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Abstract

The hilly red soil region of southern China suffers from severe soil erosion that has led to soil

degradation and loss of soil nutrients. Estimating the content and spatial variability of soil

organic carbon (SOC) and soil total nitrogen (STN) and assessing the influence of topogra-

phy and land-use type on SOC and STN after years of soil erosion control are important for

vegetation restoration and ecological reconstruction. A total of 375 topsoil samples were col-

lected from Changting County, and their SOC and STN distributions were studied by using

descriptive statistics and geostatistical methods. Elevation, slope, aspect and land-use type

were selected to investigate the impacts of natural and human factors on the spatial hetero-

geneity of SOC and STN. The mean SOC and STN concentrations were 15.85 and 0.98 g

kg-1 with moderate spatial variations, respectively. SOC and STN exhibited relatively uni-

form distributions that decreased gradually from the outside parts to the center of the study

area. The SOC and STN contents in the study area were still at moderate and low levels

after years of erosion control, which suggests that soil nutrient improvement is a slow pro-

cess. The lowest SOC and STN values were at lower elevations in the center of Changting

County. The results indicated that the SOC and STN contents increased most significantly

with elevation and slope due to the influence of topography on the regional natural environ-

ment and soil erosion in the eroded hilly region. No significant variations were observed

among different slope directions and land-use types.

Introduction

Soil organic carbon (SOC) and total nitrogen (STN) are the major indexes used to estimate

soil fertility and quality [1, 2]. SOC plays a vital role in mitigating global climate change, and

alleviates land degradation and enhancs crop production and food security [3–5]. STN also

plays an important role in generating and enhancing soil productivity in terrestrial ecosystems

[6, 7]. As dynamic components of terrestrial ecosystems, SOC and STN are characterized by

high spatial heterogeneity with complex physical, chemical, and biological processes [4].Thus,
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knowledge of the spatial variations of SOC and STN is necessary for evaluating ecosystem pro-

ductivity [8].

The spatial heterogeneity of soil nutrients has been a research focus in the soil and environ-

mental sciences for decades [9–12]. Owing to the high cost of sample collection and analysis, it

is difficult to acquire regional details of soil nutrient distributions by large-scale sampling [13],

and many reports on the spatial variability of SOC and STN have been carried out at field

scales [1, 8]. Precisely predicting soil nutrient contents at regional scales is a significant chal-

lenge [14]. The development of precise agricultural research and advances in combining geos-

tatistics and geographic information systems (GIS) have strengthened soil nutrient research

[15] and have enabled large-scale estimations of soil nutrients [16, 17]. Based on the “regional-

ized variable” theory [18], geostatistical approaches such as ordinary kriging and cokriging

have demonstrated to be useful for characterizing the spatial heterogeneity of soil properties.

Although there are several limitations and disadvantages in kriging, for example, ordinary kri-

ging requires that the data satisfy the stationary hypothesis [19] and exhibit normal or approxi-

mately normal distributions [20]. Kriging is easy to conduct without additional variables and

can provide not only the best linear unbiased estimates for unsampled locations [21, 22] but

also a measure of the uncertainty [20]. Consequently, soil nutrients have been estimated at dif-

ferent scales, from field to global by geostatistical techniques [16]. Studies at different scales

have determined that the main factors influencing the spatial variability of SOC and STN were

soil types [23], climate [24, 25], topography[26–28], land use patterns [29–31], tillage practices

[1] and fertilizer application [32].

In recent years, numerous studies have been conducted in different areas of China includ-

ing large-scale studies. Most studies of the spatial variations of soil nutrients, however, have

focused on agro-ecological systems [21, 33–35]. There are relatively few reports in the red soil

region of southern China, especially for areas with severe soil erosion. Soil erosion is still a

major cause of land degradation and other environmental issues in China. High erosion rates

can reduce soil thickness, alter soil hydrological properties, diminish soil productivity, and

affect the potential for carbon sequestration and soil nutrient contents [36, 37]. Ecological

reconstruction based on improving soil properties and increasing vegetation coverage is a

promising approach for restoring soil productivity and sustainability [38]. Vegetation is closely

related to soil nutrients and vegetation growth while community composition and tree species

diversity all respond to soil nutrients. Many studies have demonstrated that soil quality is the

key condition for ecological restoration [39]. Low soil fertility is an important biophysical con-

straint for vegetation restoration in degraded land. Therefore, understanding the spatial het-

erogeneity of soil nutrients is important for promoting vegetation recruitment and eco-

rehabilitation.

Changting County is one of the most typical eroded soil regions in the hilly region of sub-

tropical China and characterized by mountainous and varied topography. Due to poor soil fer-

tility and flood hazards caused by soil erosion and less developed production technology,

Changting County has been trapped in poverty and ecological degradation for a long period.

