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The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle
imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In
this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating
Characteristics (ROC) curve and the theoretical optimal point named Modified Mahalanobis Taguchi System (MMTS). To
validate the MMTS classification efficacy, it has been benchmarked with Support Vector Machines (SVMs), Naive Bayes (NB),
Probabilistic Mahalanobis Taguchi Systems (PTM), Synthetic Minority Oversampling Technique (SMOTE), Adaptive Conformal
Transformation (ACT), Kernel Boundary Alignment (KBA), Hidden Naive Bayes (HNB), and other improved Naive Bayes
algorithms. MMTS outperforms the benchmarked algorithms especially when the imbalance ratio is greater than 400. A real life
case study onmanufacturing sector is used to demonstrate the applicability of the proposed model and to compare its performance
with Mahalanobis Genetic Algorithm (MGA).

1. Introduction

Classification is one of the supervised learning approaches
in which a new observation needs to be assigned to one of
the predetermined classes or categories. If the number of the
predetermined classes is more than two, it is a multiclass
classification problem; otherwise, the problem is known as
the binary classification problem. At present, these problems
have found applications in different domains such as product
quality [1] and speech recognition [2].

The classification accuracy depends on both the classifier
and the data types. The classifier types can be categorized
according to supervised versus unsupervised learning, linear
versus nonlinear hyperplane, and feature selection versus
feature extraction based approach [3]. On the other hand,
Sun et al. [4] reported that the parameters affecting the
classification are the overlapping between data (i.e., class
separability), small sample size, within-class concept (i.e., a
single class may consist of various subclasses, which do not
necessary have the same size), and the data distribution for
each class. If the data distribution of one class is different
from distributions of others, then the data is considered
imbalance.The border that separates balance from imbalance

data is vague; for example, imbalance ratio, which is the ratio
between the major to minor class observations, is reported
from small values of 100 to 1 to 10000 : 1 [5].

The assumption of an equal number of observations
in each class is elementary in using the common classi-
fication methods such as decision tree analysis, Support
VectorMachines, discriminant analysis, and neural networks
[6]. Imbalance data occurs often in real life such as text
classification [7].Theproblemof treating the applications that
have imbalance data with the common classifiers leads to bias
in the classification accuracy (i.e., the predictive accuracy for
the minority class will be much less than for the majority
class) and/or considering theminority observation as noise or
outliers, whichwill result in ignoring them from the classifier.

To handle the classification of imbalanced data problem,
the research community uses data and algorithmic or both
approaches. For the data approach, the main idea is to
balance the class density randomly or informatively (i.e.,
targeted) either eliminating (downsampling) the majority
class observations or replicating (oversampling) the minority
class observations or doing both. While at the algorithmic
approach, the main idea is to adapt the classier algorithms
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towards the small class, a combination of the data and
algorithmic levels approaches is also used and known as cost-
sensitive learning solutions.

The problems reported [4] using data approach are as
follows: deleting significant information for certain instances
in case of downsampling, bringing noise to original data in
case of oversampling, determining the appropriate sample
size in within-class concept data, specifying the ideal class
distribution, and using clear criteria for selecting samples.

While the problem reported [4] using the algorithmic
approach is that it needs a deep understanding about the
classier used itself and the application area (i.e., why a
classifier deteriorates when imbalance data occurs).

Finally, the problem in using the cost-sensitive learning
approach is the assumption of previous knowledge for many
errors types and imposing a higher cost to the minority
class to improve the prediction accuracy. Knowing the cost
matrices in most cases is practically difficult.

While data and algorithmic approaches constitute the
majority efforts in the area of imbalanced data, several other
approaches have also been conducted, which will be reviewed
in Literature Review.

To overcome the pitfalls of data and algorithmic ap-
proaches to solve the problem of imbalanced data classifi-
cation, the classification algorithm needs to be capable of
dealing with imbalance data directly without resampling
and should have a systematic foundation for determining
the cost matrices or the threshold. One of the promising
classifiers is the Mahalanobis Taguchi System (MTS), which
has shown good classification results for imbalance data
without resampling, it does not require any distribution
assumption for the input variables, and it can be used
to measure the degree of abnormality (i.e., the degree of
abnormality is proportional to themagnitude ofMahalanobis
Distance for the positive observations), but unfortunately it
lacks a systematic foundation for threshold determination
[8].

The Receiver Operating Characteristics (ROC) based
approach has been reported in the research domain [9] for
Support Vector Machines (SVMs) and random forests (RF)
as a cost function to trade off the required metrics (i.e.,
sensitivity versus specificity).Three operating point selection
criteria, shortest distance, harmonicmean, and antiharmonic
mean, have been compared, and the results in [9] showed
that there is no difference among classifiers performances.
Based on that, and up to author knowledge, no previous work
has been reported for using ROC based approach to find
the optimum threshold for the Mahalanobis Taguchi System
(MTS) approach; therefore, a ModifiedMahalanobis Taguchi
System (MMTS) methodology is proposed in this paper.

The aim of this work is to enhance the Mahalanobis
Taguchi System (MTS) classifier performance by providing
a scientific, rigorous, and systematic method using the
ROC curve for determining the threshold that discriminates
between the classes.

The organization of the paper is as follows: Section 2
reviews the previous work of imbalance data classifications
methods, the Mahalanobis Taguchi System, and its appli-
cations. In Section 3, the proposed Modified Mahalanobis

Taguchi System (MMTS) methodology is described. In Sec-
tion 4, results are presented for the comparison among the
suggested MMTS algorithm with the Probabilistic Maha-
lanobis Taguchi System (PMTS), Naive Bayes (NB), and
Support Vector Machine (SVM) through several datasets.
Section 5 presents a case study to demonstrate the applica-
bility of the proposed research. And in Section 6, the results
obtained from this research are summarized.

2. Literature Review

In this section, an overview of the imbalance classification
approaches, the Mahalanobis Taguchi System concept, its
different areas of applications, weakness points, and its
variants is presented.

Solutions to deal with the imbalanced learning problem
can be summarized into the following approaches [10]: sam-
pling (sometimes called the data level approach), algorithmic,
and cost-sensitive approaches.

Data level approach [11] is mainly returning the balance
distribution between the classes through resampling tech-
niques. It includes the following types:

(1) Random undersampling\oversampling of the nega-
tive\positive observations

(2) Targeted undersampling\oversampling of the nega-
tive\positive observations

(3) Mixing approach from the above two items

The problems reported in data approaches are as follows:

(i) Determining the best class distribution or imbalance
ratio for given observations: in Weiss and Provost
[12], the relation between the classifier performance
and the class distribution had been investigated; the
results showed that balanced class distribution does
not necessary produce optimal classification perfor-
mance.

