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Three-dimensional controlled growth of
monodisperse sub-50 nm heterogeneous
nanocrystals
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Ewa M. Goldys1, James A. Piper1, Shixue Dou3, Xiaogang Liu4,5 & Dayong Jin1,2

The ultimate frontier in nanomaterials engineering is to realize their composition control with

atomic scale precision to enable fabrication of nanoparticles with desirable size, shape

and surface properties. Such control becomes even more useful when growing hybrid

nanocrystals designed to integrate multiple functionalities. Here we report achieving such

degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the

co-existence and different roles of oleate anions (OA�) and molecules (OAH) in the crystal

formation. We identify that the control over the ratio of OA� to OAH can be used to

directionally inhibit, promote or etch the crystallographic facets of the nanoparticles.

This control enables selective grafting of shells with complex morphologies grown over

nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse

sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a

variety of three-dimensional shapes can be implemented using a bottom–up scalable

approach.
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N
anocrystal engineering, design and fabrication of nano-
crystals with desirable size, shape1–6, surface properties7

and composition8,9 is attracting growing interest due to
its essential role in fundamental research and commercial
relevance. Rare-earth-doped upconversion nanocrystals have
recently emerged as the new generation of functional
nanomaterials, because they exhibit exceptional optical,
magnetic and chemical properties underpinning their diverse
applications. In particular, alkaline rare-earth fluoride (AREF4)
nanocrystals10–12, including hexagonal-phase b-NaYF4, b-
NaGdF4, b-NaNdF4 or b-NaLuF4 are used in full-colour
displays12,13, photovoltaics14, security inks15, forensic science16,
autofluorescence-free biomolecular sensing17–19, multimodal
in vivo bio-imaging (fluorescence, magnetic resonance imaging,
X-ray, SPECT and so on.)20 and theranostics17,21–23. A trial-and-
error approach is frequently used to produce nanoparticles with
spherical, rod-like or other shapes24–26 by varying dopant
concentrations and/or constituent materials27, reaction time
and temperature28–31. This random sampling of vast,
multidimensional parameter space, needs to be done rationally,
with proper understanding of the underpinning growth
mechanisms.

Here we find that oleate anions (OA� ), the dissociated form of
oleic acid molecules (OAH), have variable, dynamic roles in
mediating the growth of AREF4 nanocrystals. This allows us to
introduce a molecular approach to tailoring the shape and
composition of AREF4 nanocrystals. This new method is based on
a selective epitaxial core–shell growth process in the presence of
oleic acid, commonly used as a surfactant during the synthesis of
b-AREF4 nanocrystals32. Drawing inspiration from the recently
discovered co-existence of oleic acid molecules (OAH) and their
dissociated form, oleic acid ions (OA� ) in the binary systems of
PbS33 and PbSe nanocrystals34, we hypothesize that the change
in the ratio of OA� to OAH could influence the interaction
of these ligands with the particle surface and hence the
resulting morphology. Our computational modelling (Fig. 1,
Supplementary Figs 1–6, Supplementary Notes 1 and 2

and Supplementary Table 1) and experimental results (Figs 2–4,
Supplementary Figs 7–35, Supplementary Tables 2 and 3 and
Supplementary Notes 3–18) demonstrate that the preferential
affinity of OAH and OA� to different crystalline facets dictates
the formation of nanocrystals of different shape. Importantly, we
demonstrate that the precise control over the shell thickness and
the particle shape can be achieved by deliberately switching the
passivation, additive and subtractive roles of these surfactants.

Results
Computational modelling. To quantify the surface coordination
chemistry between b-NaYF4 surface and OAH and OA� ligands,
we performed first-principles calculations based on density
functional theory using CASTEP (CAmbridge Serial Total Energy
Package)35. As shown in Fig. 1b and Supplementary Fig. 1, we
treated the (001) and (100) planes of the b-NaYF4 nanocrystals
terminated with specific atomic arrangement as the most stable
facets according to the calculated surface energies. Considering
that the oxygen moiety in the ligands has a strong binding affinity
to Y3þ ions at the particle surface36, we modelled the interactions
between the OAH and OA� molecules and the Y3þ ions under a
number of conditions, such as different adsorption configurations
(Supplementary Figs 2 and 3 and Supplementary Note 1), ligand
chain length and ligand coverage (Supplementary Figs 4 and 5
and Supplementary Note 2). The key conclusion from these
simulations is that OA� preferentially binds to RE3þ ions
exposed on the (100) facet of the hexagonal fluoride nanocrystal,
with a much higher binding energy (� 35.4 eV) than on the (001)
facet (� 21.8 eV). It should be noted that the OAH molecule
binds with a higher probability to the (001) facet than the (100)
facet and has relatively small binding energies of � 9.4 eV and
� 4.6 eV, respectively, on each of these facets (Supplementary
Table 1). Our charge analysis (Supplementary Fig. 6) further
indicates that such selective binding is attributed to the difference
in the atomic arrangements of these two facets (Fig. 1b), giving
rise to different charge transfer paths between the ligands and the
surface ions.
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Figure 1 | Preferred molecular bonding models of OA� and OAH. (a) The schematic shape of a b-NaYF4 nanocrystal chosen as the core for