In recent decades, various methods, such as closing hillsides for afforestation, planting trees

and grass, fertilizing forests, and fruit cultivation, have been widely implemented to control

soil erosion and mitigate ecological degradation [40–42]. These measures have achieved some

success and serious soil erosion has been curbed and vegetation coverage has been significantly

improved. As a model of soil erosion control in China, Changting’s practices have been pro-

moted as an example of ecological construction throughout the country. Numerous studies

have been conducted at plot and catchment scales in Changting County [43–45] with erosion

mechanisms [46, 47] and vegetation restoration modes [45] as the main research contents.

However, no field study has yet been carried out to investigate the overall levels of SOC and
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STN in Changting County, which were inadequate in providing basic soil data to improve the

soil based on local variability. In addition, this lack of information has led to a poor under-

standing of the spatial distributions of SOC and STN after years of treatment in Changting

County. Thus, assessing the spatial variability of SOC and STN in the eroded hilly regions of

subtropical China is urgent and is of great significance for effective soil restoration. We hope

to fill this gap and provide a basis for soil erosion control and restoration in Changting County

and even subtropical eroded areas. Therefore, considering the complex terrain and diverse

land-use types of the southern red soil hilly region, our investigation was at a regional scale,

variability of SOC and STN were analyzed in relation to topographic factors (e.g., elevation,

slope steepness, slope aspect) and land- use type. The study can provide valuable information

for understanding the spatial heterogeneity of soil properties in response to ecological restora-

tion on a relatively large spatial scale.

The objectives of this work are to 1) estimate the contents of SOC and STN and investigate

their spatial variability in an eroded hilly region located in southern China, as well as 2) assess

the influence of topography and land-use type on SOC and STN.

Materials and methods

Ethics statement

This article does not contain any studies with human participants or animals performed by

any of the authors.The soil survey in this study was carried out in the field and did not involve

private land or nature reserve land, so no permits were required. The field study did not

involve endangered or protected species.

Study site

The study was conducted in Changting County, which covers an area of 3099 km2 and is

located in the western Fujian Province of southeastern China (25˚18040@N-26˚02005@N, 116˚

00045@E-116˚39020@E). Changting County is located at the southern part of the WuYi Moun-

tains. The elevations range from 120 to 1,393 m above mean sea level (Fig 1). The geomorphol-

ogy consists of low mountains, hills and terraces. The region has a subtropical humid

monsoon climate with dry (October to February) and wet (March to September) seasons. The

mean annual air temperature is 18.3˚C, and the average annual precipitation is 1,730 mm. The

principal soil type in the region is red soil derived from granite with high erodibility [48],

which is a highly erosion-prone soil that is susceptible to water erosion. The zonal vegetation

type is a subtropical evergreen broad-leaf forest. Owing to destruction caused by human activi-

ties, the native vegetation has been entirely replaced by secondary forests. The current domi-

nant vegetation species is Pinus massoniana with Dicranopteris dichotoma. Soil and water loss

in Pinus massoniana woodland is serious due to simple layer structure and sparse understory

vegetation. Most of the land in this area is woodland with small amounts of farmland.

Sampling strategy and soil analysis

The sampling strategy for this study was based on the field survey unit design in soil and water

conservation survey (the first national water conservancy survey of China) [49]. Following the

principles of uniform distribution and random sampling, the sampling zones were defined on

a grid (approximately 5 km×5 km) for all of Changting County using a stratified sampling

approach. A total of 125 sampling zones and their central point distribution map were

obtained by using ArcGIS (version 10.2) (Fig 2A).
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By referring to the 1:10000 topographic map, a small watershed with an area of 0.25–1 km2

near the center of each sampling zone was selected as the survey object and followed the prin-

ciple of complete landforms and ensured good accessibility while avoiding as many artificial

Fig 1. Location and elevation of Changting County, Fujian.

https://doi.org/10.1371/journal.pone.0244322.g001

Fig 2. Sample design and distribution of sampling sites in Changting County.

https://doi.org/10.1371/journal.pone.0244322.g002
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buildings as possible. Considering the land classifications and complex terrain of the southern

red soil hilly region, three sample points were selected at different positions in each small

watershed (Fig 2B). In total, 375 mixed topsoil samples (0-20cm) were collected from the

selected sites in October 2008 as shown in Fig 2C. The figures were all created using ArcGIS

(version 10.2) software.

After air drying, roots and rock fragments were removed from the samples, which were

then ground and sieved through a 0.25-mm sieve and were finally homogenized. The soil sam-

ples were analyzed in the State Key Laboratory of Subtropical Mountain Ecology (Ministry of

Science and Technology and Fujian Province funded). SOC was measured following the potas-

sium dichromate volumetric method, and STN was analyzed with the Kjeldahl procedure [50].

A handheld GPS was used to accurately record the latitude and longitude of each sampling

site. The topographical parameters (e.g., elevation, slope and slope aspect) were extracted from

the 30m-DEM by ArcGIS. Elevation and slope were divided into three and five groups, respec-

tively, and the slope aspect was classified into four types.