(ii) Undersampling the negative data can lead to loose
important information, whereas oversampling the
positive one may cause noise interference [13].

(iii) The uncertain criterion for selecting samples for
within-class concept: that is, the class itself consists
of several subclasses (i.e., how oversampling and/or
undersampling will be performed for within-class
concept).

Algorithmic level approach solutions are based upon
creating a biased algorithm towards positive class. The algo-
rithmic level approach has been used in many popular
classifiers such as decision trees, Support Vector Machines
(SVMs), association rule mining, back-propagation (BP)
neural network, one-sample learning, active learning meth-
ods, and the Mahalanobis Taguchi System (MTS).

The adaptation of decision tree classifier to suit the
imbalance data can be accomplished by adjusting the prob-
abilistic estimate of the tree leaf or developing new trimming
approaches [14].
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Support Vector Machines (SVMs) showed good classi-
fication results for slightly imbalanced data [15], while for
highly imbalanced data researchers [16, 17] reported poor
performance classification results, since SVM try to reduce
total error, which will produce results shifted towards the
negative (majority) class. To handle the imbalance data, there
are proposals such as using penalty constants for different
classes found in Lin et al. [18] or changing the class border
based on kernel adjustment as in Wu and Chang [19].

Therefore, in this paper, SVM was selected as one of the
benchmarked algorithms to compare with ours; the results
showed that SVMclassification performance largely degrades
with a high imbalance ratio, which supports the previous
findings of the researchers (more details will be presented in
Results).

Association rulemining is a recent classification approach
combining association mining and classification into one
approach [20–22]. To handle the imbalance data, determin-
ing many minimal supports for different classes to present
their varied recurrence is required [23].

On the other hand, one-class learning [24, 25] used the
target class only to determine if the new observation belongs
to this class or not. BP neural network [26] and SVMs [27]
are examined as one-class learning approach. In the case
of highly imbalanced data, one-class learning showed good
classification results [28]. Unfortunately, one-class learning
algorithms drawbacks are that the size of the training data
is relatively larger than those for multiclass approaches, and
it is also hard to reduce the dimension of features used for
separation.

Active learning approach is used to handle the problems
related to the unlabeled training data. Research on active
learning for imbalance data reported by Ertekin et al. [29] is
based on the iterative approach by training the classifier on
the data near the classification boundary instead of the whole
training dataset, since the imbalance ratio for the dataset near
the boundary is different from those away from the boundary.
Unfortunately one of the bit falls for using this approach is
that it can be computationally expensive [30].

The problem with the algorithmic approach is that it
needs an extensive knowledge of specific classifier (i.e., why
the algorithm fails to detect the positive cases), also under-
standing the application domain is critical (i.e., the effect of
misclassification on the domain).

Cost-sensitive methods use both data and algorithmic
approaches, where the objective is to optimize (i.e.,minimize)
the total misclassification cost while giving a positive class a
higher misclassification cost [31, 32].

Cost-sensitive methods used different costs or penalties
for different misclassification types. For example, let 𝐶pos,neg
be the cost of wrongly classifying positive instant as a
negative one, while 𝐶neg,pos is the cost of the contrary case.
In imbalance data classification, usually, the revealing of
the positive instant is more important than the negative
one; hence, the cost of positive instance misclassification
outweighs the cost of negatives ones (i.e., 𝐶pos,neg > 𝐶neg,pos),
with correct classification cost equal to zero (i.e., 𝐶pos,pos =
𝐶neg,neg = 0).

Different types of cost-sensitive approaches have been
reported in the literature:

(i) Modifying the weights of the data space: in this
approach, modification to the training data density is
performed using the misclassification cost criteria, in
a way that the density is adjusted towards the costly
class.

(ii) Making the classifier objective cost-sensitive: instead
of minimizing the misclassification error, the objec-
tive is tuned to reduce the misclassification cost [32].

(iii) Using risk minimization approach: in a binary c4.5
(i.e., decision tree) classifier, the assignment of a class
type to a leaf end is based on the high-frequency
class that reaches the end, while for the cost-sensitive
classifier, the assignment of the class label is based on
minimizing the classification cost [33].

The problem of using the cost-sensitive approach is that it
is based on previous knowledge of the cost matrix for the
misclassification kinds, while in most cases it is unavailable.

2.1. Mahalanobis Taguchi System (MTS). MTS is a multi-
variate supervised learning approach, which aims to classify
new observation into one of the two classes (i.e., healthy
and unhealthy classes). MTS was used previously in predict-
ing weld quality [3], exploring the influence of chemicals
constitution on hot rolling manufactured products [34], and
selecting the significant features in automotive handling [35].
The MTS approach starts with collecting considerable obser-
vations from the investigated dataset, tailed by separating
of the unhealthy dataset (i.e., positive or abnormal) from
the healthy (i.e., negative or normal). Calculation of the
Mahalanobis Distance (MD) using the negative observation
is performed first, followed by scaling (i.e., dividing the MD
calculated over the number of features used), whichwill result
in an average MDs around one for the negative observations.
The scaled MD for the positive date set supposes to be
different from MD for those for the negative dataset. Since
many features are used to calculate the MD, so that the
probability to have significant features for the multivariable
dataset is high, Taguchi orthogonal array is used to screen
these features. The criterion for selecting the appropriate
features is determined by selecting the features that possess
high MD values for the positive observations. It is worth
noticing that a continuous scale is constructed from the single
class observations by using MTS; unlike other classification
techniques, learning is done directly from the positive and
negative observations. This characteristic helps the MTS
classifier to deal with the imbalance data problems.