directional epitaxial growth in this work. The hexagonal cylinder consists of the (001) facets at the ends and identical (100) and (010) facets around

the cylinder sides. (b) The Y3þ arrangements and binding energies (see insert table) of OAH and OA� on the most stable (001) and (100) facets.

The Y3þ atoms form equilateral triangles with a length of 6 Å in the relaxed (001) surface, while rectangles are observed in the (100) surface with a

shorter length of 3.51 or 3.69 Å; (c) SEM characterization of submicron-sized nanocrystals synthesized using the hydrothermal route (detailed synthesis is

included in the method; scale bar, 500 nm).
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Controlled epitaxial growth direction. The binding preferences
of OAH and OA� molecules to different facets were first used to
induce longitudinal epitaxial growth. We demonstrated (Fig. 1c)
that sub-micrometre-sized NaYF4 crystals of different aspect
ratios could be prepared by tuning the concentration ratio of
OA� to OAH in the hydrothermal synthesis system. As shown in
Supplementary Fig. 7, higher concentrations of OA� encourage
epitaxial growth along a longitudinal direction. A similar effect
was observed in the synthesis of sub-50 nm NaYF4 nanoparticles
prepared by a co-precipitation method. Figure 2a,b show that
high concentration of NaOH leads to longitudinally grown
nanoparticles because of a large concentration of passivating
OA� ions on the (100) facets (Supplementary Figs 8–10). The
zeta potential of þ 20 mV for NaYF4 nanocrystals after the
removal of ligands (Supplementary Fig. 11) shows that the RE3þ

cations are more abundant on the crystal surfaces than the F�

ions. We further systemically studied other possible factors that
could influence the epitaxial shell growth (experimental details in
Supplementary Methods), including the reaction temperature
(Supplementary Fig. 12 and Supplementary Note 3), the oleic acid
concentration (Supplementary Fig. 13 and Supplementary Note
4), the F� ion concentration (Supplementary Fig. 14 and
Supplementary Note 5) and the Naþ concentration
(Supplementary Fig. 15 and Supplementary Note 6). From these
results, we confirm that the ratio of OA� /OAH is a key factor
that determines the epitaxial shell growth direction. However
other parameters also have an effect on the growth speed or can
change the OA� /OAH ratio that indirectly affects the direction
of growth. To rule out the effect of OH� on longitudinal growth,
we added sodium oleate as the sodium source instead of hydro-
xide and identical results were obtained (Supplementary Fig. 16
and Supplementary Note 7). Supplementary Figures 17 and 18
further confirm that high ratio of OA� /OAH directs longitudinal
deposition of heterogeneous shells (NaGdF4) on the end surfaces

of NaYF4 core. Interestingly, subtractive growth (dissolution) is
observed from their side (100) surfaces. This results in concurrent
decrease of the core width from 26 to 18 nm, thus producing
dumbbell-shaped nanocrystals (Supplementary Note 8).