Statistical and geostatistical analysis

Descriptive statistics for SOC and STN were calculated using IBM SPSS (Version 21.0). The

basic statistics calculated included the minimum, maximum, mean value, standard deviation,

coefficient of variation, skewness, and kurtosis. Pearson correlation coefficients (two-tailed)

were computed for SOC, STN, and topographical parameters to create a correlation coefficient

matrix. The normal distributions of the data were estimated based on the skewness, kurtosis,

and Kolmogorov-Smirnov (K-S) test. The coefficient of variation (CV) is a vital and widely

used dimensionless index that can indicate the overall variability of variables. Based on the

classification proposed by Nielsen and Bouma [51], CV� 10%, 10%< CV� 100%, and CV>
100% indicated weak, moderate, and strong variability, respectively.

Outliers usually refer to extreme values that naturally exist in the study area or that are

caused by errors in sampling and laboratory analysis [44, 52]. The outliers in the range have a

great influence on the accuracy of the semivariogram theoretical model [53]. They mainly

affect the nugget (C0). The nugget (C0) increases with more outliers and the influence of ran-

dom components is strengthened while the influence of spatial autocorrelation is weakened

[53]. Outliers can cause distortions that violate geostatistics [54] and cause the variograms to

be unstable [55]. The threshold method is a simple and effective method for identifying spe-

cific outliers [52]. Data greater than or less than three standard deviations from the mean (σ
±3s) are identified as outliers where σ and s represent the mean value and standard deviation,

respectively [44, 56]. For kriging analysis, the extreme data can be removed and replaced with

the normal maximum and minimum values [56].

Pearson correlation analysis and regression analysis assessed the relationships of SOC and STN

with topographical factors. Analysis of variance (ANOVA) and least significant difference (LSD)

tests were performed to determine the significant differences between topographical factors and

land-use types on the SOC and STN concentrations. Differences were considered to be statistically

significant at the 0.05 level. All statistical analyses were calculated using IBM SPSS (Version 21.0).

Descriptive statistical methods assume that variables are completely independent or with-

out spatial structure [35].Traditional statistics can only describe average changes in spatial var-

iability. In geostatistics, spatial variation is considered to be random and is modeled through a

stochastic process. Additionally, the geostatistical approach is based on the hypothesis that

points are located closer together in the space share more similar values than those farther

apart [57]. Therefore, geostatistical analysis was conducted to quantify specific spatial patterns

for mapping SOC and STN levels in the study area.
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The semivariogram and kriging methods have been acknowledged as the main spatial inter-

polation techniques among the geostatistical methods. The semivariogram technique is used

to quantify the spatial variability of a regionalized variable and provides information regarding

the input parameters for the kriging interpolation method [18, 58].

Semivariogram can be expressed as follows:

gðhÞ ¼
1

2NðhÞ

XNðhÞ

i¼1

½ZðxiÞ � Zðxiþ hÞ�
2

ð1Þ

where γ(h) represents the semivariance at a given lag distance (h), Z(xi) is the measured value

for variable Z at the location of xi, and N(h) is the number of sample points pairs separated by

h. The semivariogram mainly depends on the sampling interval and the measured data.

Several experimental semivariogram theoretical models are generally used for fitting in soil

studies, i.e., the spherical, exponential, and Gaussian models [59]. The models were selected

based on the coefficient of determination (R2) and the residual sum of squares (RSS). The best-

fitted model was that with the largest R2 and lowest RSS [35], and provides the model provided

information and input parameters of the spatial structure for interpolation [10]. γ(h) increases

with increasing distance; the minimum distance at which the semivariogram reaches a steady

state is the range, and shows that the samples are considered spatially independent. Sill (C0+

C) is the maximum semi-variance value that corresponds to the range. Nugget (C0) is the vari-

ance at 0 lag distance, caused by measurement errors and internal variance at a smaller scale

than that of the sampling strategy [60]. The nugget/sill ratio has been used extensively to assess

the spatial dependency of different variables. Ratios of< 25%, 25%-75%, and> 75%, indicate

that the variable has strong, moderate, and weak spatial dependence respectively. A strong spa-

tial dependence is normally caused by inherent factors, while weak spatial dependence is

attributed to extrinsic factors [9].

The kriging method is the second step of geostatistical analysis. Ordinary kriging is one of

the most common and optimal interpolating methods of spatial prediction that can provide an

unbiased estimation for unsampled locations and reduce the impact of outliers [21, 22]. Both

the distance and degree of variation between known points were considered when predicting

the values of unknown points [61]. Ordinary kriging calculates the Z value at point x0 by the

formulae:

Z0ðx0Þ ¼
Xn

i¼1

liZðxiÞ ð2Þ

where Z0(x0) is the estimated value at unknown points and λi is the weight used for each of the

i neighboring samples Z(xi) [62].

The cross-validation procedure was followed to evaluate the prediction efficiency of a

model. In this approach, the errors between predicted and observed values are obtained by tak-

ing each observation out of the sample pool in turn and estimating the errors using those that

remain. The performance of a model is validated by the errors and the best model is one with

the following properties: the mean error (ME) should ideally be 0, mean squared error (MSE)

should approach 0, root-mean-square error (RMSE) should be the lowest, average standard

error (ASE) and the root-mean-square error (RMSE) are the closest, and root-mean-square

standardized error (RMSSE) should approach 1.