The step of determining the optimal threshold is a critical
one for effective MTS classier. To determine the appropriate
threshold, loss function approach was proposed by [36];
however, it is not a practical approach because of the difficulty
in specifying the relative cost [37]. In order to overcome this
problem, Su and Hsiao [6] used a Chebyshev’s theorem to
specify the threshold and called their method a “probabilistic
thresholding method (PTM)” for the MTS, whereas in MTS
the threshold is assumed to be one. It has been shown
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Prerequisite:
Obtain healthy (negative) and unhealthy (positive) observations
Split the obtained data into two groups; training and validation
Initialization, let:
Training mode = True
Threshold 𝑥∗ = 1
Selected features 𝑦∗ = All features
threshold optimization indicator = False
MMTS Algorithm

(1) IF Training mode == True
(2) While threshold optimization indicator = FalseDo
(3) MD ← 𝑍𝑇𝑅𝑍, (i.e. by using the correlation matrix of the negative observations, and 𝑦∗)
(4) 𝑦∗ ← Selected features, (i.e. use Taguchi approach for features selection and update 𝑦∗)
(5) MD ← 𝑍𝑇𝑅𝑍, (i.e. recalculate Mahalanobis distance using the new features 𝑦∗)
(6) Classify observations based on the threshold 𝑥∗, and the selected features 𝑦∗
(7) IF MD < 𝑥∗
(8) Observation is classified as negative
(9) Else
(10) Observation is classified as positive
(11) End
(12) Calculate the True Positive rate (TPrate) and the False Positive rate (FPrate)
(13) 𝐷 ← √(TPrate − 1)2 + (FPrate)2, (i.e. calculate the fitness function)
(14) IF the threshold optimization termination criteria is reached
(15) threshold optimization indicator = True
(16) Select threshold 𝑥 = 𝑥∗, and features, 𝑦 = 𝑦∗ that will result in minimum fitness function
(17) Else
(18) Use genetic algorithm to find the threshold 𝑥∗ that will minimize the fitness function
(19) End
(20) EndWhile threshold
(21) Training mode = False, the optimum threshold 𝑥 = 𝑥∗, and the optimum features 𝑦 = 𝑦∗
(22) Else
(23) Using the threshold 𝑥 = 𝑥∗, and features 𝑦 = 𝑦∗, calculate the Mahalanobis distance, MD ← 𝑍𝑇𝑅𝑍
(24) IF MD < 𝑥∗
(25) Observation is classified as negative
(26) Else
(27) Observation is classified as positive
(28) End
(29) End IF

Algorithm 1: Modified Mahalanobis Taguchi System (MMTS) pseudo code.

in [6] that PTM classifier performance outperformed MTS
classifier performance; therefore, it has been selected to be
benchmarked with the proposed classifier. Unfortunately, the
PTM method is based on previously assumed parameters,
and the accuracy of the classification results was less than
the benchmarked classifiers (this is one of the findings in this
research, which will be discussed in Results).

The other research area in the MTS is related to the
modification of the Taguchi method not in the threshold
determination. Due to the lack of a statistical foundation [37]
for the Taguchi method, the Mahalanobis Genetic Algorithm
(MGA) [3] and the Mahalanobis Taguchi System using Par-
ticle Swarm Optimization (PSO) [38] have been used. Both
the MGA and MTS Particle Swarm Optimization methods
deal with the Taguchi system (orthogonal array) part, while
the threshold determination still lacks a solid foundation or
is hard to be determined in reality.

Finally, the aim of this research is to enhance the
Mahalanobis Taguchi System (MTS) classifier performance
throughproviding a scientific, rigorous, and systematicmeth-
od of determining the binary classification threshold that
discriminates between the two classes, which can be applied
to the MTS and its variants (i.e., MGA).

3. Modified Mahalanobis Taguchi
System (MMTS)

The proposed model, Algorithm 1, provides an easy, reliable,
and systematic way to determine the threshold for the
Mahalanobis Taguchi System (MTS) and its variants (i.e.,
Mahalanobis Genetic Algorithm,MGA) to carry out the clas-
sification process effectively. The currently used approaches
either are difficult to use in practice such as the loss function
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Figure 1: Receiver Operating Characteristics (ROC) curve forMTS.

[36] due to the difficulty in evaluating the cost in each case or
are based on previously assumed parameters [6].

The proposed model is based on using the Receiver
Operating Characteristics (ROC) curve [39] for the MTS
threshold determination. As shown in Figure 1, point 𝐴
(TPrate = 1, FPrate = 0) represents the optimum theoretical
solution (best performance) for any classifier. The closer
the classifier performance to this point is, the better it is.
The curve drawn in the figure represents the MTS classifier
performance for different threshold values. Changing the
threshold will change the point location on the curve (i.e.,
points 𝐵, 𝐶, 𝐷, and 𝐸). Therefore, the problem of finding the
optimum threshold can be reformulated into the problem of
finding the closest point that lies on the curve to point 𝐴
(FPrate = 0, TPrate = 1).

MMTS can be summarized in the following steps.

Step 1 (construction of the initial model stage). Assume there
are two classes: negative (the one with majority observations)
and positive (the onewith theminority observations). A set of
data is sampled from both classes. Using the negative obser-
vations only, reference Mahalanobis Distances are calculated
using (1) with all features used. The Mahalanobis Distances
(MD) for the positive observations are also calculated by
using the same equation with all features, with the inverse
of the correlation matrix of the negative observation used.
Selection of the new features is performed by using the
orthogonal array approach; then a recalculation of MDs for
the negative and the positive observation is performed. An
arbitrary threshold is assumed (i.e., one), and accordingly
the true positive rate, the true negative rate, and the fitness
function can be estimated.

Step 2 (optimization stage). If the stopping criteria (i.e.,
fitness function value is zero, the number of maximum
iterations is reached, and/or the differences among successive
fitness value are less than a certain value) are not met yet,
an optimization model (i.e., genetic algorithm) is invoked to

obtain a better threshold value that minimizes the desired
fitness function. Accordingly, new features will be selected
using the orthogonal array approach, and true positive rate,
false positive rate, and the fitness function will be also
updated.

If the stopping criteria are met, then the training stage is
done, and the model is ready for testing observations.

Step 3 (testing stage). In this stage, the optimum threshold
and the associated features are determined from the previous
stage and the Mahalanobis Distance for the new observation
is calculated based on those parameters. If the Mahalanobis
Distance for this observation is less than the optimum
threshold, then it will be classified as negative; otherwise, it
will be classified as positive.

Now, after providing an overview of how MMTS algo-
rithm works, detailed calculation of the Mahalanobis Dis-
tance, the true positive and the negative rates, and the fitness
function will be presented in the followings subsection.

3.1. Mahalanobis Distance (MD). In order to demonstrate
the MTS threshold determination mathematically, let us
assume that negative data (also called healthy or normal
observations) and the positive data (also called unhealthy or
abnormal observations) are available, where the number of
positive observations is𝑁𝑝 and the number of negative obser-
vations is 𝑁𝑛, and both positive and negative observations
consist of 𝑘 variables (or features).