Moreover, we found that the addition of KOH further
accelerates longitudinal growth rate (Supplementary Fig. 19 and
Supplementary Note 9) due to a higher dissociation constant of
KOH than NaOH, which increases the dissociation of OAH
producing more OA� . With the aid of KOH, heterogeneous
‘bamboo-shaped’ nanorods (NRs) with sharp edges were formed
in a stepwise manner with a length of up to 173 nm (Fig. 2b,
Supplementary Fig. 21 and Supplementary Note 10). The
interesting one-dimension architecture of ‘bamboo-shaped’ NRs
suggests that integrated multiple functionalities can be built. Thus
our new platform enables rational design and facile synthesis of
multiple sections of rare-earth-doped heterogeneous materials
and investigation of their interactions and functions within a
single integrated rod. We were also able to induce transversal
epitaxial growth by increasing the amount of OAH and reducing
the amount of NaOH. At a reaction temperature of 290 �C, the
transversal growth was observed and NaGdF4 rings of 7-nm-thick
around the NaYF4 cores formed without a measurable change in
the longitudinal direction (Fig. 2c, Supplementary Figs 23 and 24
and Supplementary Note 11). Notably, the dissolution of the
(100) facets of the cores took place as well, and the width of
the core was, again, reduced from 49 to 30 nm at both ends. The
observed dissolution always occurred on the (100) facets in both
cases of longitudinal and transversal growth. This is consistent
with the strong chelating character of OA� on the (100) facet,
and with the fact that NaYF4 is dissolved faster than NaGdF4

because NaYF4 is comparably less energetically stable12. To shed
more light on this issue, we provided more evidence in the
Supplementary Fig. 25 and Supplementary Note 12 to show that
the dissolution of core is caused by the thermal stability difference

NOA–

NOAH

c axis

a bLongitudinal epitaxy

E
pitaxy

Epitaxy

Successive epitaxy

Y Gd

a axis

c Transversal epitaxy

E
pitaxy

NOA–

NOAH

Figure 2 | Physical characterization of epitaxial growth of NaReF4 NCs. (a) NaYF4 core and homogenous NaYF4 NCs after epitaxial growth of NaYF4 in

longitudinal direction with 0.5 mmol NaOH and 9.5 mmol OA at 310 �C for 1 h; (b) five-section and seven-section ‘bamboo-shaped’ NaYF4/NaGdF4 NRs

formed by successive heterogeneous growth of periodical shells of NaGdF4–NaYF4 and NaGdF4–NaYF4–NaGdF4 onto NaYF4 core in the longitudinal

direction, with 0.5 mmol NaOH and 0.4 mmol KOH and 9.5 mmol OA at 310 �C. Upper part of the panel shows elemental mapping of Y and Gd; (c) NaYF4

core and heterogeneous NaYF4/NaGdF4 NCs after epitaxial growth of NaGdF4 in the transversal direction with 0.15 mmol NaOH and 19 mmol OA at

290 �C for 3 h; the dimensions of individual nanocrystal were analysed statistically and included in the Supplementary Figs 10, 20–24. Scale bar, 50 nm.
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between core and shell materials in presence of OA� which leads
to higher binding strength on the side surfaces. By comparing
growth of NaTbF4 as shell or NaYbF4 as shell on a NaYF4 core
(Supplementary Fig. 25), we demonstrate that the dissolution of
the core requires the shell materials to have higher thermal
stability than the core material. Larger difference of thermal
stability between core and shell result in a higher dissolution rate.

Controlled migration growth. By combining the approaches of
longitudinal and transversal growth and selective dissolution
with consideration of lattice mismatch (Supplementary Tables 2
and 3), we synthesized a variety of three-dimensional (3D) hybrid
nanostructures (Supplementary Figs 26–34). Figure 3 shows a
typical example of real-time evolution of morphology and
composition of the NaYF4/NaGdF4/NaNdF4 NCs, including the
dissolution process of the NaYF4/NaGdF4 nanocrystals and
subsequent longitudinal growth of NaNdF4. The dissolution of
NaYF4/NaGdF4 is initiated by the OA� adsorbed on the surface
of the nanocrystals. The concomitant depletion of dissolved F�

ions used for longitudinal growth of NaNdF4 in the presence
of high concentration of OA� facilitates the dissolution of
NaYF4/NaGdF4 nanocrystals and this, in turn, promotes
longitudinal growth of NaNdF4. Following the dissolution of
the Y3þ and Gd3þ ions from the surface of NaYF4–NaGdF4

nanocrystals, these ions then participate in the epitaxial growth of
NaNdF4 nanocrystals, as evidenced by the elemental mapping
(Fig. 3h). Moreover, our real-time sampling transmission electron

microscope data further confirmed the underpinning mechanism
(Fig. 3a–g, Supplementary Figs 26–28). The size of nanocrystal
core decreased significantly in the first 5 min, indicating that the
dissolution rate of the nanocrystals is faster than their growth
rate. After 15 min, new material started to form at the top and at
the bottom ends of the core with simultaneous decrease of the
nanocrystal core width. This observation rules out ‘surface
mobility’ (‘atom diffusion’) as the possible driving force behind
the formation of the final shell, otherwise it is expected that the
dissolution of NaYF4 and growth of NaNdF4 would occur at the
same time. The only mechanism which explains the shape of this
nanocrystal is that the absence of F� source in the reaction
solution at its beginning prevents growth of NaNdY4 until the
concentration of released F� source exceeds a certain threshold.