Semivariogram analysis of SOC and STN was conducted using GS+ (version 9.0), while

spatial distribution maps were created using ArcGIS (version 10.2).
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Results

Descriptive statistics

The descriptive statistical parameters that are usually recognized as indicators of the central

trend of the data [32] are analyzed in Table 1. The SOC concentrations ranged from 0.07 to

56.86 g kg-1 with a mean of 15.85g kg-1, and those of STN ranged from 0.03 to 3.50 g kg-1 with

a mean of 0.98 g kg-1. According to the skewness, kurtosis, and K-S test, the original SOC and

STN data were not normally distributed (P< 0.05). After log-transforming the data, STN fol-

lowed a normal distribution, while the SOC content still did not pass the K-S test. However,

the log-transformed SOC data were close to a normal distribution with relatively small skew-

ness and kurtosis. Semivariance analysis usually requires data with a normal or approximately

normal distributions. Therefore, the log-transformed data of SOC and STN were used for all

of the following analyses. In standard statistical analyses, the coefficient of variation (CV) is the

most discriminating indicator for revealing heterogeneity. The CV values of SOC and STN in

our study area were 72.73 and 74.61, respectively, which indicated moderate variation. The

threshold method was used to recognize outliers and showed that SOC and STN contained

four and one outliers, respectively, which would cause distortion that violates geostatistical

theory [63] and cause the variogram to be unstable [55]. For kriging analysis, the extreme data

were replaced with the normal maximum and minimum values.

Geostatistical analysis

Semivariogram and spatial structure of SOC and STN. The semivariogram model and

parameters of the best-fit models for SOC and STN are shown in Table 2 and Fig 3. The expo-

nential model was the most suitable model for revealing the spatial distribution of SOC based

on the highest R2 and lowest RSS values while STN was fitted best by the spherical model. The

models showed that spatial correlation decreased with increasing distance before reaching the

range (Fig 3). Both SOC and STN exhibited positive nugget (C0) values of 0.228 and 0.055,

respectively. The sill (C0+C) indicates the total spatial variability within a system. SOC and

STN exhibited moderate spatial dependence, with nugget/sill ratios of 32.62 and 39.83, respec-

tively. The spatial range of SOC and STN were approximate and were much larger than the

sampling interval (5 km), which indicated that the sampling approach in our study was suit-

able for detecting the spatial variability of soil properties, and ensured the precision of interpo-

lation [64].

Table 1. Descriptive statistics of SOC and STN in topsoil.

Items Samples DTa Min Max Mean SDb Skewness Kurtosis K-S P value CVc

(g kg-1) (%)

SOC 375 S 0.07 56.86 15.85 11.53 -0.50 -0.47 0.004 72.73

STN 375 LN 0.03 3.50 0.98 0.73 0.22 -0.87 0.097 74.61

a Distribution type: S is skewed distribution, LN is log-normal distribution.
b Standard deviation.
c Coefficient of variation.

https://doi.org/10.1371/journal.pone.0244322.t001

Table 2. Parameters for the SOC and STN semivariogram models.

Parameter Model Nugget (C0) Sill (C0+C) Nugget/Sill (%) Class Range(km) R2 RSS
SOC (g kg-1) Exponential 0.228 0.699 32.62 moderate 20.76 0.811 0.050

STN (g kg-1) Spherical 0.055 0.138 39.83 moderate 24.16 0.966 0.006

https://doi.org/10.1371/journal.pone.0244322.t002
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Spatial distribution of SOC and STN. The ordinary kriging procedure in ArcGIS (ver-

sion 10.2) was applied to calculate the values of un-sampled points using the parameters

derived from the semivariogram models. The spatial distribution maps for SOC and STN are

displayed in Fig 4. According to the China National Soil Survey conducted in the 1980s, the

SOC and STN values were classified into six classes with ranges of> 23.0, 17.0–23.0, 12.0–

17.0, 6.0–12.0, 3.5–6.0, and < 3.5, and> 2.0, 1.5–2.0, 1.0–1.5, 0.75–1.0, 0.5–0.75, and< 0.25,

respectively.

The interpolated SOC values gradually decreased from the outside of the study area to its

center (Fig 4A) and the spatial distribution pattern corresponded to the topography of Changt-

ing County. The low values of the fourth, fifth and sixth SOC- classes appeared in the center of

the county and occupied 1,134.11 km2, or 36.60%, of the total land area (Table 3). This area

mainly includes the towns of Xinqiao, Hetian, Cewu, Tingzhou, Zhuotian, Tufang and Sanz-

hou. The highest values for the first class were mainly distributed in Gucheng Town, part of

Sidu Town and the area where Tiechang and Datong Towns came together and covered

358.68 km2, or 11.57%, of the total land area (Table 3).

Most soil nitrogen is stored in organic matter [65] and total nitrogen and soil organic carbon

are largely related to soil organic matter accumulations [66]. Pearson’s product moment correla-

tion coefficients were calculated to characterize the relationships between SOC and STN

(Table 3) and the results indicated a significant positive correlation between SOC and STN.