Given a sample of size 𝑁𝑛, the Mahalanobis Distance
(MD) for the 𝑖th observation can be calculated by

MD𝑖 = 𝐷2𝑖 = 1
𝑘𝑍𝑇𝑖𝑗𝑅−1𝑍𝑖𝑗, (1)

where 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁𝑛, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑘, 𝑘 is total number of
features (or variables), 𝑍𝑖𝑗 is the normalized vector obtained
by normalizing the values of 𝑦𝑖𝑗: that is, 𝑍𝑖𝑗 = (𝑦𝑖𝑗 − 𝑦𝑗)/𝑆𝑗,
where 𝑦𝑗 and 𝑆𝑗 are the average and the sample standard
deviation of variable 𝑗, respectively,𝑍𝑇𝑖𝑗 is the transpose of ob-
servation 𝑖 and variable 𝑗 for 𝑍𝑖𝑗, and 𝑅−1 is the inverse of the
correlation matrix of the negative variables.

Using (1),𝑅−1,𝑦𝑗, 𝑆𝑗, the inverse of the correlationmatrix,
the mean, and the sample standard deviation of the feature
𝑗, for the negative data, respectively, the MD of the positive
observations can be calculated.

The next step is to determine the threshold 𝑥 that will
be used to discriminate the negative observations from the
positive ones based on theMDmagnitude, which means that
the new observation 𝑖 can be classified into either a positive
or negative observation according to the following criteria: if
MD𝑖 < 𝑥, the observation is negative; otherwise, it is positive.

The contribution of this paper mainly is in the area of
establishing a reliable and systematic threshold for classifi-
cation. A rough method for determining the threshold is to
plot the positive and negative MD observations versus their
orders and decide upon the threshold manually.This method
is not accurate, especially when dealing with the overlapping
values of the MDs.
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Table 1: Confusion matrix.

True class
Negative Positive

Hypothesis output
Negative TN(𝑥) FN(𝑥)

Positive FP(𝑥) TP(𝑥)

Sum 𝑁𝑛 𝑁𝑝
TN(𝑥): true negative, FN(𝑥): false negative, FP(𝑥): false positive, TP(𝑥): true
positive, based on threshold 𝑥,𝑁𝑛: negative observations, and𝑁𝑝: positive
observations.

3.2. Proposed Threshold Determination. The essential classi-
fier performance can be explained by examining the confu-
sion matrix Table 1. The ratio between negative to positive
observations (left to right columns in Table 1) is represen-
tation for the class distribution (i.e., imbalance ratio). In
that sense, any performance metrics using both columns will
be sensitive to the imbalance data issue, such as accuracy
and error rate, (14) and (15), respectively. To overcome
this problem, the Receiver Operating Characteristic (ROC)
curves are recommended by the research community.

From the confusion matrix, Table 1, the following can be
defined:

(i) TN(𝑥) is the total number of observations classified as
negative from the pool of the negative observations
(i.e., the negative observations whose MD < 𝑥).

(ii) FN(𝑥) is the total number of observations classified as
negative from the pool of the positive observations
(i.e., the positive observations whose MD < 𝑥).

(iii) FP(𝑥) is the total number of observations classified as
positive from the pool of the negative observations
(i.e., the negative observations whose MD ≥ 𝑥).

(iv) TP(𝑥) is the total number of observations classified
as positive from the pool of the positive observations
(i.e., the positive observations whose MD ≥ 𝑥).

Now, the true positive rate and the false negative rate at the
threshold 𝑥 can be defined as

TP(𝑥)rate = TP(𝑥)

𝑁𝑝 , (2)

FP(𝑥)rate = FP(𝑥)

𝑁𝑛 . (3)

Using TP(𝑥)rate and FP
(𝑥)
rate for different values of threshold 𝑥,

the ROC for the MMTS can be constructed.
The ROC plot is an𝑋-𝑌 plot in which TP(𝑥)rate (2) is plotted

on the vertical axis and FP(𝑥)rate (3) is plotted on the horizontal
axis.

Since TP(𝑥)rate uses the right column in the confusionmatrix
and FP(𝑥)rate uses the left column in the confusion matrix, they
are unaffected by the imbalance data problem. The ROC is
beneficial because it provides a tool to show the advantages
(represented by true positives) versus disadvantages (repre-
sented by false positives) of the classifier relating to data
density.

Figure 1 represents MTS classifier ROC curve, created by
changing the MTS threshold (i.e., each point on the curve
such as𝐵,𝐶, and𝐷 represents the different threshold forMTS
classifier). The closest point lies on the curve (i.e., threshold)
to point 𝐴 (0, 1) which is considered the optimum threshold
among the other candidates. Mathematically, this can be
converted into the following optimization model.

3.2.1. Nonlinear Optimization Model. The following opti-
mization model is used to determine the optimum threshold
𝑥 that discriminates between the negative and the posi-
tive observations, depending on minimizing the Cartesian
distance between the MMTS ROC classifier curve and the
theoretical optimum point (i.e., TP(𝐴)rate = 1, FP(𝐴)rate = 0).

𝑑𝐴𝑥 = √(FP(𝐴)rate − FP(𝑥)rate)2 + (TP(𝐴)rate − TP(𝑥)rate)2, (4)

where 𝑑𝐴𝑥 is Euclidean distance between point 𝐴 and any
point 𝑥 that lies on the ROC curve such as 𝐵,𝐶, or𝐷. FP(𝐴)rate is
the false positive rate at point 𝐴 which is equal to zero. TP(𝐴)rate
is the true positive rate at point𝐴which is equal to one. FP(𝑥)rate
is the false positive rate at the threshold 𝑥. TP(𝑥)rate is the true
positive rate at the threshold 𝑥.

Accordingly, the optimization model becomes

min
𝑥

𝑑𝐴𝑥

= √(FP(𝐴)rate − FP(𝑥)rate)2 + (𝑃(𝐴)rate − TP(𝑥)rate)2,
(5)

Subject to: TP(𝐴)rate = 1, (6)

FP(𝐴)rate = 0, (7)

0 ≤ FP(𝑥)rate ≤ 1, (8)

0 ≤ TP(𝑥)rate ≤ 1. (9)

The optimization model is a nonlinear one, where the
objective function is the Euclidean distance between points
on the ROC MMTS curve and the “𝐴” point (i.e., TP(𝐴)rate = 1,
FP(𝐴)rate = 0). The first two constraints ((6) and (7)) are the
theoretical optimum values of true\false rate of the positive
observations while the last two constraints (inequalities (8)
and (9)) are the lower and the upper boundaries of the true
positive rate and the false positive rate.

3.2.2. Taguchi System. Since more features mean a higher
cost of monitoring and require more processing time, it is
important to exclude the unnecessary features fromhaving an
efficient classifier. MTS approach uses orthogonal array (OA)
experiments to screen the important features. Each factor in
the orthogonal array design can be calculated independently
of all other factors since the design is balanced (i.e., the factors
levels are weighted equally) (readers are referred to Woodall
et al. [37] for further information about an OA).
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Table 2: Summary of the dataset used in the study.