Our control experiments (Supplementary Fig. 29 and
Supplementary Note 15) further support the mechanism of
OA� -induced dissolution in which a firm bonding of the
surfactant OA� to the surface RE3þ cations is the main factor
responsible for the removal of the surface crystalline layers
(experimental details in Supplementary Methods). As shown in
Supplementary Fig. 29, we applied transversal growth approach to
first grow a layer of NaGdF4 on the side surfaces of NaYF4 core.
We see that smaller mismatch of NaGdF4 versus NaNdF4

compared with the NaYF4 versus NaNdF4 fails to direct the
transversal migration growth of the NaNdF4 on the side surfaces
of NaGdF4. Instead, dissolution occurs in the first 10 min of the
reaction (Supplementary Fig. 29a,b) and both dissolution from
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Figure 3 | Evolution of morphology and composition in migration growth. (a,b) NaGdF4 growth along the longitudinal direction onto the ends of the

NaYF4 core; (c) transmission electron microscope image of the sample stopped 5 min after reacting with NaGdF4/NaYF4 nanocrystals in the presence of

Naþ , Kþ , Nd3þ , OA� and in the absence of F� at 310 �C, dissolution occurs first; (d–g) real-time monitoring of the epitaxial growth of NaNdF4 along

the longitudinal direction onto NaYF4–NaGdF4 nanocrystals, involving the dissolution of NaYF4 and NaGdF4 from the transversal surfaces of the

crystal and their subsequent re-growth onto the NaNdF4 nanocrystals in the presence of Naþ , Kþ , Nd3þ , OA� and absence of F� ions at 310 �C.

(h) HAADF-STEM image with elemental mapping results of the samples stopped after 60 min of reaction to confirm the distributions of Y3þ , Gd3þ , Nd3þ

ions within a single NaYF4/NaGdF4/NaNdF4 nanocrystal. (i) schematic processes of dissolution of NaYF4/NaGdF4 and the sequent epitaxial growth of

NaNdF4 in the longitudinal direction and the migration growth of F�, Y3þ and Gd3þ ions (scale bar, 100 nm).
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the side surfaces and epitaxial growth of NaNdF4 on the end
surfaces of NaGdF4/NaYF4 cores result in a thinner and longer
nanocrystal.

Guided by the principle that the ratio of OA� /OAH controls
the direction of epitaxial shell growth, we further demonstrated
(as shown in Supplementary Fig. 30 and Supplementary Note 16)
that a low ratio of OA� /OAH at a lower temperature directs
the migration growth along transverse direction. This enables
the formation of heterogeneous NaYF4/NaGdF4/NaNdF4 nano-
crystals in the shape of a flower, although in this case the
dissolution process on the side surfaces of nanocrystals is much
less efficient because there are too few OA� ligands bound to
RE3þ cations on the (100) facet. Two additional experiments
(Supplementary Note 17) demonstrate that well established
parameters, such as reagent concentration, can be further applied
to fine-tune our programmable protocols for other types of
heterogeneous nanocrystals. During the formation of hourglass-
shaped nanocrystals, the decrease in the amount of Nd3þ source
is found to hinder the migration growth process and yield sharper
tips (Supplementary Fig. 31), whereas a supply of additional F�

ions in the reaction increases the diameter of dumbbell ends with
round tips (Supplementary Fig. 32). Such level of fine tuning to
grow progressively sharper tips may suggest future rational
methods, for example to optimize tip-sensitive physical and
biochemical properties of NRs.