The spatial distribution trend of STN was similar to that of SOC as it declined gradually

from the outside part of Changting County to its center. The soils had contiguous areas in the

center of the county with relatively low STN contents below 0.50g kg-1 (Fig 5B) and these areas

included part of Guanqian Town and the towns of Xinqiao, Tingzhou, Cewu, Hetian, Zhuo-

tian, and Sanzhou. The areas of fourth, fifth and sixth STN- class land were 2,196.70 km2 in

total and occupied 70.88% of the total area, and the sixth STN- class land covered the largest

area of 764.64 km2 (24.67% of the county) (Table 3). The first-class STN land was mainly dis-

tributed in the north and west parts of the county and covered only 8.20 km2, or 0.26%, of the

county (Table 3). In general, the STN values in the study area were low.

Factors influencing the spatial variation of SOC and STN

Topographical factors. The landforms in the study area are mainly characterized by low

mountains and hills, with elevations ranging from 120 to 1,393 m (Fig 1). The western part of

Fig 3. Semivariogram (dots) and fitted models (lines) of SOC and STN.

https://doi.org/10.1371/journal.pone.0244322.g003

PLOS ONE Spatial variability of soil organic carbon and total nitrogen

PLOS ONE | https://doi.org/10.1371/journal.pone.0244322 December 21, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0244322.g003
https://doi.org/10.1371/journal.pone.0244322


the county is dominated by low mountains while the eastern and northern parts of the county

are occupied by middle-sized mountains that descend from north to south.

Regression analyses with scatter plots were conducted to determine whether linear relation-

ships existed between SOC, STN, and elevation (Fig 5) and these analyses confirmed that both

SOC and STN increased with elevation. The SOC and STN values all showed a tendency of

increasing with elevation.

The samples were stratified into three elevation groups, e.g., < 300 m, 300–500 m,

and> 500 m and were based on the closest contour line to a sampling site. In the medium-

and high-elevation mountains higher than 500 m, the mean values of the SOC and STN con-

centrations were comparatively higher (20.02 and 1.25 g kg-1, respectively) than those of the

other two groups (Table 4). There was a significant positive correlation (P = 0.01) between

SOC and STN (Table 5) and similar trends were observed between SOC, STN, and elevation.

Analysis of variance was conducted for the SOC and STN concentrations of all topographi-

cal zones and the results showed that there were significant differences between the three

groups in Changting County (FSOC = 19.77, P< 0.01; FSTN = 20.23, P< 0.01). Similar to the

regression analyses, both SOC and STN increased with elevation. The K–S test indicated that

all three groups passed the normality test (P> 0.05).

Based on the actual topography of Changting County, slope was categorized into five clas-

ses: flat (< 5˚), gentle (5–8˚), ramp (8–15˚), abrupt (15–25˚), and steep slope (> 25˚).

Fig 4. Spatial distribution maps of SOC and STN.

https://doi.org/10.1371/journal.pone.0244322.g004
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Pearson’s product moment correlation coefficients were calculated to characterize the rela-

tionships between slope and SOC or STN (Table 5). The results suggested that slope was

strongly positively correlated (at P = 0.01) with SOC and STN (Table 6). The correlations

between SOC, STN, and slope were studied through scatter plots and regression analyses (Fig

6). SOC contents increased as the slope increased and reached a peak value at 15–25˚ and then

decreased as the gradient continued to increase. However, STN contents increased gradually

as the slope increased. The mean SOC and STN concentrations for different slopes are pre-

sented in Table 6. The SOC content for the 15–25˚ group and STN content for the > 25˚

group were relatively high, with mean values of 18.23 and 1.21 g kg-1, respectively.

According to the variance analysis results (Table 6), there were significant differences

between the SOM and STN of the five slope groups (FSOC = 3.74, P< 0.01; FSTN = 5.21,

P< 0.01). The K–S test indicated that all the five groups passed the normality test (P> 0.05).

Four slope aspects, e.g., sunny (157.5˚-202.5˚), semisunny (202.5˚-337.5˚), semishady

(22.5˚-157.5˚), and shady (337.5˚-22.5˚) were selected to study the influence of slope aspect on

soil properties.

Pearson correlations were calculated to analyze the relationships between slope aspect,

SOC, and STN (Table 5), and showed that the slope aspect response to SOC or STN was not

significant. The mean SOC and STN concentrations under different slope directions are

shown in Fig 7. As the slope direction changed, the order of SOC content decreased as follows:

shady slope> semishady slope> sunny slope > semisunny slope, and the STN content

decreased in the following order: shady slope > sunny slope> semisunny slope > semishady

slope. Similar to Wang et al. [67], although the SOC and STN values in shady slope areas were

Table 3. Areas and percentages of soil organic carbon (SOC) and total nitrogen (STN) by different classes in Changting County.

