γ ,

−1 i > j and d(i, j) < γ .

Figure 8.   An illustration of topologically associating domains (TADs) for Hi-C data. The TAD is defined to be 
square region along the diagonal Hi-C maps with large contact values and a size of about 200 kilobases (Kb) to 
2 megabases (Mb). The black dash lines mark the boundaries of TADs. Note that it is not always easy to clearly 
identify these “square regions”. For instance, it is also reasonable to believe that the two TADs in the middle 
region can be aggregated into one TAD.
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characterization. Non-homology related eigenvectors are used in clustering and community detection. Further-
more, we used the total and average inconsistency index from HodgeRank model to characterize the folding, 
compactness or curvedness of biomolecular structures and topological associated domains in Hi-C data. It has 
been found that our model can be used to quantitatively measure the folding within TADs. In the future, we 
will further explore the application of our HL-based clustering/classification, in particular, the homology-based 
and higher-order-simplex-based clustering/classfication. Moreover, we will study the relation of our AI values 
with genomic features such as histone modifications, coordinated gene expression, lamina, and DNA replica-
tion timing.

Data availability
All the data and codes in the paper are available at https://​github.​com/​Expec​tozJJ/​Hodge-​Theory.

Figure 9.   The illustration of six different TADs from Hi-C data of human ES (embryonic stem) chromosome 
10. The contact frequency values are represented by colors. Bright yellow color indicate higher contact 
frequency, thus a short Eucledian distance between the two loci. As listed in Table 2, the AI values for TADs 
(a–f) are consistently decreasing, which is highly consistent with TAD patterns. We have also demonstrated 
six non-TADs in Fig. 10 and Table 3. It can be seen from the comparison that TADs tend to have more larger-
contact values and their AI values are systematically larger than those from non-TADs.

Table 2.   HodgeRank-based TAD analysis. The AI values are used for the quantitative measurement of 
the folding within TAD. A larger AI value indicates more loops and high compactness of TAD region. In 
contrast, a lower AI value means less folding and less loops within TAD. Two different edge flow models, 
i.e., distance-based edge flow as in Eq. (4) and constant edge flow as in Eq. (4), are considered. Two different 
cutoff distances, i.e., γ = 0.4 and γ = 0.5 , are used to construct Hi-C matrix-based simplicial complexes. Here 
TAD(a) to TAD(f) are TAD regions as illustrated in Fig. 9(a–f), respectively. For both models with two cutoff 
distance, the AI values decrease monotonically from TAD(a) to TAD(f), except a small inconsistency for at 
TAD( a) and TAD( b) at γ = 0.5.

AI

Distance-based edge flow Constant edge flow

γ = 0.4 γ = 0.5 γ = 0.4 γ = 0.5

TAD(a) 3.8921 6.1816 4.0384 6.5773

TAD(b) 3.5610 6.5946 3.6861 6.9976

TAD(c) 3.0621 5.9346 3.1443 6.4456

TAD(d) 2.3628 5.3699 2.4740 5.7564

TAD(e) 1.6554 3.9307 1.7366 4.2958

TAD(f) 1.3350 3.4720 1.4520 3.8059

https://github.com/ExpectozJJ/Hodge-Theory
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