Number Dataset Class # variables Number of observations 𝑓-ratioa IR ratio b 𝑝 valuec Statistically
Major/minor Negative Positive Significantd

(1) Abalone Remainder/Class 24 8 4175 2 7.797 2088 : 1 0.0000 Yes
(2) Abalone Remainder/Class 22 8 4171 6 0.814 695 : 1 0.0000 Yes
(3) Abalone Remainder/Class 23 8 4168 9 0.661 463 : 1 0.0000 Yes
(4) Abalone Remainder/Class 3 8 4162 10 8.227 417 : 1 0.0028 Yes
(5) Abalone Remainder/Class 21 8 4165 12 1.244 347 : 1 0.0000 Yes
(6) Abalone Remainder/Class 21 8 4163 14 1.000 297 : 1 0.0000 Yes
(7) Abalone Remainder/Class 21 8 4151 22 1.019 189 : 1 0.0000 Yes
(8) Abalone Remainder/Class 21 8 4151 26 0.868 160 : 1 0.0000 Yes
(9) Abalone Remainder/Class 19 8 4145 32 0.555 130 : 1 0.0000 Yes
(10) ECOLI Remainder/Class OML 7 331 5 56.509 66 : 1 0.0000 Yes
(11) Weldinge Normal/Expulsion 28 316 6 18.837 53 : 1 0.0122 Yes
(12) Yeast Remainder/Class ME2 8 1433 51 1.144 28 : 1 0.0000 Yes
(13) Shuttle Remainder/Class 5 9 41042 2458 11.513 17 : 1 0.0000 Yes
(14) Glass Remainder/Class 7 9 185 29 2.806 6 : 1 0.8156 No
(15) Heart disease Absence/Presence 13 150 120 0.872 1.25 : 1 0.0000 Yes
aFisher discriminant ratio; data overlapping index, bimbalance ratio =Negative/Positive; cbased on Kruskal-Wallis nonparametric test; dis there any statistical
significant difference among classifiers performance (yes/no)? e[40].

The metric of the Taguchi orthogonal array is the signal-
to-noise ratio, where 𝜂 uses (in our case) “the larger the bet-
ter” criterion, which can be calculated for different treatment
𝑖 using

𝜂𝑖 = −10 log 1
𝑁𝑝
𝑁𝑝

∑
𝑗=1

1
MD2𝑖,𝑗

, (10)

where 𝑖 is an index that represents run or row in the orthog-
onal design and its domain varied from 1 to 2𝑘, where 𝑘 is the
total number of features. Based on the above equation, the
feature mean gain can be calculated by

Average gain (𝑗)
= average 𝜂 when included the feature (𝑗)

− average 𝜂 when excluded the feature (𝑗) ,
(11)

where 𝑗 is an index that represents the feature, 𝑗 ∈ [1 ⋅ ⋅ ⋅ 𝑘],
and 𝑘 is the total number of features. The feature 𝑗 will be
included if it has a positive gain; otherwise, it should be
excluded.

4. Results

In this section, the description of the dataset used in this
study, brief of the used benchmarked classifiers, an overview
of the metrics used for imbalanced data classifiers, and the
results of classifiers performance for different datasets will be
presented.

4.1. Dataset. Thebinary ormulticlass imbalance ratio thresh-
old, which is the ratio between negative to positive observa-
tions border that separates balance from imbalance dataset,

is still an open area for the research community. In this
paper, we investigated a wide range of IR, from 1.25 up
to 2088, considering a dataset to be imbalanced if IR is
equal or higher than 1.25. Table 2 contains a description of
the selected datasets properties. All the datasets (except for
the welding dataset) were obtained from the UCI machine
learning repository [41].

It should be noted in this study that the imbalance ratio
effect on the classification results should be explored. Accord-
ingly, the datasets were selected related to this criterion (i.e.,
to investigate at a wide range of IR). Unfortunately, imbalance
ratio is not the only reason that causes degradation in
classifier performance. The maximum Fishers Discriminant
Ratio (𝑓-ratio) is also considered as amajor factor in classifier
performance degradation. A low value of 𝑓-ratio means that
observations are mixed together and overlapped regions are
large, and therefore it is difficult to discriminate between
these observations. Estimates of the different metrics were
obtained by means of 10 repetitions; the data has been
randomly partitioned by 35% as the training set and the
remainder of the testing set for each repetition. MMTS and
the benchmarked algorithms have been evaluated for each of
the ten repetitions simultaneously.

4.2. Benchmarked Classifiers Used in the Study. In this sec-
tion, an overview of the benchmarked classifiers, with their
parameters, and the machine specifications used for analysis
will be presented.

4.2.1. Support Vector Machines (SVMs). The first work re-
garding SVMs was published by Cortes and Vapnik [42],
continued by significant contributions fromother researchers
[43]. SVMs showed a good classification performance for
the rare and noisy data, which makes them favorable in a
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Figure 2: Supporting Vector Machines (SVMs).

number of applications from cancer detection [44] to text
classification [45].

The idea of the SVMs classifier is based on establishing
the most appropriate hyperplane that separates class obser-
vations from each other (Figure 2). The most appropriate
hyperplane means the one with the largest width of the
margin parallel to the hyperplane with no interior points.

More details about SVMs methodology can be found in
[46].

4.2.2. Mahalanobis Taguchi System (MTS) Based on Prob-
abilistic Thresholding Method (PTM). In the PTM method,
Chebyshev’s theorem is employed to determine the threshold
(12) that separates the normal observations from abnormal
ones; see [6]:

𝑥 = 𝜇MD𝑛 + √ 1
1 + 𝛿 − 𝜔𝜎MD𝑛, (12)

where 𝑥 is the threshold that separates negative from positive
observations, 𝜇MD𝑛 is the negative data mean MDs, 𝜎MD𝑛 is
the negative data standard deviation MDs, 𝛿 is a small value,
and 𝜔 is the portion of the negative observations whose MDs
are less than the lower value of the positive MD observations.

4.2.3. Naive Bayesian Classifier. Bayes theorem is the center
of Naive Bayesian classifier (NB) in which class conditional
independence is assumed. This assumption means that the
influence of features on a given class is independent of each
other. Mathematically,

𝑃 (X | 𝐶) = 𝑛∏
𝑖=1

𝑃 (𝑥𝑖 | 𝐶) , (13)

where X = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a variable vector of size 𝑛 and 𝐶
is the class.