Figure 4 shows an array of heterogeneous NaREF4 nano-
structures synthesized by carrying out specific sequences of
longitudinal, transversal growth, selective dissolution and
directional migration growth of epitaxial shells in the presence
of various OA� /OAH ratios. To the best of our knowledge,
these sub-50 nm nanoparticles are the smallest 3D objects

prepared by a bottom–up additive and subtractive process.
To illustrate the application of this novel method we designed
and synthesized multifunctional NaYF4/NaLuF4/NaGdF4 hetero-
geneous nanocrystals with two NaGdF4 rings on a NaLuF4/NaYF4

NRs (Supplementary Figs 33 and 34 and Supplementary Note
18). The hexagonal-phase NaYF4 nanocrystal is an efficient
luminescence upconversion material37. The addition of NaLuF4

enables X-ray computed tomography38, whereas using NaGdF4

enables magnetic resonance imaging39. To the best of our
knowledge, this work presents the first controlled fabrication of
sub-50 nm 3D shaped heterogeneous nanocrystals logically
programmed by the combinational approaches of OA� -assisted
longitudinal growth, transversal growth and selective crystalline
facet dissolution with consideration of crystallographic mismatch
rates.

Discussion
The nanoscale engineering capability presented in this work
enables quantitative studies which are virtually impossible by
conventional approaches. We anticipate that optical properties
of these nanostructures can be designed to precisely promote
or inhibit inter-particle energy transfer. Similarly, magnetic
properties may be optimized to enhance magnetic resonance
imaging by correlating the morphology with the surface
distribution of magnetic signals. In addition, such hybrid
nanomaterials may be used as a platform for transporting
biologically important molecules across cell membranes.
Furthermore, access to a new library of precisely controlled
shapes of nanoparticles provide a novel approach for the targeted
delivery in nanomedicine where optimized morphologies of these
nanoscale molecular carriers will yield greater efficiencies. This
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Figure 4 | Programmable routes for fabricating 3D nano-architectures. The four digital condition codes (R, T, F and RE) represent different reaction

conditions where: R¼0, represents a low ratio of OA�/OAH; R¼ 1, represents a high ratio of OA�/OAH; T¼0, where the temperature is at 290 oC;

T¼ 1, where the temperature is at 310 �C; F¼0, which designates the absence of an F� ion source; F¼ 1, indicates the presence of an F� ion source;

RE¼Y, with a rare earth Y3þ ion source; RE¼Gd, with Gd3þ ion source; RE¼ Lu, with a Lu3þ source; RE¼Nd, with Nd3þ source. By combining these

different growth processes into a synthesis procedure, a variety of complex NaREF4 nanostructures are fabricated as shown in the transmission electron

microscope images, including hourglass shaped NaYF4/NaGdF4/NaNdF4 nanocrystals, NaYF4/NaGdF4/NaNdF4 nano-flowers, NaYF4/NaLuF4 co-axial

nano-cylinders, NaYF4/NaLuF4/NaGdF4 nanoscale spins with double rings, and NaYF4/NaGdF4/NaNdF4 nano-dumbbells with smooth or sharp ends

(scale bar, 50 nm).
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process could be further facilitated by harnessing the anisotropic
properties of different types of nanoparticles that permit diverse
surface functionalizations and multi-modal bio-conjugations. The
concept presented in this work may further advance our current
capabilities of nanoscale programmable and reproducible
engineering of new classes of heterogeneous materials in scalable
quantities. Our findings may lead to a new class of multi-
functional nanomaterials and provide the groundwork for
developing previously unforeseen applications of nanoparticles
with complex programmable shapes and surface properties.

Methods
Hydrothermal synthesis of NaYF4 crystal. The b-NaYF4 disks were synthesized
via a slightly modified hydrothermal reaction. In a typical experiment, NaOH
(3.75 mmol) was first dissolved into 1.5 mL of double distilled water, followed by
the addition of OA (7.5 mmol) and ethanol (2.5 mL) while undergoing vigorous
stirring. Thereafter, an aqueous solution of NaF (0.5 M; 2 mL) was added to form a
turbid mixture. Subsequently, a 1.2 mL aqueous solution of YCl3 (Yb3þ /Tm3þ

¼ 10/0.5 mol%; 0.2 M) was added and the solution was stirred for 20 min. The
resulting mixture was then transferred into a 14 mL Teflon-lined autoclave and
heated to 220 �C and the temperature maintained for 12 h. After cooling down to
room temperature, the reaction product was isolated by centrifugation and washed
with ethanol. In this work, different amounts of NaOH were added to adjust the
ratio of OA� /OAH by its reaction with OAH to form OA� .