Class 1 2 3 4 5 6

SOC (g kg-1) > 23.0 17.0–23.0 12.0–17.0 6.0–12.0 3.6–6.0 < 3.5

Area (km2) 358.68 697.11 909.10 781.81 274.05 78.25

Percentage (%) 11.57 22.49 29.34 25.23 8.84 2.53

STN (g kg-1) >2.0 1.5–2 1–1.5 0.75–1 0.5–0.75 <0.5

Area (km2) 8.20 223.05 671.05 707.62 724.43 764.64

Percentage (%) 0.26 7.20 21.65 22.83 23.38 24.67

https://doi.org/10.1371/journal.pone.0244322.t003

Fig 5. Regression analyses between SOC, STN, and elevation using scatter plots.

https://doi.org/10.1371/journal.pone.0244322.g005
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higher than those in sunny slope areas, the results of variance analysis found no statistically

significant variations in the SOC and STN concentrations between different slope directions

in the study area (FSOC = 0.385, P> 0.05; FSTN = 0.582, P> 0.05). The K–S test indicated that

all four groups passed the normality test (P> 0.05).

Error bars represent the standard error of the means of SOC and STN at different slope

aspects (e.g., sunny, semisunny, semishady and shady slopes). Same letters above columns

indicate no significant difference at P> 0.05.

Land-use types. The land-use types for our samples were mainly forestland, farmland,

garden land and grassland. Among them, forestland is the dominant land-use type in Chanting

County and accounts for more than 70% of the total land area. Forestland in the county consist

mainly of arbor trees. Farmland and garden land are mainly distributed in the mountainous

basin valleys. In particular, most of the cultivated land is concentrated in the basin in the mid-

dle of the county. Grassland is scattered in the mountains and is mostly located in the western

part of the county.

SOC under four land-use types followed the order of forestland > grassland >

farmland > garden land and the STN concentrations were in the descending order of

farmland > forestland > grassland > garden land (Table 7). However, no significant differ-

ences in SOC and STN were found between the four land-use types (FSOC = 1.23, P > 0.05;

FSTN = 0.88, P > 0.05), which indicated that land-use had no significant influence on SOC

and STN in our study.

Discussion

Spatial distribution characteristics of SOC and STN

The statistical analyses revealed that the variability of SOC and STN in the eroded hilly region

was moderate which is in accordance with the reports of previous studies at different scales

[34, 68]. Both SOC and STN exhibited positive nuggets (C0) which may have been caused by

stochastic factors, small-scale variance, undetectable experimental error, or the existence of

Table 4. Comparison of the means of topsoil SOC and STN concentrations of different elevation groups.

Elevation (m) n Mean SOC(g kg-1) Mean STN(g kg-1)

> 500 120 20.02 a 1.25 a

300–500 208 15.02 b 0.92 b

< 300 47 8.63 c 0.53 c

F 19.77�� 20.23��

Different letters in the same column indicate significant differences at P < 0.01.

�� P < 0.01.

https://doi.org/10.1371/journal.pone.0244322.t004

Table 5. Bivariate correlations between the studied variables.

SOC STN

SOC 1

STN .824�� 1

Elevation .342�� .355��

Slope .181�� .215��

Slope aspect -0.072 -0.057

�� Correlation is significant at the 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0244322.t005
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outliers [54]. In this study, experimental errors were minimized and outliers were removed.

Thus, the nugget effect was most likely attributable to stochastic factors (such as human activ-

ity) and small-scale variations in some areas of the current sampling interval. For the nugget/

sill ratios, SOC and STN exhibited moderate spatial dependence, which suggested that the spa-

tial dependence of SOC and STN may both be attributed to intrinsic factors such as soil type,

soil texture, soil formation and extrinsic variations such as land use, production management,

and fertilizer application. Many previous studies have shown that the spatial variability of SOC

and STN at large scales is mainly affected by climate, soil type, topography and land- use pat-

terns [24, 25, 27–29, 31, 32]. Therefore, based on the characteristics of the study area, the

effects of topography and land use on SOC and STN will be discussed further here.

According to the kriging-interpolated map, the entire study area was characterized by mod-

erate or low concentrations of SOC and STN. SOC and STN exhibited relatively uniform dis-

tributions that decreased gradually from the outer part of the study area to the central part.

Contiguous areas with low SOC and STN values in the center of Changting County mainly

included the towns of Xinqiao, Hotan, Cewu, Zhuotian and Sanzhou. These low values could

be attributed to the loss of topsoil SOC due to erosion. Influenced by landforms, the low

mountains and hilly areas in the middle of Changting County overlap with the north-south

and east-west transportation networks. Intensive human activities in this area have caused this

area to have the most serious erosion. According to the soil nutrient grading standard of the

second China National Soil Survey, the SOC and STN contents in the study area were still at

moderate and low levels after years of erosion control, which suggests that soil nutrient

improvement is a slow process.