Even with such unrealistic assumption, Naive Bayes
still found noticeable success stories comparable with other
types of sophisticated classifiers, for example, NB used in
text classification [47], medical diagnosis [48], and systems
performance management [49].

4.3. Experimental Settings. The parameters values setting for
the examined classifiers were selected from the suggestions of
the corresponding authors as follows:

(i) MMTS: the MMTS does not need any tuning param-
eters, which is one of the important benefits of using
MMTS over the traditional MTS.

(ii) PTM: for the PTM algorithm, a small parameter is set
to 0.05, based on the recommendation from [6].

(iii) SVM: for the SVM algorithm, to map observations
from the data space to the kernel space, the linear
function was used.

(iv) NB: for the NB algorithm, kernel distribution was
selected to fit the conditional features distributions.

It is worth mentioning that no tuning parameters for any
of the examined classifiers were performed; consequently,
baseline line comparisons among the classifiers with the
default setting were established, which leads to the most
robust classifier selection [50].

Finally, MATLAB R2013a was used for the data analysis
on HPmachine with a processor Intel (R) Core (TM) i7 CPU
2.2GHz and 4.00GB RAM. For the genetic algorithm, the
following parameters were used in the implementation: pop-
ulation size, 20 chromosomes, with the number of features
corresponding to the bit number, 0.8, a crossover fraction,
0.01, a mutation rate, 100, and the limit for the number
of generations, and for the stopping criteria, value of the
fitness function cumulative change was less than 10–6 over
50 iterations.

4.4. Metrics. Several metrics such as accuracy (14), error (15),
specificity (16), precision (17), sensitivity or recall (18),𝐺means
(19), and 𝐹measure (20) are used by the research community as
comprehensive assessments of classifiers performances. The
most important metrics among the above-mentioned ones
are the sensitivity and the specificity, whereas the first one
(sometimes called recall) can be seen as the accuracy of the
positive observations: that is, howmany positive observations
were classified correctly. On the other hand, specificity can be
understood as the accuracy of the negative observations: that
is, how many negative observations were classified correctly.

Unfortunately, the examination of accuracy and error
rates ((14) and (15)) reveals that thesemetrics are not sensitive
to the data distribution [10]. For example, the given dataset
consists of ninety percent of negative observations and ten
percent of positive ones. If the classifier ignores the positives
observations and classifies all instances as negative, it means
that the classifier has ninety percent accuracy (i.e., error rate,
10 percent), which is a good classification performance for the
entire dataset, but it cannot detect the positive instances as if
it does not exist. In this context, it can be seen that accuracy
and error rate metrics are biased towards one class on behalf
of the other.

Accuracy = TN + TP
𝑁𝑛 + 𝑁𝑝 , (14)

Error = 1 − Accuracy, (15)
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Specificty = TN
TN + FP

, (16)

Precision = TP
TP + FP

, (17)

Sensitivity = Recall = TP
TP + FN

, (18)

𝐺means = √Sensitivity ⋅ Specificty

= √ TP
TP + FN

⋅ TN
TN + FP

,
(19)

𝐹measure = (1 + 𝛽2)Recall ⋅ Precision
𝛽2Recall + Precision

. (20)

In order to overcome the above problem, several metrics
such as 𝐺means [51] (19), the area under a Receiver Operating
Characteristic (AUC-ROC) curve [52], and 𝐹measure [19] (20)
are used to assess the imbalance data classifier performance.

The most common used metrics for the evaluation of
the imbalance data classification performance are 𝐺means and𝐹measure, where the last one uses weighted importance of the
recall and precision (controlled by 𝛽, the default value of 𝛽
is 1), which results in better assessment than accuracy metric,
but still biased to one class [10].Therefore,𝐺means will be used
as a main metric for the analysis criterion.

4.5. Classification Results. In this section, performance pre-
sentation for the classification results of MMTS with the
other four investigated classification algorithms: Support
VectorMachines (SVMs), ProbabilisticMahalanobis Taguchi
System (PTM), Naive Bayes (NB), and Mahalanobis Taguchi
System (MTS) (based on previously assumed threshold equal
to one). In order to investigate the robustness performance of
the studied classifiers related to the class imbalance criterion,
fourteen different UCI [41] datasets and one data (welding)
from El-Banna et al. [40] were used.

Table 3 summarizes the median values with the upper
and the lower 95% confidence level interval based on non-
parametric Wilcoxon Signed Rank Test for 𝐺means values
of the investigated data for the five classifiers. In order to
discriminate between the classifiers performances among
each other, nonparametric pairwise comparison Wilcoxon
test was performed to test the null hypothesis that the
two classifiers have equal medians versus the alternating
hypothesis that the first classifier’s median is larger than the
second one; the results of these comparison are summarized
in the ranking score of each classifier for each dataset. Based
on this table, one can observe the following:

(i) The MMTS classifier has a higher classification per-
formance than MTS across the whole fourteen inves-
tigated datasets.

(ii) The MMTS has a superior classification performance
comparable with the other benchmarked classifiers
when the imbalance ratio (IR) is high (i.e., IR ≥ 463).

(iii) TheMMTS and SVMhave equal classification perfor-
mance when the imbalance ratio (IR) is medium (i.e.,
189 ≤ IR ≤ 417).

(iv) The SVM has a superior classification performance
comparable with the other benchmarked classifiers
when the imbalance ratio (IR) is low (i.e., 1≤ IR≤ 189).

(v) The MMTS has the most robust classification perfor-
mance over the investigated IR range (i.e., the MMTS
ranks eight\six times as the first\second one, resp.).

(vi) The NB has the least classification performance com-
parable with the other benchmarked classifiers over
the investigated IR range.

(vii) The effect of the 𝑓-ratio is dominated by the imbal-
ance ratio (IR) effect (i.e., the IR is more important
than the 𝑓-ratio).

4.5.1. MMTS versusModified SVMs and NB Classifiers. Many
published works [16, 19, 53, 54] pointed out that SVMs
classification performance drops significantly when dealing
with the imbalance data; therefore, modified SVMs classifiers
have been suggested to overcome this issue at both data
and algorithmic levels. At the data level, Synthetic Minority
Oversampling Technique (SMOTE) [11] has been applied
successfully to handle the imbalance data issue, while at
the algorithmic level, Adaptive Conformal Transformation
(ACT) [54] and Kernel Boundary Alignment (KBA) [19]
are among the most popular SVMs modified classifiers for
imbalance data handling.