NaYF4 nanocrystal cores. In a typical procedure, 4 ml of methanol solution of
YCl3 (2.0 mmol) was magnetically mixed with OA (38 mmol) and ODE (93 mmol)
in a 100-ml three-neck round-bottom flask. The mixture was then degassed under
the Ar flow and then heated to 150 �C for 30 min to form a clear solution, before
cooling to room temperature. 15 ml of methanol solution containing NH4F
(8 mmol) and NaOH (5 mmol) was added to the solution of YCl3 in OA and ODE
and stirred for 60 min. The mixture solution was slowly heated to 110 �C and kept
at 110 �C for 30 min to completely remove methanol and any residual water. The
mixture solution was then quickly heated to the reaction temperature of 300 �C
and aged for 1 h. After the solution was left to cool down to room temperature,
ethanol was added to precipitate the nanocrystals. The product was washed with
cyclohexane, ethanol and methanol for at least 4 times, before the final NaYF4

nanocrystals were re-dispersed in 10 ml cyclohexane in preparation for their
further use.

Longitudinal growth of NaYF4 NRs. YCl3 (0.2 mmol) in 1 ml methanol solution
was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a 50-ml three-
neck round-bottom flask. The mixture was degassed under Ar flow and heated to
150 �C for 30 min to form a clear solution, and then cooled to room temperature.
Methanol solution (5 ml) containing NH4F (0.8 mmol) and NaOH (0.5 mmol) was
added and stirred for 60 min. The solution was slowly heated to 110 �C and kept at
110 �C for 30 min to completely remove methanol and residual water. The solution
was then injected with 0.2 mmol NaYF4 of nanocrystals in cyclohexane and the
mixture kept at 110 �C for another 10 min to evaporate the cyclohexane. Then, the
reaction mixture was quickly heated to 310 �C and aged for 1 h.

NaGdF4/NaYF4 nano-dumbbells. GdCl3 (0.2 mmol) in 1 ml methanol solution
was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a 50-ml three-
neck round-bottom flask. The mixture was degassed under an Ar flow and heated
to 150 �C for 30 min to form a clear solution, and then cooled to room temperature.
Methanol solution (4 ml) containing NH4F (0.8 mmol) and NaOH (0.5 mmol) was
added to the OA and ODE solution and stirred for 60 min. The solution is slowly
heated to 110 �C and kept at 110 �C for 30 min to remove methanol and
the remaining water completely. Then, 0.2 mmol of NaYF4 core nanocrystals in
cyclohexane was injected into the reaction solution. After holding the reaction
temperature at 110 �C for further 10 min to evaporate all cyclohexane, the reaction
mixture was quickly heated to 310 �C and aged for 1 h.

NaGdF4/NaYF4 NRs by adding KOH. GdCl3 (0.2 mmol) in 1 ml of methanol
solution was magnetically mixed with OA (9.5 mmol) and ODE (25 mmol) in a
50-ml three-neck round-bottom flask. The mixture was degassed under Ar flow
and heated to 150 �C for 30 min to form a clear solution, before cooling to room
temperature. Methanol solution (5 ml) containing NH4F (0.8 mmol), KOH
(0.4 mmol) and NaOH (0.5 mmol) was added into the OA and ODE solution and
stirred for 60 min. The solution was slowly heated to 110 �C and kept at 110 �C for
30 min to remove the methanol and water completely. The reaction mix was then
injected with 0.2 mmol of NaYF4 core nanocrystals in cyclohexane, into the reac-
tion solution. After holding the reaction mix at 110 �C for further 10 min to eva-
porate all cyclohexane, the mixture was heated rapidly to 310 �C before aging for
1 h at this temperature.

NaYF4/NaGdF4/NaYF4 NCs in a bamboo-like shape. 0.2 mmol of YCl3 in 1 ml
of methanol solution was magnetically mixed with OA (9.5 mmol) and ODE
(25 mmol) in a 50-ml three-neck round-bottom flask. The mixture was degassed
under Ar flow and heated to 150 �C for 30 min to form a clear solution, and then
cooled to room temperature. Methanol solution (5 ml) containing NH4F
(0.8 mmol), KOH (0.4 mmol) and NaOH (0.5 mmol) was added into the OA and
ODE solution and stirred for 60 minutes. The solution was slowly heated to 110 �C
and kept at 110 �C for 30 min to remove the methanol and water completely. The
reaction solution was then injected with 0.2 mmol of NaYF4/NaGdF4 NRs in
cyclohexane solution. After the reaction at 110 �C for a further 10 min to evaporate
all the cyclohexane, the reaction mixture was quickly heated to 310 �C and held at
this temperature for 1 h.