Effects of topography and land use on the spatial distribution of SOC and

STN

The SOC and STN contents all exhibited large spatial variations along the elevation gradient in

our study area. The results agree with those of Hu et al. [34] who found that SOM and STN

concentrations increased with elevation at three spatial scales in suburban Beijing. Prietzel and

Christophel [69] further found that the SOC at sites with high- elevations in the German Alps

was especially high due to the low temperatures and high precipitation. The distribution of soil

organic carbon at different altitudes may be attributed to changes in temperature [70], because

low temperatures can aid the accumulation of organic matter. SOC content is mainly affected

by the secondary effects of organic carbon oxidation, decomposition and transformation [71–

73] and mineralization/accumulation rates [74–77]. As many studies have found [27, 78], with

decreases in temperature, SOC and STN accumulate at higher elevations. However, both air

temperature and soil layer thickness decrease with increasing altitude, which will also results

Table 6. Comparison of the mean topsoil SOC and STN concentrations of different slope groups.

Slope (˚) n Mean SOC(g kg-1) Mean STN(g kg-1)

> 25 37 17.16 ab 1.21 a

15–25 103 18.23 a 1.12 a

8–15 116 16.41 ab 0.98 ab

5–8 59 14.16 b 0.88 b

< 5 60 11.33 b 0.67 b

F 4.11�� 5.07��

Different letters in the same column indicate significant difference at P < 0.01.

�� P < 0.01.

https://doi.org/10.1371/journal.pone.0244322.t006
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in the change of vegetation distribution and productivity under different altitude gradients

[79]. Therefore, increasing altitude may lead to less litter accumulation and low input of

organic carbon and nitrogen in soil [80]. Sheikh et al. [80] found that the stocks of SOC

decreased with altitude in the broadleaf temperate and coniferous subtropical forests of Hima-

laya zones. It indicates that the influence of altitude on SOC and STN content may depend on

vegetation composition and climate change along altitude gradient [78]. In addition, erosion

has a significant influence on soil properties in regions, which are characterized by undulating

terrain. Topography is a major natural factor affecting soil erosion in hilly areas [81, 82].

According to the statistics, most of the soil erosion in Changting County is distributed in hilly

areas with altitudes of 200–500 m and accounts for 82.14% of the total area of soil erosion [83].

Frequent human production activities and high utilization rates of forest and soil resources are

found at the low and middle elevations where the majority of towns and villages are located.

Orchards and slope farmland are also relatively concentrated in this zone so soil erosion is seri-

ous. Thus, SOC and STN contents may increase with elevation due to the reduction of soil

erosion.

The SOM and STN concentrations were also significantly correlated with the slope. This

result is consistent with the finding of Guo et al. [33], but differed from the conclusion of

Fig 6. Regression analysis between the SOC, STN and slope using scatter plots.

https://doi.org/10.1371/journal.pone.0244322.g006

Fig 7. Comparison of SOC and STN concentrations among four slope aspects.

https://doi.org/10.1371/journal.pone.0244322.g007
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Wang et al. [78] who found that SOC and STN values on gentle slopes (< 10˚) were higher

than those on steeper slopes (> 25˚). The variation characteristics of SOC and STN contents

for different slopes are closely related to slope distribution patterns, land-use types and soil

erosion intensities in the study area. The gentler areas in the middle of the study area are

mainly inhabited by humans. Cultivated land and garden land are mostly distributed in the

range of 6–25˚, and the slope area of 15–35˚ is dominated by forestland. The luxuriant vegeta-

tion in the flat and gentle slope areas generally allows accumulation of soil organic matter. The

mountain vegetation in Changting County, however, was severely damaged due to social and

historical factors (i.e., the scramble for trees caused by disputes over forest rights among clans,

large numbers of trees were cut down for military use in war and lumbering for fuelwood in

poor regions). Therefore, the original vegetation in the gentle areas has been completely

destroyed and is now mainly secondary vegetation, while the vegetation on steep slopes is well

preserved. Slope is an important soil erosion factor, and soil degradation due to erosion is con-

sidered to be inextricably linked to the loss of SOC [84, 85]. Changting County has been

severely eroded for many years. Slope steepness affects the intensity of soil erosion by control-

ling the rate of soil redistribution across hill slopes [21]. In theory, greater slopes may result in

higher risks of runoff and soil loss [21, 86, 87]. However, with the development of the economy

in Changting, land development was intensive in flat and gentle regions, consumption of forest

resources increased rapidly, and thus led to serious erosion. As the population increased rap-

idly, moderate slope areas were developed into planting orchards. However, in the process of

development and utilization, nonstandard engineering measures and low amounts of ground

cover resulted in increased soil erosion. Therefore, the frequent human activity in low and

moderate slope areas led to more serious erosion and declines in SOC and STN. In contrast,

the preservation of vegetation in high slope areas with little human interference was better,

and the SOC and STN contents were higher.

As the slope aspect changed, the data also indicated that the SOC and STN contents on

shady slopes were relatively higher than those of sunny slopes, which is consistent with the

results of some previous studies [27, 88–90]. According to Wang et al. [78], in subalpine for-

ested catchment soils, the mean SOC and TN concentrations on shaded and semishaded slopes

were 31.2% and 24.6% higher than those on sunny and semisunny slopes, respectively. The

reasons for this are as follows. With good hydrothermal conditions, evapotranspiration on

shaded northern slopes is much lower than that of exposed slopes and therefore, soil moisture

contents are relatively high throughout the year. The lush vegetation and abundance of surface

biomass in shady slope areas become an important source of soil organic carbon. From shady

to sunny slopes, light intensity increases, and vegetation transpiration and soil moisture evapo-

rate faster, causing a significant loss of soil moisture and hindering SOC accumulation, which

then affects the total soil nitrogen content.