Therefore, in order to assess the MMTS classification
performance against imbalance data classifiers, UCI datasets
and their classification performance results using SVMs,
SMOTE, ACT, and KBA from [19] were used, where the same
experimental settings were used for the MMTS classifier in
order to compare the benchmarked classifiers results.

Using the performance classification results obtained
from [19] and the test performed using the MMTS classifier,
𝐺means performance metrics in the form of the 95% confi-
dence intervals are reported in Table 4. It can be seen that
the 𝐺means of the MMTS classifier are higher than those
for the benchmarked classifiers at relatively high imbalance
ratio (i.e., for the Abalone dataset), while for the yeast dataset,
MMTS𝐺means were less than KBA and ACT but better than
SVM and SMOTE. Finally, MMTS was the least performance
among the classifiers for the car dataset.

Using the same dataset in [19], modified NB algo-
rithms such as tree augmented Naive Bayes (TAN), Hidden
Naive Bayes (HNB), Average One-Dependence Estimators
(AODE), andWeightedAverage ofOne-Dependence Estima-
tors (WAODE) are used to compare the MMTS classification
performance with them. Table 5 shows that the 𝐺means
MMTS classification results for the examined datasets have
the highest values comparable with the others.

5. Case Study

The case presented will be in the manufacturing sector in
the area of resistance spot welding. Due to its cost and
simplicity, resistance spot welding is the dominant joining
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Table 4: Classification performance results (𝐺means) of MMTS classifier versus modified SVMs class imbalance data classifiers.

Dataset 𝑓-ratio # variables Number of observations IR SVM SMOTE ACT KBA MMTS
Negative Positive

Car 1.01 6 1659 69 24 : 1 99.0 ± 2.2 99.0 ± 2.3 99.9 ± 0.2 99.9 ± 0.2 85.3 ± 2.2
Yeast 1.14 8 1433 51 28 : 1 59.0 ± 12.1 69.9 ± 10.0 78.5 ± 4.5 82.2 ± 7.1 72.2 ± 2.9
Abalone 0.55 8 4145 32 130 : 1 0.0 ± 0.0 0.0 ± 0.0 51.9 ± 7.6 57.8 ± 5.4 67.7 ± 3.4

Table 5: Classification performance results (𝐺means) for the modified Naive Bayes classifiers.

Dataset 𝑓-ratio # variables Number of observations IR HNB TAN NBTree AODE WAODE
Negative Positive

Car 1.01 6 1659 69 24 : 1 74.8 ± 7.1 49.6 ± 11.5 52.2 ± 22.8 2.3 ± 7.3 8.6 ± 14.5
Yeast 1.14 8 1433 51 28 : 1 45.5 ± 26.9 34.9 ± 25.1 23.5 ± 25.5 4.1 ± 12.9 25.8 ± 22.8
Abalone 0.55 8 4145 32 130 : 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 6: Description of welding data.

Dataset Classes Number of vars. Neg. obs. Pos. obs. 𝑓-ratio IR
AC welding Normal/expulsion 28 3288 6 4.1104 548 : 1

process in the autoindustry. The reasons behind chosen spot
welding joining process over other joining processes can be
summarized as follows: being inexpensive and having fast
process, its applicability to join different types of materials
(coated steel, low carbon steel, aluminum, etc.) with varying
thickness, and its relative robustness to the different noise
factors existing in the plant such as fit-up variations. Despite
the above-mentioned advantages, weld quality cannot be
estimated with high certainty due to factors such as tip wear,
sheet metal debris, variation in the power supply; therefore,
it is common practice in the autoindustry to add extra welds
to increase their confidence in the structural integrity of the
welded assembly [40].

Recently worldwide competition pushes automotive
OEMs to improve their productivity, reduce nonvalue added
activity, and reduce cost.Therefore, autoindustry is extremely
concerned with the elimination of these redundant welds.
To achieve this objective of using the optimum number
of required welds that sustain the required strength of the
structure, weld quality must be achieved.

To achieve an acceptable weld quality, nondestructive
weld assessment should be performed. This assessment can
be translated into the problem of classifying the dynamic
resistance profile (input signal) for those welds into normal
or abnormal welds.

The welding data, summarized in Table 6, are used for
this case having similar conditions to the one used in El-
Banna et al. [40].The experimental setup, the materials used,
and all the other related information can be found in the
same reference.Thedata consisted of 3,294welds, fromwhich
3,288were normalwelds, and the otherswere expulsionwelds
performed by an alternating current (AC) constant current
controller. Each weld has 28 features, which represents the
dynamic resistance value in the 28 half cycles or welding time.
The welds were performed by an alternating current (AC)
welding machine that has a capacity of 180KVA with 680 lb

of welding force provided by a pneumatic gun. AnHWPAL25
truncated electrode type with a 6.4mm face diameter was
used with a welding time of 14 cycles and 11.3 KA as the initial
input secondary current. Tip dressing was performed 10
times (approximately every 300 welds) in order to return the
electrode tip to its original diameter by removing the excess
material. The constant current control applied a current
stepper, one Ampere per weld, to compensate for the increase
in the electrode diameter or what is known as mushrooming
effect.

5.1. Implementation. The first step after obtaining the dataset
was to split them into training and testing groups. In this case,
the training data was 1,153 observations (i.e., training ratio is
35%), in which two observations were expulsion welds (i.e.,
positive observations), and the others were normal welds (i.e.,
negative observations).

Running the MMTS and the other benchmarked algo-
rithms, in addition to the Mahalanobis Genetic Algorithm
(MGA) [3] over thewelding data, Table 7 shows the results for
the 10 repetitions in terms of the followingmetrics: specificity,
sensitivity, precision, 𝐺means, and 𝐹measure. In addition, the
suggested threshold is reported for the MMTS and PMTS
algorithms. As mentioned before, 𝐺means will be used as the
mainmetric, but the results for other metrics will be reported
here for future researchers to use.

In order to determine if there is a significant difference
among the classifiers performances (i.e., 𝐺means), Table 7,
nonparametric Kruskal-Wallis test is used, in which the 𝑝
value obtained from performing this test on the welding data
is 0.000, which reveals that there is at least one classifier
performance that is significantly different from the others. In
order to rank the classifiers, the pairwiseMann–Whitney test
is used.

Table 8 shows the 𝑝 values obtained from comparing the
performances of the classifiers between any two classifiers
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Table 7: Classification results for AC welding dataset with IR 548.