NaYF4/NaGdF4/NaYF4/NaGdF4 NCs in a bamboo-like shape. The same
procedure for synthesizing NaYF4/NaGdF4/NaYF4 NCs in bamboo-like shape
was repeated, and then followed by the injection of 0.2 mmol of the five-section
NaYF4/NaGdF4/NaYF4 nano-bamboos which acted as the core, all in cyclohexane
solution, into the reaction solution. After holding at 110 �C for a further 10 min to
evaporate all cyclohexane, the reaction mixture was quickly heated to 310 �C and
held again for 1 h.

NaYF4/NaGdF4/NaNdF4 NCs in an hourglass shape. NdCl3 (0.4 mmol) in 2 ml
of methanol solution was magnetically mixed with OA (9.5 mmol) and ODE
(25 mmol) in a 50-ml three-neck round-bottom flask. The mixture was degassed
under Ar flow and heated to 150 �C for 30 min to form a clear solution, and then
cooled to room temperature. Methanol solution (5 ml) containing KOH (0.8 mmol)
and NaOH (0.8 mmol) was added and stirred for 60 min. The solution was slowly
heated to 110 �C and kept at 110 �C for 30 min to completely remove the methanol
and some of the water. It was then injected with 0.1 mmol 50 nm� 60 nm
NaYF4/NaGdF4 nano-prisms particles, in a solution of cyclohexane. After having
been kept at 110 �C for another 10 min to evaporate all cyclohexane, the reaction
mixture was quickly heated to 310 �C. Samples (500 ul) of the reaction solution
were collected each time with a syringe at 5, 15, 30, 40, 50 and 60 min after the start
of the reaction.

Transversal growth of NaGdF4 shell onto NaYF4 core. GdCl3 (0.1 mmol) in 1 ml
methanol solution was magnetically mixed with OA (19.0 mmol) and ODE
(18.7 mmol) in a 50-ml three-neck round-bottom flask. The mixture was degassed
under Ar flow and heated to 150 �C for 30 min to form a clear solution, and then
cooled to room temperature. Methanol solution (3 ml) containing NH4F
(0.4 mmol) and NaOH (0.15 mmol) was added into the OA and ODE solution and
stirred for 60 min. The solution was slowly heated to 110 �C and kept at 110 �C for
30 min to remove completely the methanol and water. Then 0.1 mmol of the NaYF4

cores in cyclohexane solvent were injected into the reaction mix. After being kept at
110 �C for further 10 min to evaporate all cyclohexane, the reaction mixture was
quickly heated up to 290 �C and held at that temperature for 3 h.

Synthesis of NaYF4/NaGdF4/NaNdF4 NCs in flower shape. NdCl3 (0.1 mmol)
in 1 ml of methanol solution was magnetically mixed with OA (19 mmol) and ODE
(18.7 mmol) in a 50-ml three-neck round-bottom flask. The mixture was degassed
under Ar flow and heated to 150 �C for 30 min to form a clear solution, and then
cooled to room temperature. Methanol solution (5 ml) containing NaOH
(0.6 mmol) was added and stirred for 60 min. The solution was slowly heated to
110 �C and kept at 110 �C for 30 min to completely remove the methanol and some
of the water. Then, the reaction mix was injected with 0.1 mmol of 50 nm
NaYF4/NaGdF4 nano-prisms prisms (NaGdF4 growing on the lateral faces of
NaYF4 nanocrystal), suspended in a cyclohexane solution. After holding at 110 �C
for another 10 min to evaporate all cyclohexane, the reaction mixture was quickly
heated to 300 �C. samples (500 ul) of the reaction solution were collected each time
with a syringe after 10, 25 and 45 min of the reaction time.