Table 7. Statistical results of the topsoil SOC and STN concentrations under different land use types.

Land use types n Mean SOC(g kg-1) Mean STN(g kg-1)

forestland 291 16.31 a 0.97 a

grassland 28 15.29 a 0.95 a

farmland 43 14.70 a 1.08 a

garden land 13 10.58 a 0.71 a

F 1.23 0.88

Same letters in the same column indicate no significant difference at P> 0.05.

https://doi.org/10.1371/journal.pone.0244322.t007
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The slope aspect affects the amount and intensity of solar radiation as well as the angle

between the ground and wind direction [91]. Surface temperature, soil temperature, soil mois-

ture, and vegetation vary greatly among different slope aspects. It is generally expected that

soil nutrient mineralization varies greatly between different slope aspects [92]. However, in

this study, we did not observe any significant effects of slope aspect on SOC and STN. This

result indicates that slope aspect is not a principal factor for the spatial variation of SOC and

STN as human activities, such as land reclamation and cultivation, weaken the effect of slope

direction.

In our study, the SOC and STN contents were higher in forestland, grassland and farmland

but were lower in garden land and corroborated the findings of Dessalegn et al. [93]. Gener-

ally, forestland and grassland were less disturbed by human activities. For one thing, the large

vegetation biomass, abundant land litter and relatively thick humus layer [94] in forestland

affect SOC by increasing the input of soil organic matter. At the same time, it can protect the

soil from the impact of erosion by reducing the loss of organic matter. High forest coverage,

canopy shade and litter cover have impacts on soil hydrothermal conditions, slow the mineral-

ization of soil organic matter, and thus facilitate the accumulation of soil carbon and nitrogen.

The relatively high SOC in grassland might be due to the dominance of roots, humus and asso-

ciated organisms. In farmland management, such measures as turning over soil and weeding

change the soil temperature, humidity, porosity and other conditions, enhance soil microor-

ganism activity, and accelerate the decomposition process of soil organic matter. The differ-

ences in soil organic carbon and total nitrogen contents between farmland and garden land

may be correlated with fertilizer input. Generally, the amounts of organic fertilizer applied to

farmland were relatively large and plant roots and stubble increased the input of soil organic

materials after crop harvests while there was almost no input of other organic materials except

for organic fertilizer in garden soil. Many studies have shown that different land-use patterns

have significant effects on soil organic carbon and total nitrogen contents at large scales [30,

31, 34, 94] but such results were not observed in this study. These results may be because the

land- use patterns in the study area had little influence on SOC and STN distribution or they

might be due to the relatively greater number of samples in forestland than other land-use

types by the systematic sampling conducted. Therefore, it is necessary to conduct further

research on SOC and STN contents in this region through sampling at different scales and for

different land-use types.

The results obtained in this research were derived only from the study of the impacts of

topography and land-use type on SOC and STN in a hilly region. In fact, the influence of

anthropogenic factors often changes due to regional policy interventions and natural factor

changes. Future studies should focus on the combined effects of various influencing factors

and suggest reasonable and scientific countermeasures for ecological restoration.

Conclusion

The results reported in this study revealed that SOC and STN exhibit moderate variations, and

that the entire study area is characterized by moderate or low concentrations of SOC and STN.

A number of erosion control measures have been applied in Changting County and soil ero-

sion has been initially restrained but the recovery of soil fertility including the increase of SOC

and STN contents proceeds very slowly.

Both STN and SOC showed a spatial variation trend of gradually decreasing from the out-

side to the center of the study area, which is consistent with the topography of Changting

County. The highest values were observed in the western and northern areas while the lowest

SOC and STN levels were observed in the center of the study area with serious soil erosion,
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suggesting that soil nutrient improvement in degraded areas is a slow process. More effective

measures are recommended for further ecological restoration in the central part of the country

to improve soil nutrients. Our results show that topography plays an important role in control-

ling the spatial diversity of SOC and STN by influencing regional environmental conditions

and soil erosion processes. The SOC and STN concentrations are positively correlated with ele-

vation and slope. As the slope aspect changes, the SOC and STN contents on shady slopes are

relatively higher than those of sunny slopes. The SOC and STN contents are higher in forest-

land, grassland and farmland but are lower in garden land. However, there are no significant

variations between the SOC and STN for different slope directions and land-use types. Topog-

raphy plays a greater role on SOC and STN levels than land-use types. Therefore, suitable soil

erosion control measures should be adopted according to the different terrain characteristics

in the hilly region for soil fertility recovery.

In addition, to improve our understanding of the spatial variability of SOC and STN in

response to ecological restoration, the long-term spatiotemporal dynamics of SOC and STN

should be examined in future studies.
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