Classifier type Repetition Threshold (𝑥) Specificity Sensitivity Precision 𝐺means 𝐹measure

MMTS

1 4.661 99.392 75.000 99.195 86.339 85.417
2 1.588 87.319 100.000 88.746 93.444 94.037
3 6.415 99.345 75.000 99.134 86.318 85.395
4 2.339 95.367 100.000 95.572 97.656 97.736
5 1.858 91.015 100.000 91.756 95.402 95.701
6 2.929 98.549 100.000 98.570 99.272 99.280
7 2.789 98.315 100.000 98.343 99.154 99.165
8 1.653 89.190 100.000 90.245 94.441 94.872
9 1.254 79.551 100.000 83.023 89.191 90.724
10 3.074 98.690 100.000 98.707 99.343 99.349

PTM

1 3.803 98.549 75.000 98.103 85.972 85.010
2 3.718 98.737 75.000 98.343 86.054 85.100
3 3.279 96.912 75.000 96.045 85.255 84.228
4 2.312 95.087 100.000 95.317 97.512 97.602
5 4.416 99.438 25.000 97.803 49.859 39.821
6 2.503 97.099 100.000 97.181 98.539 98.570
7 2.112 95.367 100.000 95.572 97.656 97.736
8 4.775 99.064 50.000 98.163 70.379 66.253
9 3.137 95.929 75.000 94.851 84.821 83.766
10 2.492 96.912 100.000 97.004 98.444 98.479

SVM

1 — 99.953 25.000 99.813 49.988 39.985
2 — 100.000 50.000 100.000 70.711 66.667
3 — 99.953 75.000 99.938 86.582 85.691
4 — 99.953 75.000 99.938 86.582 85.691
5 — 100.000 25.000 100.000 50.000 40.000
6 — 99.906 50.000 99.813 70.678 66.625
7 — 99.906 50.000 99.813 70.678 66.625
8 — 100.000 25.000 100.000 50.000 40.000
9 — 99.953 75.000 99.938 86.582 85.691
10 — 99.953 25.000 99.813 49.988 39.985

NB

1 — 100.000 25.000 100.000 50.000 40.000
2 — 100.000 25.000 100.000 50.000 40.000
3 — 99.906 0.000 0.000 0.000 NaNa

4 — 100.000 25.000 100.000 50.000 40.000
5 — 99.953 0.000 0.000 0.000 NaN
6 — 100.000 0.000 NaN 0.000 NaN
7 — 100.000 25.000 100.000 50.000 40.000
8 — 100.000 0.000 NaN 0.000 NaN
9 — 99.906 0.000 0.000 0.000 NaN
10 — 99.953 0.000 0.000 0.000 NaN

MGA

1 1.000 77.164 100.000 81.410 87.843 89.752
2 1.000 77.118 100.000 81.379 87.817 89.733
3 1.000 76.977 100.000 81.286 87.737 89.677
4 1.000 77.164 100.000 81.410 87.843 89.752
5 1.000 76.837 100.000 81.193 87.657 89.621
6 1.000 77.492 100.000 81.627 88.029 89.884
7 1.000 77.211 100.000 81.441 87.870 89.771
8 1.000 77.164 100.000 81.410 87.843 89.752
9 1.000 77.164 100.000 81.410 87.843 89.752
10 1.000 77.632 100.000 81.721 88.109 89.941

aNAN since the dominator is zero.
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Table 8: Mann–Whitney test 𝑃 values. a Results for welding AC dataset with IR 548.

𝐺means Median2 Classifier rank
MMTS PTM SVM NB MGA

𝐺means Median1

MMTS — 0.0410 0.0005 0.0001 0.0129 1
PTM — — 0.0521 0.0003 0.2405 2
SVM — — — 0.0070 0.0001 3
NB — — — — — 4

MGAb — 0.2363 0.0001 0.0001 — 2
aThe null hypothesis 𝐻𝑜 : Median1 = Median2 is tested versus the alternative hypothesis 𝐻1 : Median1 > Median2, at a specified level of significance 𝛼 =
0.05; bMahalanobis Genetic Algorithm [3].
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Figure 3: ROC curves for MMTS, PTM, SVMs, and NB classifiers
for welding AC dataset.

using the Mann–Whitney test and the resulting classifiers
rank. It can be seen clearly that the MMTS outperforms the
other classifiers.

This result is also emphasized in the ROC curves and the
area under the curve (AUC) values for the examined classi-
fiers (Figure 3).

6. Conclusions

The Mahalanobis Taguchi System (MTS) is one of the most
promising binary classification approaches to handling the
imbalance data problem.Unfortunately, theMTS suffers from
the lack of a systematic rigorous method for determining the
threshold to discriminate between the two classes. In this
paper, a nonlinear optimization model with the objective of
minimizing the Euclidean distance between MTS classifier
ROC curve and the theoretical optimal point (i.e., TPrate =
100% and FPrate = 0%) is used to determine this threshold.

In order to assess the suggested algorithm, the MMTS
has been benchmarked with several popular algorithms:
Mahalanobis Taguchi System (MTS), Support Vector Ma-
chines (SVMs), Naive Bayes (NB), Probabilistic Mahalanobis
Taguchi System (PTM), Synthetic Minority Oversampling

Technique (SMOTE) with SVM, Adaptive Conformal Trans-
formation (ACT), Kernel Boundary Alignment (KBA), Hid-
den Naive Bayes (HNB), and other improved Naive Bayes
algorithms over benchmarked datasets with a wide range
of imbalance ratio (i.e., 1.25 ≤ IR ≤ 2088). The results
showed that the MMTS has a superior performance for
high imbalance ratio (i.e., IR ≥ 463), while for the medium
imbalance ratio (i.e., 189 ≤ IR ≤ 417), the MMTS has an
equal classification performance with the SVMs. For the
low imbalance ratio (IR ≤ 189), the SVM was the best
among the classifiers. It has been noticed that the effect of the
maximumFishers Discriminant Ratio (𝑓-ratio) is dominated
by the imbalance ratio (IR) effect (i.e., IR is more important
than 𝑓-ratio). MMTS showed a very robust classification
performance across the range of the imbalance ratio; it also
showed better classification performance results comparable
with KBA, ACT (i.e., state of the art Modified SVM classifiers
for imbalance data), HNB, NBtree, and other modified Naive
Bayes classifiers when imbalance ratio is relatively high.

In order to demonstrate the MMTS applicability, a case
study in the welding area was used. The results showed that
theMMTS classifier performance outperformed the benched
marked classifiers performances and MGA. The case results
emphasize that theMMTS is one of themost suitable classifier
algorithms when there is a high imbalance ratio.

For future research work, the problems of multiclass
imbalanced data and the mixed data need to be tackled
thoroughly.
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