Synthesis of NaYF4/NaGdF4/NaNdF4 sharp-end dumbbell. NdCl3 (0.1 mmol)
in 1 ml of methanol solution was magnetically mixed with OA (9.5 mmol) and
ODE (25 mmol) in a 50-ml three-neck round-bottom flask. The mixture was
degassed under Ar flow and heated to 160 �C for 30 min to form a clear
solution, and then cooled to room temperature. Methanol solution (5 ml)
containing KOH (0.2 mmol) and NaOH (0.2 mmol) was added and stirred for
60 min. Note: in this reaction no NH4F was added to the solution. The solution was
slowly heated to 110 �C and kept at 110 �C for 30 min to remove the methanol and
the water completely. It was then injected with 0.1 mmol of NaYF4/NaGdF4 NR
particle in suspended in cyclohexane solvent into the reaction solution. After
holding at 110 �C for a further 10 min to evaporate all cyclohexane, the reaction
mixture was quickly heated to 310 �C and held at this temperature for a further
30 min.

Synthesis of NaYF4/NaGdF4/NaNdF4 round-end dumbbell. NdCl3 (0.1 mmol)
in 1 ml of methanol solution was magnetically mixed with OA (9.5 mmol) and

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10254

6 NATURE COMMUNICATIONS | 7:10254 | DOI: 10.1038/ncomms10254 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


ODE (25 mmol) in a 50-ml three-neck round-bottom flask. The mixture was
degassed under Ar flow and heated to 160 �C for 30 min to form a clear solution,
and then cooled to room temperature. Methanol solution (5 ml) containing NH4F
(0.3 mmol), KOH (0.2 mmol) and NaOH (0.2 mmol) was added and the mixture
was stirred for 60 min. The solution was slowly heated to 110 �C and kept at 110 �C
for 30 min to remove the methanol and the water completely. Then, it was injected
with 0.1 mmol of NaYF4/NaGdF4 NRs suspended in cyclohexane into the reaction
solution. After being held at 110 �C for further 10 min to evaporate all cyclohexane,
the reaction mixture was quickly heated to 310 �C and held for 30 min at this
temperature.

Synthesis of pure a-NaGdF4 NCs. Methanol solution (2 ml) of GdCl3 (1.0 mmol)
was magnetically mixed with OA (19 mmol) and ODE (47 mmol) in a 100-ml
three-neck round-bottom flask. The mixture was degassed under Ar flow and
heated to 150 �C for 30 minutes to form a clear solution, and then cooled to room
temperature. Methanol solution (10 ml) containing NH4F (4 mmol) and NaOH
(2.5 mmol) was added and stirred for 60 min. Then, the solution was slowly heated
to 110 �C and kept at 110 �C for 30 min to remove the methanol and water
completely. After that, the reaction mixture was quickly heated to 240 �C and aged
for 45 min.

Synthesis of NaLuF4/NaYF4 NRs. LuCl3 (0.1 mmol) in 1 ml method solution
was magnetically mixed with OA (19 mmol) and ODE (25 mmol) in a 50-ml three-
neck round-bottom flask. The mixture was degassed under Ar flow and heated to
150 �C for 30 min to form a clear solution, and then cooled to room temperature.
Methanol solution (2 ml) containing NaOH (0.15 mmol) and 0.4 mmol NH4F was
added and stirred for 60 min. The solution was slowly heated to 110 �C and kept at
110 �C for 30 min to completely remove the methanol and some of the water. It was
then injected with 0.4 mmol of NaYF4 seed particles in a cyclohexane solution.
After holding the reaction mix at 110 �C for a further 10 min to evaporate cyclo-
hexane, the reaction mixture was quickly heated to 290 �C and held at that tem-
perature for a further 1 h.

Synthesis of NaLuF4/NaYF4 NRs with NaGdF4 double-ring. GdCl3 (0.1 mmol)
in 1 ml methanol solution was magnetically mixed with OA (19.0 mmol) and ODE
(18.7 mmol) in a 50-ml three-neck round-bottom flask. The mixture was degassed
under Ar flow and heated to 150 �C for 30 min to form a clear solution, and
then cooled to room temperature. Methanol solution (2 ml) containing NaOH
(at 0.15 mmol) was added and stirred for 60 min. The solution was slowly heated to
110 �C and kept at 110 �C for 30 min to completely remove the methanol and some
of the water. It was then injected with 0.1 mmol of the NaYF4/NaLuF4 seed par-
ticles, in a cyclohexane solution, into the reaction solution. After having been held
the reaction mix at 110 �C for another 10 min to evaporate cyclohexane, the
reaction mixture was quickly heated to 300 �C. It was then, injected with 0.02 mmol
of a-NaGdF4 nanocrystals into the reaction system. This was done every 10 min for
5 times at 300 �C. The reaction mix was held at this temperature for another 10 min
after the last injection.
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